Clustering of Silver Nanoclusters Embedded in Soda Lime Glasses Using Ionic Exchange and Helium Ion Bombardment
Résumé
Silver nanocluster precipitation in AR Schott glass by subsequently silver ionic exchange and helium bombardment was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-visible optical absorption. Helium ion bombardment was used to induce local defects in the matrix and to promote the growth of the silver nano-aggregates. The typical implantation depth was estimated at 1 mu m by Trim simulation. SEM investigations give us the concentration profile of the exchanged samples and the maximum depth. Optical absorption was performed to visualize the effect of the He(+) fluence on the ion exchanged sample spectra and compared to the Drude model varying size and matrix refractive index. TEM was used to evaluate the distribution size of the silver nanoparticles, their structure by diffraction pattern, size, and shape and to correlate it to the experimental and theoretical absorption curves. The TEM observations prove that we are in a confinement regime with a particle size below the mean free path of the silver bulk metal.