
HAL Id: in2p3-00684810
https://in2p3.hal.science/in2p3-00684810v1

Submitted on 3 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heavy and light scalar leptoquarks in proton decay
I. Dorsner, S. Fajfer, N. Kosnik

To cite this version:
I. Dorsner, S. Fajfer, N. Kosnik. Heavy and light scalar leptoquarks in proton decay. Physical Review
D, 2012, 86, pp.015013. �10.1103/PhysRevD.86.015013�. �in2p3-00684810�

https://in2p3.hal.science/in2p3-00684810v1
https://hal.archives-ouvertes.fr


LAL 12-111

Heavy and light scalar leptoquarks in proton decay
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We list scalar leptoquarks that mediate proton decay via renormalizable couplings to the Standard

Model fermions. We employ a general basis of baryon number violating operators to parameterize

contributions of each leptoquark towards proton decay. This then sets the stage for investigation of

bounds on the leptoquark couplings to fermions with respect to the most current Super Kamiokande

results on proton stability. We quantify if, and when, it is necessary to have leptoquark masses close

to a scale of grand unification in the realistic SU(5) and flipped SU(5) frameworks. The most con-

servative lower bounds on the leptoquark masses are then presented. We furthermore single out a

leptoquark without phenomenologically dangerous tree-level exchanges that might explain discrep-

ancy of the forward-backward asymmetries in tt̄ production observed at Tevatron, if relatively light.

The same state could also play significant role in explaining muon anomalous magnetic moment.

We identify contributions of this leptoquark to dimension-six operators, mediated through a box di-

agram, and tree-level dimension-nine operators, that would destabilize proton if sizable leptoquark

and diquark couplings were to be simultaneously present.
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I. PROTON DECAY LEPTOQUARKS

There has been a plethora of low-energy experiments capable of leptoquark discovery thus far. These

have generated ever more stringent constraints on available parameter space for their existence. See, for

example, [1–6] for some of the latest results. There also exists a large number of phenomenological studies

of leptoquark signatures prompted primarily by various effects they could generate in flavor physics [7–11].

We are interested in a particular subset of scalar leptoquark states that are associated with proton decay. It

is well-known that there exists only a small number of these states that can simultaneously violate baryon

(B) and lepton (L) numbers [12–14]. The number of scalar leptoquarks that can mediate proton decay at

the tree-level is even smaller [15]. Our aim is to present a comprehensive classification of leptoquarks and

address a role these have in proton decay processes.

Scalar leptoquarks that mediate proton decay certainly represent qualitatively new physics. Although the

relevant operators associated with exchange of these states can be studied from an effective theory point of

view, we prefer to trace their origins to a particular unification scenario in order to expose their dependence

on underlying couplings. In fact we will study these states in two different unification frameworks that

correspond to the SU(5) [16] and the flipped SU(5) [17–19], i.e., SU(5)×U(1), embeddings of the mater

fields. These two scenarios are general enough to cover other possible embedding schemes.

Let us start by spelling out qualitative differences between the scalar and vector, i.e., gauge boson, lepto-

quarks that mediate proton decay at the so-called dimension-six (d = 6) level. (The latter have been studied

much more extensively in the literature. See, for example, [12–14, 17, 20–24].) Firstly, vector leptoquarks

comprise twenty-four states whereas the scalar ones comprise eighteen (fifteen) states in case neutrinos

are Dirac (Majorana) particles. Secondly, whereas SU(5) contains only a half of all vector leptoquarks,

the other half being in flipped SU(5), one can already find all possible proton-decay mediating scalar lep-

toquarks in either SU(5) or flipped SU(5) framework. Hence, the scalar sector, although smaller, can

potentially yield much richer structure with respect to the gauge one. Thirdly, the uncertainty in predictions

for partial nucleon decay rates due to the gauge boson exchange resides entirely in a freedom to choose

particular unitary rotations that need to be in agreement with observed mixing parameters in the fermionic

sector as gauge bosons couple to matter with the gauge coupling strength. Scalar fields, on the other hand,

couple to matter through Yukawa couplings. This brings additional uncertainties to potential predictions for

relevant decay rates.

The leptoquark states that simultaneously violate B and L quantum numbers tend to mediate proton de-

cay at tree-level and are therefore taken to be very massive. However, we have investigated an SU(5) grand

unified theory scenario [25] which resulted in a setup with a set of light leptoquarks. Namely, motivated
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by the need to explain anomalous events in tt̄ production at Tevatron [26, 27], we have found that a light

color triplet weak singlet scalar could contribute to tt̄ production and explain the observed increase of the

forward-backward asymmetry [28]. We have accordingly demonstrated that the unification of the funda-

mental interactions is possible if that set of light scalars is a part of the 45-dimensional representation [28].

In flavor physics, due to recent accurate measurements at Tevatron and LHCb, the presence of new

physics (NP) in B systems seems rather unlikely. The muon anomalous magnetic moment, on the other

hand, still leaves some room for NP contributions. The impact of potentially light leptoquark scalars,

including the light color triplet weak singlet scalar, on the low energy and hadron collider phenomenology

within that context has been investigated in Refs. [28–32].

The color triplet weak singlet scalar state we have singled out does not generate proton decay at the tree-

level. However, one can still construct, as we show later, higher order loop diagrams that yield effective

d = 6 and tree-level d = 9 operators which can destabilize proton. The natural question then is whether

one can simultaneously address the tt̄ asymmetry and the muon anomalous magnetic moment by using the

very same leptoquark. We investigate this issue in detail in Sec. VI.

This paper is organized as follows. In Sections II and III we list all proton decay inducing leptoquarks in

SU(5) and flipped SU(5) unification frameworks and specify their Yukawa couplings to the SM fermions.

In Sec. IV we introduce the effective dimension-six operators for proton decay and calculate associated

effective coefficients for each leptoquark state. Sec. V is devoted to a study of conservative lower bounds on

the color triplet leptoquark mass within phenomenologically realistic SU(5) and flipped SU(5) scenarios.

In Sec. VI we study leptoquarks that do not contribute to proton decay operators of dimension-6 at tree-level.

We conclude in Sec. VII.

II. LEPTOQUARKS IN SU(5)

The scalars that couple to matter at tree-level reside in the 5-, 10-, 15-, 45- and 50-dimensional rep-

resentations of SU(5) because the SM matter fields comprise 10i and 5j , where i, j = 1, 2, 3 repre-

sent family indices. Namely, 10i = (1,1, 1)i ⊕ (3,1,−2/3)i ⊕ (3,2, 1/6)i = (eCi , u
C
i , Qi) and 5j =

(1,2,−1/2)j ⊕ (3,1, 1/3)j = (Lj , d
C
j ), where Qi = (ui di)

T and Lj = (νj ej)
T [16]. Possible con-

tractions of the matter field representations hence read 10 ⊗ 10 = 5 ⊕ 45 ⊕ 50, 10 ⊗ 5 = 5 ⊕ 45 and

5 ⊗ 5 = 10 ⊕ 15. Theory also allows for addition of right-handed neutrinos that can be introduced, for

example, in the form of SU(5) fermionic singlets (1) without the need to enlarge the scalar sector. Note that

one can also introduce additional non-trivial representations of matter to generate observed fermion mass

parameters in the lepton [33] and quark [34] sectors. That, however, would not alter our operator analysis
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for large enough masses of extra matter fields.

Relevant decomposition of scalar representations to the SM gauge group, i.e., SU(5) → SU(3) ×

SU(2)× U(1), is given below [35]:

• 5 = (1,2, 1/2)⊕ (3,1,−1/3);

• 10 = (1,1, 1)⊕ (3,1,−2/3)⊕ (3,2, 1/6);

• 15 = (1,3, 1)⊕ (3,2, 1/6)⊕ (6,1,−2/3);

• 45 = (8,2, 1/2) ⊕ (6,1,−1/3) ⊕ (3,3,−1/3) ⊕ (3,2,−7/6) ⊕ (3,1,−1/3) ⊕ (3,1, 4/3) ⊕

(1,2, 1/2);

• 50 = (8,2, 1/2)⊕ (6,1, 4/3)⊕ (6,3,−1/3)⊕ (3,2,−7/6)⊕ (3,1,−1/3)⊕ (1,1,−2).

Only 5, 15 and 45 contain electrically neutral components and are thus capable of developing phe-

nomenologically viable vacuum expectation values (VEVs). Contributions to the up-quark, down-quark

and charged lepton masses can come from both 5 and 45 whereas Majorana (Dirac) masses for neutrinos

can be generated by VEV of 15 (5).

The scalar leptoquark states that violate both B and L quantum numbers are (3,1,−1/3), (3,3,−1/3)

and (3,1, 4/3), if one assumes neutrinos to be Majorana particles. These states reside in 5, 45 and 50.

However, if one allows for the possibility that neutrinos are Dirac particles there is another leptoquark—

(3,1,−2/3)—that is found in the 10 of SU(5) that violates both B and L and could thus also destabilize

proton. To that end we consider both the Majorana and Dirac neutrino cases to keep the analysis as general

as possible. Altogether, there are eighteen (fifteen) scalar leptoquarks that could mediate proton decay

in case neutrinos are Dirac (Majorana) particles. The leptoquarks in question are all triplets of color as

they must contract with lepton and quark states into an SU(3) singlet. Tables I, II, III and IV summarize

couplings to the matter of relevant states that reside in 50-, 45-, 10- and 5-dimensional representations,

respectively.

We observe that in the SU(5) framework the primary obstacle to the proton stability seems to be the need

to generate Yukawa couplings relevant for the charged lepton and down-quark masses. These receive equally

important contributions from the 10i5j5∗ and 10i5j45
∗ contractions [36]. It is clear from Tables II and IV

that both of these, individually, generate potentially dangerous couplings. The up-quark Yukawa coupling

generation, on the other hand, via the 10i10j45 operator seems not to pose any danger whatsoever as can

be seen from the second column in Table II. However, that operator cannot generate viable masses for all up-

quarks due to the antisymmetry of the corresponding mass matrix. The 10i10j5 contraction does provide
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SU(5) Y 10
ij 10i10j50

(3,1,−1/3)

≡
12−1/2εabc[Y

10
ij + Y 10

ji ]dTa iCub j∆c

∆
3−1/2[Y 10

ij + Y 10
ji ]eC T

i CuCa j∆a

TABLE I. Yukawa couplings of the B and L violating scalar in the 50-dimensional representation of SU(5).

a, b, c = 1, 2, 3 (i, j = 1, 2, 3) are color (flavor) indices. Y 10
ij are Yukawa matrix elements associated with the

relevant contraction in the group space of SU(5).

SU(5) Y 10
ij 10i10j45 Y 5

ij10i5j45
∗

(3,1,−1/3) 2−1Y 5
ijεabcu

C T
a i Cd

C
b j∆

∗
c

≡ 21/2[Y 10
ij − Y 10

ji ]eC T
i CuCa j∆a −2−1Y 5

iju
T
a iCej∆

∗
a

∆ 2−1Y 5
ijd

T
a iCνj∆

∗
a

21/2εabc[Y
10
ij − Y 10

ji ]dTa iCdb j∆
1
c Y 5

iju
T
a iCνj∆

1∗
a(3,3,−1/3)

2−1/2Y 5
iju

T
a iCej∆

2∗
a≡ −2εabc[Y

10
ij − Y 10

ji ]dTa iCub j∆
2
c

2−1/2Y 5
ijd

T
a iCνj∆

2∗
a(∆1,∆2,∆3)

−21/2εabc[Y
10
ij − Y 10

ji ]uTa iCub j∆
3
c −Y 5

ijd
T
a iCej∆

3∗
a

(3,1, 4/3)

≡ 21/2[Y 10
ij − Y 10

ji ]εabcu
C T
i a CuCb j∆c −Y 5

ije
C T
i CdCa j∆

∗
a

∆

TABLE II. Yukawa couplings of theB andL violating scalars in the 45-dimensional representation of SU(5). a, b, c =

1, 2, 3 (i, j = 1, 2, 3) are color (flavor) indices. Y 10
ij and Y 5

ij are Yukawa matrix elements.

viable up-quark masses but the price to pay is resurrection of the proton decay issue. To conclude, the only

operator that can be considered innocuous in the Majorana neutrino case is the 10i10j45 contraction.

III. LEPTOQUARKS IN FLIPPED SU(5)

Another possibility to unify the SM matter into an SU(5)-based framework leads to the so-called flipped

SU(5) scenario [17–19]. A single family of matter fields in flipped SU(5) can be seen as originating from a

16-dimensional representation of SO(10). Actually, flipped SU(5) is not necessarily completely embedded

into SO(10). Nevertheless, the generator of electric charge in flipped SU(5) is given as a linear combination

of a U(1) generator that resides in SU(5) and an extra U(1) generator as if both of these originate from an

SO(10)→ SU(5)×U(1) decomposition. This guarantees anomaly cancelation at the price of introducing

one extra state per family, i.e., the right-handed neutrino νC . The transition between the SU(5) and flipped
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SU(5) Y 1
ij10i1j10

∗ Y 5
ij5i5j10

(3,1,−2/3)

≡ Y 1
iju

C T
a i Cν

C
j ∆∗

a 2−1/2εabcY
5
ijd

C T
a i Cd

C
b j∆c

∆ Y 5 = −Y 5T

TABLE III. Yukawa couplings of theB andL violating scalar in the 10-dimensional representation of SU(5). a, b, c =

1, 2, 3 (i, j = 1, 2, 3) are color (flavor) indices. Y 1
ij and Y 5

ij are Yukawa matrix elements.

SU(5) Y 10
ij 10i10j5 Y 5

ij10i5j5
∗ Y 1

ij5i1j5

(3,1,−1/3) 2−1/2εabcY
5
iju

C T
a i Cd

C
b j∆

∗
c

≡
2εabc[Y

10
ij + Y 10

ji ]dTa iCub j∆c

2−1/2Y 5
iju

T
a iCej∆

∗
a Y 1

ijd
C T
a i Cν

C
j ∆a

∆
−2[Y 10

ij + Y 10
ji ]eC T

i CuCa j∆a

−2−1/2Y 5
ijd

T
a iCνj∆

∗
a

TABLE IV. Yukawa couplings of the B and L violating scalar in the 5-dimensional representation of SU(5). a, b, c =

1, 2, 3 (i, j = 1, 2, 3) are color (flavor) indices. Y 10
ij , Y 5

ij and Y 1
ij are Yukawa matrix elements.

SU(5) embeddings is then provided by dC ↔ uC , eC ↔ νC , u ↔ d and ν ↔ e transformations. Flipped

SU(5) thus predicts existence of three right-handed neutrinos as these transform nontrivially under the

underlying gauge symmetry.

The matter fields in flipped SU(5) comprise 10+1
i , 5−3

i and 1+5
i , where the superscripts correspond to

the extra U(1) charge assignment. To obtain the SM hypercharge Y one uses the relation Y = (Y (U(1))−

Y (U(1)SU(5)))/5, where Y (U(1)) and Y (U(1)SU(5)) represent the quantum numbers of the extra U(1)

and the U(1) in SU(5)(→ SU(3)× SU(2)× U(1)), respectively.

The scalar sector that can couple to matter directly is made out of 50−2, 45−2, 15+6, 10+6, 5−2 and

1−10. Representations that can generate contributions to the charged fermion masses and Dirac neutrino

masses are 45−2 and 5−2, whereas Majorana mass for neutrinos can originate from interactions with 15+6.

Leptoquarks that violate B and L reside in 50−2, 45−2, 10+6 and 5−2 with relevant couplings to matter

given in Tables V, VI, VIII and VII, respectively.

In flipped SU(5) the main obstacle to matter stability is the the generation of the up-quark masses.

Namely, these can be generated through 10+1
i 5

−3
j 5∗+2 and/or 10+1

i 5
−3
j 45∗+2 contractions. Both of these

are dangerous as far as the proton decay is concerned as can be seen from Tables VI and VIII. All other

contractions, in the Majorana neutrino case, are actually innocuous.
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SU(5)× U(1) Y 10
ij 10+1

i 10+1
j 50−2

(3,1,−1/3)−2

≡
12−1/2εabc[Y

10
ij + Y 10

ji ]uTa iCdb j∆c

∆
3−1/2[Y 10

ij + Y 10
ji ]νC T

i CdCa j∆a

TABLE V. Yukawa couplings of the B and L violating scalar in 50-dimensional representation of SU(5). a, b, c =

1, 2, 3 (i, j = 1, 2, 3) are color (flavor) indices. Y 10
ij are Yukawa matrix elements.

SU(5)× U(1) Y 10
ij 10+1

i 10+1
j 45−2 Y 5

ij10i5
−3
j 45∗+2

(3,1,−1/3)−2 2−1Y 5
ijεabcd

C T
a i Cu

C
b j∆

∗
c

≡ 21/2[Y 10
ij − Y 10

ji ]νC T
i CdCa j∆a −2−1Y 5

ijd
T
a iCνj∆

∗
a

∆ 2−1Y 5
iju

T
a iCej∆

∗
a

21/2εabc[Y
10
ij − Y 10

ji ]uTa iCub j∆
3
c Y 5

ijd
T
a iCej∆

3∗
a(3,3,−1/3)−2

2−1/2Y 5
ijd

T
a iCνj∆

2∗
a≡ −2εabc[Y

10
ij − Y 10

ji ]uTa iCdb j∆
2
c

2−1/2Y 5
iju

T
a iCej∆

2∗
a(∆1,∆2,∆3)

−21/2εabc[Y
10
ij − Y 10

ji ]dTa iCdb j∆
1
c −Y 5

iju
T
a iCνj∆

1∗
a

(3,1, 4/3)−2

≡ 21/2[Y 10
ij − Y 10

ji ]εabcd
C T
i a CdCb j∆c −Y 5

ijν
C T
i CuCa j∆

∗
a

∆

TABLE VI. Yukawa couplings of the B and L violating scalars in 45-dimensional representation of SU(5). a, b, c =

1, 2, 3 (i, j = 1, 2, 3) are color (flavor) indices. Y 10
ij and Y 5

ij are Yukawa matrix elements.

IV. PROTON DECAY

Let us discuss proton decay operators due to the scalar leptoquark exchange of the lowest possible

dimension in detail. These are dimension-six operators made out of three quarks and a lepton that violate
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SU(5)× U(1) Y 1
ij10

+1
i 1+5

j 10∗−6 Y 5
ij5

−3
i 5

−3
j 10+6

(3,1,−2/3)+6

≡ Y 1
ijd

C T
a i Ce

C
j ∆∗

a 2−1/2εabcY
5
iju

C T
a i Cu

C
b j∆c

∆ Y 5 = −Y 5T

TABLE VII. Yukawa couplings of the B and L violating scalar in 10-dimensional representation of SU(5). a, b, c =

1, 2, 3 (i, j = 1, 2, 3) are color (flavor) indices. Y 1
ij and Y 5

ij are Yukawa matrix elements.

SU(5)× U(1) Y 10
ij 10+1

i 10+1
j 5−2 Y 5

ij10
+1
i 5

−3
j 5∗+2 Y 1

ij5
−3
i 1+5

j 5−2

(3,1,−1/3)−2 2−1/2εabcY
5
ijd

C T
a i Cu

C
b j∆

∗
c

≡
−2εabc[Y

10
ij + Y 10

ji ]uTa iCdb j∆c

2−1/2Y 5
ijd

T
a iCνj∆

∗
a Y 1

iju
C T
a i Ce

C
j ∆a

∆
−2[Y 10

ij + Y 10
ji ]νC T

i CdCa j∆a

−2−1/2Y 5
iju

T
a iCej∆

∗
a

TABLE VIII. Yukawa couplings of the B and L violating scalar in 5-dimensional representation of SU(5). a, b, c =

1, 2, 3 (i, j = 1, 2, 3) are color (flavor) indices. Y 10
ij , Y 5

ij and Y 1
ij are Yukawa matrix elements.

B and L by 1 unit. They are summarized below

OH(dα, eβ) = a(dα, eβ) uT L C−1 dα u
T L C−1eβ , (1)

OH(dα, e
C
β ) = a(dα, e

C
β ) uT L C−1 dα e

C
β
†
L C−1uC

∗
, (2)

OH(dCα , eβ) = a(dCα , eβ) dCα
†
L C−1 uC

∗
uT L C−1eβ , (3)

OH(dCα , e
C
β ) = a(dCα , e

C
β ) dCα

†
L C−1 uC

∗
eCβ
†
L C−1uC

∗
, (4)

OH(dα, dβ, νi) = a(dα, dβ, νi) u
T L C−1 dα d

T
β L C

−1 νi , (5)

OH(dα, d
C
β , νi) = a(dα, d

C
β , νi) d

C
β
†
L C−1 uC

∗
dTα L C

−1 νi , (6)

OH(dα, d
C
β , ν

C
i ) = a(dα, d

C
β , ν

C
i ) uT L C−1 dα ν

C
i
†
L C−1 dCβ

∗
, (7)

OH(dCα , d
C
β , ν

C
i ) = a(dCα , d

C
β , ν

C
i ) dCβ

†
L C−1 uC

∗
νCi
†
L C−1 dCα

∗
. (8)

Here, i(= 1, 2, 3) and α, β(= 1, 2) are generation indices, where all operators that involve a neutrino are

bound to have α + β < 4 due to kinematical constraints. L(= (1 − γ5)/2) is the left projection operator.

The SU(3) color indices are not shown since the antisymmetric contraction εabcqaqbqc is common to all the

above listed operators. This notation has already been introduced in Ref. [24].

These operators allow one to write down explicitly d = 6 proton decay contributions due to a particular

leptoquark exchange [24]. To that end we first specify our convention for the redefinition of the fermion

fields that yields the up-, down-quark and charged lepton mass matrices in physical basis: MU,D,E →

M
diag
U,D,E . These are UTCMUU = M

diag
U , DT

CMDD = M
diag
D , and ETCMEE = M

diag
E . The quark mixing is
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U †D ≡ VUD = K1VCKMK2, where K1 and K2 are diagonal matrices containing three and two phases,

respectively. In the neutrino sector we have NT
CMNN = M

diag
N (NTMNN = M

diag
N ) in the case of Dirac

(Majorana) neutrinos. The leptonic mixing E†N ≡ VEN = K3VPMNSK4 in case of Dirac neutrino, or

VEN = K3VPMNS in the Majorana case. K3 is a diagonal matrix containing three phases whereas K4

contains two phases. VCKM (VPMNS) is the Cabibbo-Kobayashi-Maskawa (Pontecorvo-Maki-Nakagawa-

Sakata) mixing matrix.

A. Tree-level exchange (d = 6) operators in SU(5)

The only relevant coefficient for ∆ ≡ (3,1,−1/3) from 50 is

a(dα, e
C
β ) =

1

6m2
∆

(UT (Y 10 + Y 10T )D)1α (E†C(Y 10 + Y 10T )†U∗C)β1, (9)

where m∆ is a mass of leptoquark in question. (See Table I for details on notation for Yukawa couplings of

the 50-dimensional representation to the matter.)

The relevant coefficients for ∆ ≡ (3,1,−1/3) from 45 are

a(dCα , eβ) =
1

4m2
∆

(D†CY
5 †U∗C)α1 (UTY 5E)1β , (10)

a(dCα , e
C
β ) =

1√
2m2

∆

(D†CY
5 †U∗C)α1 (E†C(Y 10 − Y 10T )†U∗C)β1 , (11)

a(dα, d
C
β , νi) =

1

4m2
∆

(D†CY
5 †U∗C)β1 (DTY 5N)αi . (12)

The relevant coefficients for ∆ ≡ (3,1,−1/3) from 5 are

a(dα, eβ) = −
√

2

m2
∆

(UT (Y 10 + Y 10T )D)1α (UTY 5E)1β , (13)

a(dα, e
C
β ) = − 4

m2
∆

(UT (Y 10 + Y 10T )D)1α (E†C(Y 10 + Y 10T )†U∗C)β1, , (14)

a(dCα , eβ) =
1

2m2
∆

(D†CY
5 †U∗C)α1 (UTY 5E)1β, , (15)

a(dCα , e
C
β ) =

√
2

m2
∆

(D†CY
5 †U∗C)α1 (E†C(Y 10 + Y 10T )†U∗C)β1 , (16)

a(dα, dβ, νi) =

√
2

m2
∆

(UT (Y 10 + Y 10T )D)1α (DTY 5N)βi , (17)

a(dα, d
C
β , νi) = − 1

2m2
∆

(D†CY
5 †U∗C)β1 (DTY 5N)αi , (18)

a(dα, d
C
β , ν

C
i ) =

2

m2
∆

(UT (Y 10 + Y 10T )D)1α (N †CY
1 †D∗C)iβ , (19)

a(dCα , d
C
β , ν

C
i ) = − 1√

2m2
∆

(D†CY
5 †U∗C)β1 (N †CY

1 †D∗C)iα . (20)
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The relevant coefficients for ∆2 ∈ (3,3,−1/3) from 45 are

a(dα, eβ) = −
√

2

M2
∆2

(UT (Y 10 − Y 10T )D)1α (UTY 5E)1β , (21)

a(dα, dβ, νi) = −
√

2

M2
∆2

(UT (Y 10 − Y 10T )D)1α (DTY 5N)βi . (22)

The relevant coefficient for ∆1 ∈ (3,3,−1/3) from 45 is

a(dα, dβ, νi) =
2
√

2

M2
∆1

(UTY 5N)1i (DT (Y 10 − Y 10T )D)βα , (23)

where the extra factor of 2 comes from two terms in Fierz transformation

(sCLd)(νCLu) = −(uCLs)(νCLd)− (uCLd)(νCLs) . (24)

The only relevant coefficient for ∆ ≡ (3,1,−2/3) from 10 is

a(dCα , d
C
β , ν

C
i ) = − 1√

2m2
∆

(D†C(Y 5 − Y 5T )†D∗C)βα (N †CY
1 †U∗C)i1 . (25)

Finally, ∆3 ∈ (3,3,−1/3) and (3,1, 4/3), both from 45 of SU(5), do not contribute to proton de-

cay at tree-level. This is due to antisymmetry, in flavor space, of their couplings to the pair of up-quarks.

Nevertheless, both states still induce proton decay through loops at an effective d = 6 level. We present

systematic study of these contributions for the (3,1, 4/3) case in Section VI. There we also spell out con-

tributions of the (3,1, 4/3) leptoquark to dimension-nine tree-level proton decay amplitudes. Equivalent

contributions of ∆3 ∈ (3,3,−1/3) are not pursued since the components ∆1 and ∆2 from the same state

already contribute at leading order. In this manner, higher order contributions of ∆1,2,3 would only play a

role of radiative corrections.

B. Tree-level exchange (d = 6) operators in flipped SU(5)

The only relevant coefficient for ∆ ≡ (3,1,−1/3)−2 from 50−2 is

a(dα, d
C
β , ν

C
i ) =

1

6m2
∆

(UT (Y 10 + Y 10T )D)1α (N †C(Y 10 + Y 10T )†D∗C)iβ . (26)

The relevant coefficients for ∆ ≡ (3,1,−1/3)−2 from 45−2 are

a(dCα , eβ) =
1

4m2
∆

(D†CY
5 ∗U∗C)α1 (UTY 5E)1β , (27)

a(dα, d
C
β , νi) = − 1

4m2
∆

(D†CY
5 ∗U∗C)β1 (DTY 5N)αi , (28)

a(dCα , d
C
β , ν

C
i ) =

1√
2m2

∆

(D∗CY
5 ∗U∗C)β1 (N †C(Y 10 − Y 10T )†D∗C)iα . (29)
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The relevant coefficients for ∆ ≡ (3,1,−1/3)−2 from 5−2 are

a(dα, eβ) =

√
2

m2
∆

(UT (Y 10 + Y 10T )D)1α (UTY 5E)1β , (30)

a(dα, e
C
β ) =

2

m2
∆

(UT (Y 10 + Y 10T )D)1α (E†CY
1 †U∗C)β1 , (31)

a(dCα , eβ) =
1

2m2
∆

(D†CY
5 ∗U∗C)α1 (UTY 5E)1β , (32)

a(dCα , e
C
β ) =

1√
2m2

∆

(D†CY
5 ∗U∗C)α1 (E†CY

1 †U∗C)β1 , (33)

a(dα, dβ, νi) =
−
√

2

m2
∆

(UT (Y 10 + Y 10T )D)1α (NTY 5̄TD)iβ , (34)

a(dα, d
C
β , νi) =

−1

2m2
∆

(D†CY
5 ∗U∗C)β1 (DTY 5N)αi , (35)

a(dα, d
C
β , ν

C
i ) =

−4

m2
∆

(UT (Y 10 + Y 10T )D)1α (N †C(Y 10 + Y 10T )†D∗C)iβ , (36)

a(dCα , d
C
β , ν

C
i ) = −

√
2

m2
∆

(D†CY
5 ∗U∗C)1β (N †C(Y 10 + Y 10T )†D∗C)iα . (37)

The relevant coefficients for ∆2 ∈ (3,3,−1/3)−2 from 45−2 are

a(dα, eβ) = −
√

2

M2
∆2

(UT (Y 10 − Y 10T )D)1α (UTY 5E)1β , (38)

a(dα, dβ, νi) = −
√

2

M2
∆2

(UT (Y 10 − Y 10T )D)1α (DTY 5N)βi . (39)

The relevant coefficient for ∆1 ∈ (3,3,−1/3)−2 from 45−2 is

a(dα, dβ, νi) =
2
√

2

M2
∆1

(UTY 5N)1i (DT (Y 10 − Y 10T )D)βα , (40)

where the extra factor of 2 comes from Fierz transformation (24).

The only relevant coefficient for ∆ ≡ (3,1, 4/3)−2 from 45−2 is

a(dCα , d
C
β , ν

C
i ) = − 2

√
2

M2
∆1

(U †CY
5 †N∗C)i1 (D†C(Y 10 − Y 10T )†D∗C)αβ , (41)

where the extra factor of 2 again comes from Fierz transformation.

The relevant coefficients for (3,1,−2/3)+6 ∈ 10+6 and ∆3 ∈ (3,3,−1/3)−2 ∈ 45−2 are not present

at the leading order due to antisymmetry of the couplings to the up-quark pair. The higher order contribu-

tions of the former state are discussed in Section VI.

V. LEADING ORDER CONTRIBUTIONS

Scalar fields couple to matter through Yukawa couplings. This introduces uncertainties to predictions

related to any processes that involve scalar exchange. It is thus natural to ask if, and when, it is necessary

to have leptoquark masses close to a scale of grand unification.
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A. Color triplets of SU(5)

The lack of predictivity in the scalar sector can best be demonstrated if we revisit the case of the triplet

scalar in the 5-dimensional representation of SU(5). Recall, it is this scalar that has led to the so-called

doublet-triplet splitting problem within the context of the Georgi-Glashow SU(5) model [16].

Operators associated with the triplet exchange are given in Eqs. (13) through (20). One can see that

all these operators, in the Majorana neutrino case, can be suppressed if (UT (Y 10 + Y 10T )D)1α = 0 and

(D†CY
5 †U∗C)α1 = 0 for α = 1, 2. Here we assume not only that the triplet is the only relevant scalar state

that mediates proton decay but that the entries of U , UC , D, DC , Y 10 and Y 5 are all free parameters. The

first set of conditions can be insured if, for example, Y 10 = −Y 10T . This solution has already been pointed

out in Ref. [24]. The second set of conditions can also be easily satisfied although what we find defers from

what has been presented in [24].

Clearly, if Yukawa sector relevant for proton decay through scalar exchange is not related to the origin

of fermion masses one cannot make any firm predictions. Things, however, might change in models where

that connection is strong. Let us thus analyze predictions of the simplest of all possible renormalizable

models based on the SU(5) gauge symmetry. We want to find what the current experimental bounds on

p→ e+π0 and p→ µ+π0 partial lifetimes imply for the masses of color triplets if the theory is to be viable

with regard to the fermion mass generation. We present analysis for these particular decays because they

are well-constrained experimentally and they turn out to be the least model dependent.

The starting point for our analysis are the following relations for the decay widths [24] for the p→ e+
δ π

0

(δ = 1, 2 corresponding to e, µ) channels

Γ(p→ e+
δ π

0) =
mp

64πf2
π

(
|αa(d1, eδ) + βa(dC1 , eδ)|2 + |αa(d1, e

C
δ ) + βa(dC1 , e

C
δ )|2

)
(1+D+F )2, (42)

where α and β are the so-called nucleon matrix elements. F + D and F − D combinations are extracted

from the nucleon axial charge and form factors in semileptonic hyperon decays, respectively [37, 38]. We

take in what follows α = −β = −0.0112(25) GeV3. (See Section VI for more details on α and β.) We

further take fπ = 130 MeV, mp = 938.3 MeV, D = 0.80(1) and F = 0.47(1) [38].

We demand that the theory is renormalizable and thus neglect possibility that higher-dimensional terms

contribute to (super)potential at any level. We furthermore take the simplest possibility for the generation

of phenomenologically viable fermion masses. Namely, we demand that both 5 and 45 of Higgs contribute

to the down-quark and charged lepton masses [36]. We further take all mass matrices to be symmetric, i.e.,
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MU,D,E = MT
U,D,E . With these assumptions we obtain

Γ(p→ e+
δ π

0) =
mp

64πf2
π

α2

v4
5m

4
∆

∣∣∣∣(VUD)11[mu +
3

4
md] +

1

4
(V †UDU

∗
2M

diag
E U †2)11

∣∣∣∣2(∣∣∣∣32(V ∗UDM
diag
D V †UDU

∗
2 )1δ +

1

2
(U2M

diag
E )1δ

∣∣∣∣2 + 4|mu(U2)1δ|2
)

(1 +D + F )2,

where U2 = UTE∗ while v5 represents the VEV of the 5-dimensional representation. U2 entries and

v5 are primary sources of uncertainty. Our normalization is such that |v5|2/2 + 12|v45|2 = v2, where

v(= 246 GeV) stands for the electroweak VEV. v45 is the VEV in the 45-dimensional representation. A

connection between Yukawa couplings and charged fermion mass matrices is spelled out elsewhere [31].

We see that the uncertainty in predicting partial decay rates persists even in this realistic scenario. One

can suppress Γ(p → e+
δ π

0) with regard to U2 numerically to generate the least conservative lower bound

on the mass of the scalar triplet in the 5-dimensional representation of SU(5). This, however, should be

simultaneously done with all other partial decay rates to generate a consistent solution. This is beyond the

scope of this study. The important point is that even in the case of symmetric Yukawa couplings one cannot

test the theory if the scalar triplet exchange dominates. This is in stark contrast to what one obtains for the

gauge d = 6 contributions in the SU(5) framework [20].

We can maximize Γ(p → e+
δ π

0) with regard to U2 to obtain the most conservative bound, from the

model building point of view, on m∆. In fact, one can actually reach the maximal value for Γ(p → e+
δ π

0)

by simply taking

U2 = UTE∗ =


0 0 1

0 1 0

1 0 0

 . (43)

With this ansatz we obtain the following simplified expressions:

Γ(p→ e+π0) ≈ 32mpα
2

212πf2
πv

4
5m

4
∆

|(VUD)13|2m2
bm

2
τ (1 +D + F )2 , (44)

Γ(p→ µ+π0) ≈ 32mpα
2

212πf2
πv

4
5m

4
∆

|(VUD)12|2m2
sm

2
τ (1 +D + F )2 . (45)

These expressions when combined with experimental input yield comparable bounds on the mass of the

leptoquark in question. We use the following limits [39]

τ(p→ π0e+) > 1.3× 1034 yrs @ 90% CL (46a)

τ(p→ π0µ+) > 1.1× 1034 yrs @ 90% CL (46b)
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The p→ µ+π0 channel gives slightly more stringent bound that reads

m∆ > 3.6× 1012

(
α

0.0112 GeV3

)1/2(100 GeV

v5

)
GeV. (47)

Here we take values of quark and lepton masses at MZ , as given in [40] , and neglect any running of the

relevant coefficients, for simplicity. These effects can be accounted for in a straightforward manner.

In the previous analysis it was assumed that contributions to proton decay of the triplet in the 5-

dimensional representation dominate over contributions of triplets in the 45-dimensional representation.

Let us now see what happens if that is not the case. Note that our assumption that the mass matrices are

symmetric implies that the only contribution to p → e+
δ π

0 (δ = 1, 2) channels one needs to consider with

regard to the 45 triplet exchanges originates from the (3,1,−1/3) state. We accordingly find

Γ(p→ e+
δ π

0) =
mpα

2

218πf2
πv

4
45m

4
∆

∣∣∣(V †UDU∗2Mdiag
E U †2)11 − (VUD)11mu

∣∣∣2∣∣∣(U2M
diag
E − V ∗UDM

diag
D V †UDU

∗
2 )1δ

∣∣∣2 (1 +D + F )2 ,

where v45 represents the VEV of the 45-dimensional representation. With the ansatz given in Eq. (43) we

obtain the following expressions

Γ(p→ e+π0) ≈ mpα
2

218πf2
πv

4
45m

4
∆

|(VUD)13|2m2
bm

2
τ (1 +D + F )2 , (48)

Γ(p→ µ+π0) ≈ mpα
2

218πf2
πv

4
45m

4
∆

|(VUD)12|2m2
sm

2
τ (1 +D + F )2 . (49)

These can be compared with the results for the exchange of the 5-dimensional triplet given in Eqs. (44)

and (45) to obtain (
Γ(p→ e+

δ π
0)5

Γ(p→ e+
δ π

0)45

)
max

= 576

(
v45

v5

)4

, δ = 1, 2. (50)

We see that the 5-dimensional triplet exchange dominates over the 45-dimensional triplet for moderate

values of v45.

To summarize, if one is to maximize contributions from the triplets in the 5- and 45-dimensional rep-

resentations towards proton decay within renormalizable SU(5) framework with symmetric mass matrices

the current, most conservative, bound on the triplet mass scale is given in Eq. (47) (Eq. (50)) if the color

triplet in 5 (45) dominates. In other words, any such SU(5) scenario where the triplet scalar mass exceeds

this bound is certainly safe with regard to the proton decay constraints. If triplet is to be lighter than that,

one needs to explicitly check if particular implementation of Yukawa couplings allows for such scenario.

Also, any mixing between the triplets can be accounted for by simple rescaling of relevant operators.
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B. Color triplet in flipped SU(5)

Flipped SU(5) is well-known for the so-called missing partner mechanism that naturally addresses

scalar mediated proton decay by making the relevant triplet scalar in the 5-dimensional representation heavy.

Be that as it may, it is easy to see that the operators associated with the triplet exchange in flipped SU(5)

given in Eqs. (30) through (35), in the Majorana neutrino case, can be suppressed with ease if (UT (Y 10 +

Y 10T )D)1α = 0 and (D†CY
5 ∗U∗C)α1 = 0 for α = 1, 2. (In flipped SU(5) the Dirac mass matrix for

neutrinos is proportional to the up-quark mass matrix. This implies that flipped SU(5) predicts Majorana

nature of neutrinos.)

In the minimal realistic version of flipped SU(5) it is sufficient to have only one scalar 5-dimensional

representation present to generate realistic charged fermion masses. Let us then analyze the prediction of

such scenario. To be able to compare these results with what we obtain in the case of ordinary SU(5) we

again take MU,D,E = MT
U,D,E . We get the following result for the p → e+

δ π
0 (δ = 1, 2) partial decay

widths

Γ(p→ e+
δ π

0) =
mp

64πf2

α2

v4
5m

4
∆

|(VUD)11(md −mu)|2 4(m2
u +m2

e)|(U2)1δ|2(1 +D + F )2, (51)

where U2 = UTE∗ and v5(=
√

2 246 GeV) represents the VEV of the 5-dimensional representation. Inter-

estingly enough, if U2 takes the form given in Eq. (43) it would yield suppressed partial decay widths for

p → e+
δ π

0, δ = 1, 2. In other words, the setup that enhances certain partial proton decay rates in SU(5)

would suppress corresponding rates in flipped SU(5) framework.

If we want to be conservative with regard to the limit on m∆ it is sufficient to maximize relevant decay

widths. This can be done by taking (U2)1δ = 1 for p→ e+
δ π

0 (δ = 1, 2) to obtain

m∆ > 3.6× 1010

(
α

0.0112 GeV3

)1/2

GeV. (52)

This limit comes out to be significantly weaker with respect to the corresponding limit we presented in the

case of SU(5).

VI. HIGHER ORDER CONTRIBUTIONS

In the SU(5) framework the states (3̄,1, 4/3) and ∆3 ∈ (3,3,−1/3) violate B and L and do not

contribute to dimension-six proton decay operators at tree-level. Antisymmetry of their Yukawa couplings

to two up quarks only allows for dimension-six operators involving c or t quarks that produce B number

violation in charm or top decays [41], but these operators do not affect the proton stability due to large
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masses of c and t quarks. However, an additional W boson exchange opens decay channels with final states

that are kinematically accessible to proton decay.

A. Box mediated dimension-six operator from (3̄,1, 4/3) ∈ 45

One possibility is to make a box diagram with a single W exchange leading to the d = 6 operator, as

shown on Fig. 1. In the literature, proton decay mediation involving W boson exchanges were considered

∆
c, t

W/φ

d, s, b

u

ℓ

d, s

u

∆
c, t

W/φ

e, µ, τ

u

d, s

d, s

ν

FIG. 1. Box diagrams with (3̄,1, 4/3) state that generate d = 6 operators of flavor uud` and uddν.

in [41–43]. We calculate the box diagram in the approximation where we neglect external momenta, how-

ever, we keep both virtual fermions massive since the right-handed ∆ interactions force chirality flips on

internal fermion lines and thus the diagram would vanish if both fermions were massless. Evaluation of the

diagrams with W and would-be Goldstones leads to gauge invariant and finite amplitude. Then we find that

∆(3̄,1, 4/3) generates two effective coefficients:

a(dα, e
C
β ) = − GF

4π2m2
W

∑
j,k

[
U †C(Y 10∗ − Y 10†)U∗C

]
1j

[
D†CY

5̄†E∗C

]
kβ

(53)

mujVjαmdkV
∗
uk J(x∆, xuj , xdk) ,

a(dα, d
C
β , νi) = − GF

4π2m2
W

∑
j

[
U †C(Y 10∗ − Y 10†)U∗C

]
1j

[
D†CY

5̄†E∗C

]
βi

(54)

mujVjαm`i J(x∆, xuj , x`i) .

Here, V ≡ VCKM , while the leptonic mixing matrix has been set to unity. (For the neutrino final states one

would need to sum over all neutrino flavors.). Mass dependence, apart from helicity flip factors, is encoded

in function J (where xk ≡ m2
k/m

2
W )

J(x, y, z) =
(y − 4)y log y

(y − 1)(y − x)(y − z)
+

(z − 4)z log z

(z − 1)(z − y)(z − x)
(55)

+
(x− 4)x log x

(x− 1)(x− y)(x− z)
.
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There are two distinct regimes of dynamics in the box, depending on the presence of t quark in the loop.

When j = 3 we expand to leading order in x`i , x`i � 1, and find

J(x∆, xt, x`i) =
1

x∆ − xt

[
x∆ − 4

x∆ − 1
log x∆ −

xt − 4

xt − 1
log xt

]
. (56)

When both fermions are light compared to W the J function takes the following form

J(x∆, xuj , x`i) =
1

x∆

[
x∆ − 4

x∆ − 1
log x∆ +

4

xuj − x`i

(
x`i log x`i − xuj log xuj

)]
. (57)

Contributions of the up-quark Yukawa couplings are weighted approximately by mujVjd for j = 2, 3 that

run in the box. The large mass of the t quark comes with small element Vtd that makes this product of

the same magnitude as mcVcd. Similar cancellation between mass and CKM hierarchies occurs for the

down-quarks and the weights obey mdVud ∼ msVus ∼ mbVub.

The (3̄,1, 4/3) state has been identified as a suitable candidate to explain the anomalous value of the

muon magnetic moment. One of the leptoquark couplings (D†CY
5̄†E∗C)i2 between the muon and one of

the down quarks di must be of the order ∼ 2, while other two must be <∼ 10−3 to suppress contribu-

tions to other down-quark and charged lepton observables [31]. In addition, the CDF and DØ measure-

ments of forward-backward asymmetry in tt̄ production can be explained by a large diquark coupling

(U †C(Y 10∗ − Y 10†)U∗C)31 ∼ 2 to ut quark pair [28]. Additional couplings between uc and ct quark pairs

are constrained by charm and top physics processes and their upper bounds are of the order 10−1 and 10−2,

respectively [32]. Both puzzles can be explained for a mass of the leptoquark of around 400 GeV. How-

ever, for a light mass and with the abovementioned two large couplings the proton would decay much too

quickly to a muon final state via dominant contribution of t quark and one of the down quarks in the box

(c.f. Eq. (54)). Therefore, one has to find a second amplitude of equal magnitude and opposite phase in

order to achieve cancellation between the first and the second amplitude. As explained in the preceding

paragraph, all down quarks in the box that couple to external muon have similar weights that come from

loop dynamics and CKM factors. As a result, the hierarchy of di contributions to the amplitude follows

very closely hierarchy of the leptoquark couplings (D†CY
5̄†E∗C)i2 and the required cancellation cannot take

place between the different down-quarks in the box. Likewise, cancellation between c and t quarks in the

box diagram cannot occur for similar reason.

B. Tree-level dimension-nine operator from (3̄,1, 4/3) ∈ 45

The W emission from the up-type quark leads to proton decay amplitudes depicted on Fig. 2. Decays of

this type have been already mentioned in Ref. [41]. We focus here on the final state with a single charged
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lepton whose decay width is most severely bounded experimentally. In this case the following d = 9

effective operator is obtained

∆

c, t

W

ℓ d, s

u

d, s

d, s

u

∆

c, t

W

ℓ ℓ

u

d, s

d, s

ν

FIG. 2. d = 6 proton decay operator induced by tree level (3̄,1, 4/3) ∈ 45 and W exchanges.

L9 =
∑
U=c,t

−8GFVUαV
∗
uγ

mUm2
∆

[
UC(Y 10 − Y 10T )†U∗C

]
1U

[
D†CY

5̄†E∗C

]
βi

εabc(uCa γ
µLdbα)(dCcβR`i)(dkγγµLuk) . (58)

Here U labels c or t quark, whereas external leptons i, j = 1, 2 and down-type quarks α, β, γ = 1, 2, are

all light. a, b, c, k are SU(3) color indices. R(= (1 + γ5)/2) is the right projection operator. We focus

immediately on best constrained channels, i.e., p → π0`+i , and we set α, β, γ = 1. The use of Fierz

transformations leads to the amplitude with scalar bilinears

Mp→π0e+i
9 =

∑
U=c,t

8iGF
m2

∆mU

[
UC(Y 10 − Y 10T )†U∗C

]
1U

[
D†CY

5̄†E∗C

]
1i
VUdV

∗
ud (59)

εabc

〈
π0`+i

∣∣∣ (`Ci Rua) (dkRdc) (uCk Ldb)
∣∣∣ p〉+ tensor terms .

One can estimate the above matrix element by employing the vacuum saturation approximation. We insert

the current dkRdc between the vacuum and π and end up with product of pion creation and proton annihi-

lation amplitudes. The tensor terms which are invoked by the Fierz relations in Eq. (59) cannot contribute

in this case. The vacuum-to-pion amplitude is〈
π0
∣∣ dkRdc ∣∣ 0〉 =

−im2
πfπ

4
√

2md

δck , (60)

whereas the full amplitude is

Mp→π0e+i
9 =

∑
U=c,t

−
√

2GF
m2

∆mU

[
UC(Y 10 − Y 10T )†U∗C

]
1U

[
D†CY

5̄†E∗C

]
1i
VUdV

∗
ud

m2
πfπ
md

(61)

εabc

〈
`+i

∣∣∣ (uCa Ldb) (`Ci Ruc)
∣∣∣ p〉 .

The annihilation matrix element of the proton in Eq. (61) has been most precisely evaluated using lattice

QCD [44]. These authors have introduced operators OΓΓ′
uds = εabc(uCa Γdb)Γ

′sc and defined constant α as

αRup = −
〈
0
∣∣OLRudu ∣∣ p〉 , (62)
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where up is the Dirac spinor of the proton. The recent value of α obtained from lattice QCD calculation

with domain wall fermions [38] is α = −0.0112(25) GeV3. The decay width is then

Γ(p→ π0`+i ) =
G2
F f

2
πm

4
πα

2

16πm2
d

λ(m2
p,m

2
`i
,m2

π)1/2(m2
p +m2

`i
−m2

π)

m3
p

(63)

×

∣∣∣∣∣∣
∑
U=c,t

VUd
[
UC(Y 10 − Y 10T )†U∗C

]
1U

[
D†CY

5̄†E∗C

]
1i

mUm2
∆

∣∣∣∣∣∣
2

,

where λ(x, y, z) ≡ (x + y + z)2 − 4(xy + yz + zx). From the experimental limits (46) one obtains the

following bounds∣∣∣∣∣∣
[
D†CY

5̄†E∗C

]
11

∑
U=c,t

VU1

[
UC(Y 10 − Y 10T )†U∗C

]
1U

mU

∣∣∣∣∣∣ < 2.4× 10−20 m2
∆

(400 GeV)2
GeV−1 , (64)

∣∣∣∣∣∣
[
D†CY

5̄†E∗C

]
12

∑
U=c,t

VU1

[
UC(Y 10 − Y 10T )†U∗C

]
1U

mU

∣∣∣∣∣∣ < 2.6× 10−20 m2
∆

(400 GeV)2
GeV−1 . (65)

A comment is in order how phenomenologically preferred values of leptoquark and diquark couplings cope

with the above constraints. Couplings to the electrons should be small and are in particular not bounded from

below, so the constraint from τ(p → π0e+) can be avoided by putting
[
D†CY

5̄†E∗C

]
11

effectively to zero.

On the contrary, low-energy leptoquark constraints, especially the (g − 2)µ, indicate that
[
D†CY

5̄†E∗C

]
12

could be large in some scenarios [31]. In this case we must require cancellation between the c and t quark

amplitudes that occurs when[
UC(Y 10 − Y 10T )†U∗C

]
12[

UC(Y 10 − Y 10T )†U∗C
]
13

≈ −Vtd
Vcd

mc

mt
≈ 2.7× 10−4 × e−0.37i . (66)

This can be achieved since the
[
UC(Y 10 − Y 10T )†U∗C

]
12

is only bounded from above while at the same

time
[
UC(Y 10 − Y 10T )†U∗C

]
13

is bounded from below to satisfy observations in tt̄ production. Finally,

relative phase between the two couplings can be freely adjusted since it is not probed by any experimental

observable to date.

Finally, for the state (3̄,1,−2/3)+6 present in the flipped SU(5) framework we can easily adapt the

results obtained above since the two states are indistinguishable at low energies, provided we make the

following substitutions[
U †C(Y 10∗ − Y 10†)U∗C

]
→ 1

2

[
U †CY

5̄†U∗C

]
,

[
D†CY

5̄†E∗C

]
→ −

[
D†CY

1∗E∗C

]
. (67)

To conclude, we note that despite the absence of the tree-level contribution to proton decay of the

(3̄,1, 4/3) state, weak corrections lead to proton destabilizing d = 6 and d = 9 operators. The effect of the

d = 9 operators can be rendered adequately small even in the case of simultaneously large leptoquark and
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diquark couplings, a situation that is favored by observables in tt̄ production and value of (g − 2)µ. This is

achieved by finely-tuned cancellation of two amplitudes. To the contrary, similar cancellation is impossible

in the case of d = 6 operator for p → π0µ+ decay and we are required to suppress either all leptoquark

couplings involving µ or all diquark couplings. We conclude that the proton decay lifetime constraint allows

to fully address either Att̄FB or (g − 2)µ observable with the (3̄,1, 4/3) state, but not both.

VII. CONCLUSIONS

Lepton and baryon number violating interactions are inherently present within grand unified theories

and are most severely constrained by the observed proton stability. Proton decay can be mediated by vector

or scalar leptoquarks that violate both baryon and lepton number by one unit. Vector leptoquarks that

mediate proton decay have gauge couplings to fermions and are not readily allowed to be far below the

unification scale. For the scalar leptoquarks, however, the freedom in Yukawa couplings gives one more

maneuverability to realize scenarios with light scalar states. On the other hand, the very same Yukawas that

are responsible for proton decay very often need to account for the observed fermion mass spectrum. An

example of a setting with light leptoquark states was presented in [15, 31, 32] where the low mass of the

state (3̄,1, 4/3) had an impact on low-energy flavor phenomenology. Most notably, it was found that by

tuning independently the two sets of Yukawa couplings, namely the leptoquark and diquark Yukawas, one

could reconcile the measured value of forward-backward asymmetry in tt̄ production and the value of the

magnetic moment of muon.

In this work, we have classified the scalar leptoquarks present in SU(5) and flipped SU(5) grand unifi-

cation frameworks that mediate proton decay. In both frameworks the considered leptoquark states reside in

scalar representations of SU(5) of dimension 5, 10, 45, or 50. We integrate out the above states at tree-level

and parameterize their contributions in terms of effective coefficients of a complete set of dimension-six

effective operators. The mass constraint on the color triplet state contained in the 5- and 45-dimensional

representations is then derived. The precise lower bound depends on the value of the vacuum expecta-

tion values of these representation. For the vacuum expectation value of 100 GeV the lower bound on the

triplet mass is approximately 3 × 1012 GeV. The corresponding bound is derived within the flipped SU(5)

framework which proves to be less constraining, even in the most conservative case.

The two leptoquark states that do not contribute to proton decay at tree-level are (3̄,1, 4/3) and

(3̄,1,−2/3)+6 in the standard and flipped SU(5) frameworks, respectively. We have estimated their

contribution to dimension-six operators via box diagram and the tree-level contribution to dimension-nine

operators. For the (3̄,1, 4/3) state it has been found that if it is to explain both the anomalous magnetic
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moment of the muon and the tt̄ forward-backward asymmetry, then the contribution of the dimension-six

operator would destabilize the proton in p→ µ+π0 channel. Therefore only one of the two puzzles can be

addressed with this leptoquark state.

Light scalar leptoquarks can be either produced in pairs or in association with SM fermions at the LHC

and are a subject of leptoquark and diquark resonance searches [6, 45–47]. To conclude, we can expect to

find signals of these leptoquark states at the LHC, although it seems very unlikely, in light of the constraints

from the proton lifetime measurements, that they would be observed in a baryon number violating processes.

ACKNOWLEDGMENTS

We acknowledge enlightening discussions with Damir Bečirević and Jernej F. Kamenik. This work
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Institute, where part of this work was completed, for their hospitality.

[1] G. Aad et al. (ATLAS Collaboration), Phys.Rev. D83, 112006 (2011), 1104.4481.

[2] S. Chatrchyan et al. (CMS Collaboration), Phys.Lett. B703, 246 (2011), 1105.5237.

[3] V. M. Abazov et al. (D0 Collaboration), Phys.Rev. D84, 071104 (2011), 1107.1849.

[4] F. Aaron, C. Alexa, V. Andreev, S. Backovic, A. Baghdasaryan, et al., Phys.Lett. B704, 388 (2011), 1107.3716.

[5] G. Aad et al. (ATLAS Collaboration), Phys.Lett. B709, 158 (2012), 1112.4828.

[6] G. Aad et al. (ATLAS Collaboration) (2012), 1203.3172.

[7] M. Leurer, Phys.Rev. D49, 333 (1994), hep-ph/9309266.

[8] M. Leurer, Phys.Rev. D50, 536 (1994), hep-ph/9312341.

[9] M. Carpentier and S. Davidson, Eur.Phys.J. C70, 1071 (2010), 1008.0280.

[10] J. P. Saha, B. Misra, and A. Kundu, Phys.Rev. D81, 095011 (2010), 1003.1384.

[11] A. Dighe, A. Kundu, and S. Nandi, Phys.Rev. D82, 031502 (2010), 1005.4051.

[12] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979).

[13] F. Wilczek and A. Zee, Phys.Rev.Lett. 43, 1571 (1979).

[14] S. Weinberg, Phys. Rev. D22, 1694 (1980).

[15] I. Dorsner, S. Fajfer, J. F. Kamenik, and N. Kosnik, Phys.Lett. B682, 67 (2009), 0906.5585.

[16] H. Georgi and S. Glashow, Phys.Rev.Lett. 32, 438 (1974).

[17] A. De Rujula, H. Georgi, and S. Glashow, Phys.Rev.Lett. 45, 413 (1980).

[18] H. Georgi, S. Glashow, and M. Machacek, Phys.Rev. D23, 783 (1981).

[19] S. M. Barr, Phys.Lett. B112, 219 (1982).

[20] P. Fileviez Perez, Phys.Lett. B595, 476 (2004), hep-ph/0403286.



22

[21] I. Dorsner and P. Fileviez Perez, Phys.Lett. B605, 391 (2005), hep-ph/0409095.

[22] I. Dorsner and P. Fileviez Perez, Phys.Lett. B606, 367 (2005), hep-ph/0409190.

[23] I. Dorsner and P. Fileviez Perez, Phys.Lett. B625, 88 (2005), hep-ph/0410198.

[24] P. Nath and P. Fileviez Perez, Phys.Rept. 441, 191 (2007), hep-ph/0601023.

[25] P. Fileviez Perez, Phys. Lett. B654, 189 (2007), hep-ph/0702287.

[26] CDF, Public note 10584 (2011).

[27] V. M. Abazov et al. (D0 Collaboration), Phys.Rev. D84, 112005 (2011), 1107.4995.

[28] I. Dorsner, S. Fajfer, J. F. Kamenik, and N. Kosnik, Phys.Rev. D81, 055009 (2010), 0912.0972.

[29] E. Del Nobile, R. Franceschini, D. Pappadopulo, and A. Strumia, Nucl.Phys. B826, 217 (2010), 0908.1567.

[30] L. Vecchi, JHEP 1110, 003 (2011), references added, published version, 1107.2933.

[31] I. Dorsner, J. Drobnak, S. Fajfer, J. F. Kamenik, and N. Kosnik, JHEP 1111, 002 (2011), 1107.5393.

[32] I. Dorsner, S. Fajfer, J. F. Kamenik, and N. Kosnik, Phys.Rev. D82, 094015 (2010), 1007.2604.

[33] B. Bajc and G. Senjanovic, JHEP 0708, 014 (2007), hep-ph/0612029.

[34] N. Oshimo, Phys.Rev. D80, 075011 (2009), 0907.3400.

[35] R. Slansky, Phys.Rept. 79, 1 (1981).

[36] H. Georgi and C. Jarlskog, Phys.Lett. B86, 297 (1979).

[37] M. Claudson, M. B. Wise, and L. J. Hall, Nucl.Phys. B195, 297 (1982).

[38] Y. Aoki et al. (RBC-UKQCD Collaboration), Phys.Rev. D78, 054505 (2008), 0806.1031.

[39] M. Miura (Presented at the 2011 Workshop on Baryon & Lepton Number Violation, Gatlinburg, Tennesee,

2011).

[40] I. Dorsner, P. Fileviez Perez, and G. Rodrigo, Phys.Rev. D75, 125007 (2007), hep-ph/0607208.

[41] Z. Dong, G. Durieux, J.-M. Gerard, T. Han, and F. Maltoni, Phys.Rev. D85, 016006 (2012), 5 pages, 3 figures,

1107.3805.

[42] I. Baldes, N. F. Bell, and R. R. Volkas, Phys.Rev. D84, 115019 (2011), 10 pages, 9 figures, references added,

some typos corrected, 1110.4450.

[43] W.-S. Hou, M. Nagashima, and A. Soddu, Phys.Rev. D72, 095001 (2005), hep-ph/0509006.

[44] S. Aoki et al. (JLQCD Collaboration), Phys.Rev. D62, 014506 (2000), hep-lat/9911026.

[45] G. F. Giudice, B. Gripaios, and R. Sundrum, JHEP 1108, 055 (2011), 1105.3161.

[46] D. Adams, presented at 47th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La

Thuile, Italy (2012).

[47] S. Chatrchyan et al. (CMS Collaboration), Phys.Lett. B704, 123 (2011), 1107.4771.


	Heavy and light scalar leptoquarks in proton decay
	Abstract
	Proton decay leptoquarks
	Leptoquarks in SU(5)
	Leptoquarks in flipped SU(5)
	Proton decay
	Tree-level exchange (d=6) operators in SU(5)
	Tree-level exchange (d=6) operators in flipped SU(5)

	Leading order contributions
	Color triplets of SU(5)
	Color triplet in flipped SU(5)

	Higher order contributions
	Box mediated dimension-six operator from (,1,4/3) 45
	Tree-level dimension-nine operator from (,1,4/3) 45

	Conclusions
	Acknowledgments
	References


