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1 Introduction

The electric field of a charged particle passing through or near an optical fiber
induces a transient charges and currents in the fibrer medium [1, 2]. These
charges and current radiates electromagnetic waves, both outside the fiber (free
light) and inside (guided light). This chapter is devoted to the guided light,
which will be referred to as PIGL, for Particle Induced Guided Light.

If the fiber radius is large enough and the particle passes trough it, as in Fig.
1, both PIGL and oustide radiation can be considered as transition radiation and
becomes Cherenkov radiation when the particle velocity exceeds that of light
in the medium. This is the basis of the quartz fibre particle detectors [3, 4, 5].
Let us mention two other uses of optical fibers as particle detectors : (i) as
dosimeters, through the effect of darkening by irradiation [6]; (ii) in scintillating
glass fibers for particle tracking.

Here we will consider fibers of radius a comparable to the wavelength, in
which case the standard OTR or Cherenkov descriptions are not appropriate.
Two types of PIGL have to be considered :
- Type I : The particle passes near or through a straight or weakly bent part of
the fibre, far from an extremity. Translation invariance along the fiber axis is
essential.
- Type II : The particle passes near or through an end of the fiber or an added
structure (e.g., metallic balls glued on the fibre surface), which is not translation
invariant.

2 Particle-induced guided light of Type-I

The PIGL intensity will be calculated in the framework of quantized fields used
by Glauber [7]. We will use relativistic quantum units units familiar to particle
physicists : h̄ = c = ε0 = µ0 = 1. λ– ≡ λ/2π = 1/ω. The Gauss law is written
∇ ·E = ρ, not 4πρ. e2/(4π) = α = 1/137.

2.1 Expansion of the field in proper modes

The fiber is along the ẑ axis. The cylindrical coordinates are (r, ϕ, z). r = (x, y)
is the transverse position. x± iy = re±iϕ.
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Figure 1: Standard mechanisms of production of light inside a fiber, by an elec-
tron passing through. Top: Cherenkov radiation. Bottom: Transition radiation.

The quantized electromagnetic field Eop in presence of the fiber can be ex-
panded in propagation modes :

Eop(t,X) =

∫ ∞

0

dω

2π

∑
m

am(ω) E⃗(m)(ω;X) exp(−iωt) + hermit. conj. (1)

The complex-valued field

E⃗(m)(ω;X) = E(m)(ω; r) exp(ipz) (2)

is a “photon wave function”. m = {M,ν, σ} is a collective index which gathers
the total angular momentum M ≡ Jz = Lz + Sz of the photon, the radial
quantum number ν and the direction of propagation σ = sign(p) = ±1. am and
a†m are the destruction and creation operators of a photon in the mode m. ω
and p are linked by the dispersion relation,

ω = ωm(p) or p = pm(ω) . (3)

The ν spectrum has a discrete part for guided modes and a continuous part for
free modes. The summation over m in (1) implies that ν is treated as a fully
discrete variable, for simplicity. This is actually the case if we quantize the field
inside a cylindrical box.

The quantized magnetic field is expanded like in (1). am and a†m obey the
commutation rules[

aM,ν,σ(ω), a
†
M ′,ν′,σ′(ω

′)
]
= 2π δ(ω − ω′) δMM ′ δνν′ δσσ′ . (4)
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For a fixed ω the modes m are orthonormal in the sense∫
d2r

[
E(m)∗(ω; r)×B(n)(ω; r) +E(n)(ω; r)×B(m)∗(ω; r)

]
z
= ω δmn . (5)

For n = m, the left-hand side is the power carried by the fiber in the mode m,
which is h̄ω (= one photon) per unit of time.

Equations (1), (4) and (5) correspond to Eqs. (2.29b), (2.25b) and (2.14a)
of Ref.[7]. The correspondance would be fk → −i (2/ω)1/2 E(m), but we use
the continuous variable ω instead of a fully discrete set of quantum numbers.
am and E(m) differ from those of Ref.[1] by a factor (dp/dω)1/2 = vg

−1/2. The
factor 2 in (5) was forgotten in Refs.[1, 2], leading to an overestimation of the
photon production yield by a factor 2.

2.2 Wave functions of the fiber modes

The propagation modes in optical fibers can be found in several textbooks, e.g.
[8]. Nevertheless, it is useful to present a short review based on states of definite
angular momentum M .

We assume that the fiber has an homogeneous refractive index n =
√
ε and

no clad. For a guided mode the phase velocity vph = ω/p is in the interval

[1/n, 1]. The photon transverse momentum is q =
√
εω2 − p2 inside the fiber

and iκ = i
√
p2 − ω2 (evanescent wave) outside the fiber. The longitudinal parts

of the fields have Sz = 0 therefore their orbital angular momentum Lz is equal
to M . Using cylindrical coordinates (r, ϕ, z) they write

Ez(r) = i eiMϕ fz(r), Bz(r) = eiMϕ hz(r), (6)

Both in medium and in vacuum fz and hz obey the same differential equation[
∂2r + r−1∂r −M2/r2 + k2T (r)

]
fz or hz = 0 (except for r = a) (7)

where k2T (r) = q2 inside the fiber and k2T (r) = −κ2 outside the fiber.
The piecewise solutions of (7) are Bessel functions JM or KM . From the fact

that fz and hz are continuous at r = 0 and r = a and decreasing at r → ∞, it
follows that hz(r)/fz(r) is independent on r. We write

fz(r) = cE ψ(r), hz(r) = cB ψ(r), (8)

ψ(r) = JM (qr) inside, ψ(r) = cK KM (κr) outside, cK =
JM (qa)

KM (κa)
.

The transverse components ET and BT can be expressed either in terms of
the radial and azimuthal basic vectors, êr = r/r and êϕ = ẑ× êr,

ET = eiMϕ
(
fr(r) ê

r + fϕ(r) ê
ϕ
)

BT = eiMϕ
(
hr(r) ê

r + hϕ(r) ê
ϕ
)
, (9)
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or in terms of the Sz = ±1 eigenvectors ê± = (x̂± iŷ)/2 :

ET = ei(M−1)ϕ f−(r) ê
+ + ei(M+1)ϕ f+(r) ê

−

iBT = ei(M−1)ϕ h−(r) ê
+ + ei(M+1)ϕ h+(r) ê

− (10)

with f± = fr ± ifϕ and −i h± = hr ± ihϕ. The ê+ and ê− parts of the fields
have orbital momenta Lz =M ∓ 1, therefore their radial dependence are Bessel
functions of order M ∓ 1 :

f±(r) = c±fJ JM±1(qr) (r ≤ a), c±fK KM±1(κr) (r > a),

h±(r) = c±hJ JM±1(qr) (r ≤ a), c±hK KM±1(κr) (r > a) . (11)

The Maxwell equations relate the transverse fields to the longitudinal ones. The
formula in the {êr, êϕ} basis can be found in [8]. Translated in the {ê+, ê−}
basis they give

c±fJ = (±p cE − ω cB)/q, c±fK = ∓(q cK/κ) c
±
fJ ,

c±hJ = (±p cB − ωε cE)/q, c±hK = (−p cB ± ω cE) cK/κ .

The continuity of hz, hr, hϕ, fz, fϕ and ϵ(r)fr at r = a leads to

cB
cE

= −MQ

[
J ′
M (u)

uJM (u)
+

K ′
M (w)

wKM (w)

]−1

= − 1

MQ

[
εJ ′

M (u)

uJM (u)
+

K ′
M (w)

wKM (w)

]
(12)

where u ≡ qa, w ≡ κa and

Q =
(
u−2 + w−2

)
p/ω =

(
ε u−2 + w−2

)
ω/p .

From the two expressions of cB/cE in (12) one obtains[
J ′
M (u)

uJM (u)
+

K ′
M (w)

wKM (w)

]
·
[
εJ ′

M (u)

uJM (u)
+

K ′
M (w)

wKM (w)

]
=M2

(
1

u2
+

1

w2

)
·
(
ε

u2
+

1

w2

)
,

(13)
which, together with u2 = (εω2 − p2)a2 and w2 = (p2 − ω2)a2, determines the
dispersion relation (3).

2.2.1 Normalization of the mode wave functions

The z-component of the Pointing vector of the complex field is

P(m)(r) = 2Re
{
E(m)∗ ×B(m)

}
z
= Re

{
f∗−(r) h−(r)− f∗+(r)h+(r)

}
.

Using (11) and integrating over r gives the mode power

P (m) = P
(m)
int + P

(m)
ext =

∫ a

0

2πr dr
{
c−fJ c

−
hJ J

2
M−1(qr)− c+fJ c

+
hJ J

2
M+1(qr)

}
+

∫ ∞

a

2πr dr
{
c−fK c−hK K2

M−1(κr)− c+fK c+hK K2
M+1(κr)

}
. (14)
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The coefficient cE has to be adjusted to get the normalization (5).

Fig. 2 shows the phase velocity vph = ω/p of the lowest mode (M = ±1, ν =
1) called HE11 and the external fraction of the mode power, as a function of ω.
The index of refraction is n = 1.41 (fused silica).

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 

P e
xt

 / 
P t

ot
al

 . a

1/n

 
/k

z

Figure 2: phase velocity vph = ω/p (balls, right scale) and external fraction of
the power (squares, left scale) for the HE11 mode.

2.2.2 Linearly polarized modes

When changing M into −M , the above defined field modes change as follows :

{ET , Ez, BT , Bz}(−M) = (−1)M Π(0◦) {ET , Ez, BT , Bz}(M)

= Π(90◦) {ET , Ez, BT , Bz}(M)

= (−1)M {E∗
T , −E∗

z , B
∗
T , −B∗

z}(M) . (15)

Π(α) is the operator of mirror reflection about the plane ϕ = α, for instance

Π(0◦){Ex, Ey, Ez}(x, y, z) = {Ex,−Ey, Ez}(x,−y, z)

and a similar formula for B, with an extra (−) sign since it is a pseudovector.
The linear combination

{E,B}(M,0◦) =
[
{E,B}(M) + (−1)M {E,B}(−M)

]
/
√
2 (16)

is even under Π(0◦) and has real ET . For M = 1,

ET
(1,0◦) = [f−(r) x̂+ f+(r) (cos 2ϕ x̂+ sin 2ϕ ŷ)] /

√
2 (17)

is the state whose dominant (f−) part is linearly polarized parallel to x̂.
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2.3 Bent fiber

Bending the fiber has several effects :
- a) small break-down of the degeneracy (i.e., slightly different dispersion re-
lations) between the polarized states (M, 0◦) and (M, 90◦), where 0◦ is the
azimuth of the bending plane),

- b) co-rotation of the transverse wave function E⃗(m)(ω;X) with the unit vector
ŝ tangent to the local fiber axis.
- c) escape of light by tunneling through a centrifugal barrier.

For large enough bending radius, effects a) and c) can be ignored. Effect b)
is non-trivial when the bending is skew (not planar). Instead of (2), we have

E⃗(m)(ω;X) = Rf(s)E
(m)

(
ω; R−1

f (s) r
)
exp(ips) , (18)

where Xf(s) is the point of the fiber axis nearest to X, s its curvilinear abscissa
and r = X−Xf(s) (see Fig. 3 left). Rf(s) is a finite rotation matrix resulting
from a succession of infinitesimal rotations R(̂s → ŝ+ dŝ) :

Rf(s+ ds) = R(̂s → ŝ+ dŝ) ◦ Rf(s) , Rf(0) = I , (19)

R(̂s → ŝ′) denoting the rotation along ŝ× ŝ′ which transforms ŝ into ŝ′. Taking
into account the non-commutativity of the rotations, we have

Rf(s) = R (̂s,Ω(s)) ◦ R(ẑ → ŝ) . (20)

where ẑ is the orientation of the beginning of the fiber, R (̂s, α) stands for a
rotation of angle α about ŝ and Ω(s) is the dark area on the unit sphere in Fig.
3 (right). For a state of given angular momentum M in (18) one can replace
Rf(s) by R(ẑ → ŝ) and take into account the first factor of (20) by the Berry
phase factor exp[−iMΩ(s)]. If the fiber is bent in a plane, Ω(s) = 0.

2.4 Mode excitation by a charged particle

When a particle of charge Ze passes trough or near the fiber, it can create
one or several photons by spontaneous or stimulated emission. Neglecting its
loss of energy and momentum, the particle acts like a cassical current and the
excitation of the quantum field is a coherent state [7]. The spontaneous photon
emission amplitude in the mode m, corresponding to Eqs. (7.11) and (7.16) of
[7], is

R(m)(ω) =
Ze

ω

∫
dX(t) · E⃗(m)∗(ω;X) exp(iωt) (21)

for a mode normalized according to (5). The photon spectrum of spontaneous
emission in the mode m reads

dN (m)
phot

dω
=

ω

2πP (m)(ω)

∣∣∣R(m)(ω)
∣∣∣2 . (22)

Thanks to the factor P (m)(ω) given by (14) in the denominator, this expression
is invariant under a change of the normalisation of the mode fields.
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Figure 3: Left: bent fiber and definition of Xf (s) and r. Right: curve drawn
by the extremities of successive tangent vectors (ẑ, ŝi, ŝ, ...) on the unit sphere
and definition of the solid angle Ω(s). The dotted arc of circle represents the
“most direct” rotation, R(ẑ → ŝ), transforming ẑ int ŝ.

2.5 Straight fiber and particle in rectilinear uniform mo-
tion

For a particle following the straight trajectory

X = b+ vt , b = (b, 0, 0) , v = (0, vT , vL) , (23)

Eqs.(21) and (2) give

R(m)(ω) =
Ze

ω

∫ ∞

−∞
dy

[
E(m)

y (x, y) +
vL
vT
E(m)

z (x, y)

]∗
exp

(
iy
ω − vL p

vT

)
(24)

Using (6-11) one arrives at the pure imaginary expression

R(m)(ω) =
−iZe
ω

∫ ∞

0

dy {cos[ηy + (M − 1)ϕ] f−(r)

− cos[ηy + (M + 1)ϕ] f+(r) + 2(vL/vT ) cos(ηy +Mϕ) fz(r)} (25)

with r =
√
b2 + y2, ϕ = tan−1(y/b) and

η = (vL p− ω)/vT = (vL − vph) p/vT .
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2.6 Limit of small crossing angle

For small crossing angle θ = tan−1(vT /vL) the integrand of (24) becomes large
due to the vL/vT factor of the third term, although fz is generally small. On
the other hand, unless |vL − vph| <∼ vT /(pa), the integrand oscillates fast in the
region |y| <∼ a where the field is important and the amplitude is strongly reduced.
One therefore expects an almost monochromatic peak at ω = ωC(v) fixed by
the “fiber Cherenkov condition”

vph(ωC) ≡ ωC/p(ωC) = v (26)

and the dispersion relation (3). The case θ = 0 (electron runnig parallel to the
fiber), where ω ≡ ωC , has been studied in Refs.[9, 10].

2.7 Slightly bent fiber or particle trajectory

Local curvatures of the trajectory or of the fiber can be neglected and formula
(25) is accurate enough when the crossing angle θ is large. Let us consider
the case where the particle trajectory, the fiber or both are slightly curved,
but at angles not far from the ẑ direction. Then we have to use (18) instead
of (2) in (21). However we can omit the rotation matrix Rf(s) and make the
approximation

dX(t) · E⃗(m)∗(ω; X) ≃ v dtE(m)
z (ω; r) exp(ips) . (27)

Thus we can rewrite (21) as

Rm(ω) =
Zev

ω

∫
dtE∗

z [(ω; r(t)] exp[iωt− ipm(ω)s] ,

r(t) = Xp(t)−Xf(s) , s =

∫
v dt cos θ(t) . (28)

Here again the integrand oscillates too fast - and the amplitude is too small -
when ω is not close to ωC . The total photon number in the mode m is

N (m)
phot = 2Z2 α v2

∫
dω

ω P (m)(ω)

∫
dt′E∗

z [(ω; r(t
′)]

∫
dt′′Ez[(ω; r(t

′′)] (29)

exp{iω(t′ − t′′)− ip(ω) (s′ − s′′)} . (30)

To first order in ω − ωC the exponential can be written as

exp{iω (T − S/vg) + i[ωC/vg − pm(ωC)]S} (31)

where t′ − t′′ = T , s′ − s′′ = S and vg = dω/dp is the group velocity at
ω = ωC . Neglecting the variations of the other factors with ω, the integration
over ω yields a factor 2πδ(T − S/vg). From the second line of (28), we have
S/T ≃ v cos θ(t) ≃ v at small S and T , therefore δ(T −S/vg) = δ(T )/[1−v/vg].
One finally obtains

N (m)
phot =

4πZ2α v2

ωC P (m)(ωC)

1

|1− v/vg(ωC)|

∫
dt |Ez[ωC ; r(t)]|2 . (32)
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The energy of the light pulse is obtained by multiplying by ωC . This formula
applies in particular to the limit of small crossing angles considered above. The
photon number increases linearly with the path length over which the particle
travels inside or close to the fiber.

2.8 Numerical results for straight electron trajectory and
straight fiber
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Figure 4: Dimensionless photon spectrum ωdNphot/dω as a function of ωa in
the HE11 mode for six types of the particle trajectory and M = +1 = sign(vT ).

The dimensionless photon spectrum ωdNphot/dω in the fundamental modeHE11

of a fused silica fiber is plotted in Fig. 4 for three impact parameters, b = 0.2 a
(penetrating trajectory), b = a (tangent trajectory) and b = 1.5 a (fully ex-
ternal trajectory), and two particle velocity vectors, (vL, vT ) = (0.88, 0.1) and
(vL, vT ) = (0.85, 0.5), corresponding to large and moderate angle respectively.
We took the sign of M to be the same as the Jz of the particle.

The spectra are harder for penetrating trajectories, due to (i) the discontinu-
ity of the fields at the fiber surface, (ii) the lower importance of the evanescent
field at high frequency.

In the large angle - penetrating case, the dimensionless yield is of the order
of α = e2/(4π) = 1/137. In the tangent case it is much smaller. Note the
peak at a relatively small frequency, where the wave travels mainly outside the
fiber (see Fig. 2). At still smaller frequency, the wave function of the mode
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becomes too much diluted, which explains the vanishing yields at small ω in the
six curves.

In the b = 0.2 a and vT = 0.1 case, we have a dip at ωa = 2 instead of an
expected Cherenkov peak fixed by Eq.(26). This is a peculiarity of the odd M
modes when b is small : if b = 0, then ϕ in (25) is either −π/2 or +π/2 and,
at the Cherenkov point (η = 0), cos(ηy +Mϕ) is zero in the whole integration
range.

A separate figure (Fig. 5) at small crossing angle (vT /vL = 0.03/0.95) shows
the narrow peak of “fiber Cherenkov light” at the position ωa ≃ 1.4 predicted
by (26) and Fig. 2. The half-width at half maximum, 0.06, corresponds roughly
to the condition |vL − vph| <∼ vT /(pa) mentioned in Paragraph 2.6.
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Figure 5: Photon yields in the HE11 mode with M = +1 for a small crossing
angle : (vL, vT ) = (0.95, 0.03) ; b = 1.5a.

2.9 Polarisation

If b = 0, the HE11 guided light is linearly polarized in the particle incidence
plane. If b ̸= 0, some circular polarization is expected. One could naively expect
that the favored photon angular momentum M has the sign of the azimutal
speed of the particle, i.e. the sign of vT in (23), but this is not always true.
What matters in fact is not the sign ofM but the sense of rotation of the electric
field of the mode in the moving plane z = vt. In this plane the azimuth of the
field varies like M(ωt− pz) = (vph − vL)Mωt/vph. If the moving plane is faster
than the wave, the field rotates in the opposite way. Thus the favored sign of
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M is the sign of (vph − vL) vT . This can be seen from (25) : if M and η have
the same sign, the integrand oscillate faster and the amplitude is reduced.

In Figs. 4 and 5,M has the sign of vT . This circular polarization is favored at
vph > vL, whence ω < ωC(vL), and unfavored at vph < vL, whence ω > ωC(vL).
This partly explains the asymmetric shape of the fiber Cherenkov peak in Fig. 5.
Changing the sign either of M or of vT should result in a harder spectrum.

2.10 Interferences with periodically bent trajectory or bent
fiber

With an undulated trajectory, as in Fig. 6a or an undulated fiber as in Fig. 6b,
one can have several meeting points, the PIGL amplitude of which, given by
(25) or (28), add coherently. Let Lf and Lp be the lengths of the fiber and of the
particle trajectory between two meeting points. Two successive fiber-particle
interactions are separated in time by ∆t = Lf/v and their phase difference is

∆Φ = pLf − ω∆t = ω (Lf/vph − Lp/v) . (33)

If N equivalent meeting points are spaced periodically, the frequency spectrum
is (

dN (m)

dω

)
N meeting

=

(
dN (m)

dω

)
1meeting

× sin2(N∆Φ/2)

sin2(∆Φ/2)
. (34)

The last fraction is the usual interference factor in periodical systems, e.g. in
undulator radiation. For large N it gathers the photon spectrum in quasi-
monochromatic lines fixed by

ω (Lf/vph − Lp/v) = 2kπ (k integer) . (35)

If the fiber bending is not planar, but for instance helicoidal (Fig. 6c), the
left- and right circular polarisations have different phase velocities. Their prop-
agation amplitudes acquire an additional phase ϕB = −MΩ, called the Berry
phase, where Ω is the solid angle of the cone drawn by the local axis of the fiber
[11] (as if ŝ coincides with ẑ in Fig. 3). The preceding condition becomes

ω (Lf/vph − Lp/v) = 2kπ − ϕB . (36)

The interferences disappear when the velocity spread of the charged particle
beam is such that the variation of ω Lp/v is more than, say, 2π.

2.11 Application of type-I PIGL to beam diagnostics

PIGL in a monomode fiber is intense enough not for single particle detection,
but for beam diagnostics.

The “fiber Cherenkov radiation” can be used to measure the velocity of
a semi-relativistic particle beam, using the dependence of vph on ω shown in
Fig. 2.
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a)

b)

Lp

Lf

c)

Figure 6: periodically bent particle trajectory (a), planar bent fiber (b) and
helical bent fiber (c). Lp and Lf are the lengths of the curved or straight
periods, for the particle and the fiber respectively.

In a periodically bent fiber, the interference can test the velocity spread of
the beam.

At large crossing angle, a fiber can measure the transverse profile of the
beam with a resolution of the order of the diameter 2a. No background is
made by real photons coming from distant sources (for instance synchrotron
radiation from upstream bending magnets). Indeed, such photons are in the
continuum spectrum of the radial number ν, therefore they are not captured
by the fiber, but only scattered. This is an advantage over beam diagnostic
tools like optical transition radiation (OTR) and optical diffraction radiation
(ODR). The translation invariance along the fiber axis, which guarantees the
conservation of ν, is essential for this property.

The resolution power of PIGL is also not degraded by the large transverse
size ∼ γλ– of the virtual photon cloud at high Lorentz factor γ = (1− v2)−1/2.
Indeed, the virtual photons at transverse distance≫ λ– are almost real, therefore
are not captured by the fiber.

3 Particle-induced guided light of Type-II

The second type of PIGL is produced at a place where the fiber is not translation
invariant. We consider two examples : 1) PIGL from the cross section of a cut
fiber, 2) PIGL assisted by metallic balls glued to the fiber. These devices are
represented in Fig. 7.
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Figure 7: Part of fiber which can capture virtual photons for Type-II PIGL : a)
conical end ; b) sharp-cut end ; c) metallic ball glued on one end ; d) regularly
spaced metallic balls glued along the fiber.

3.1 PIGL from the cross section of a cut fiber

The entrance section of a sharp-cut fiber can catch free real photons and convert
them into guided photons. Assuming that the photons are incident at small
angle with the fiber axis, the energy spectrum captured by the fiber in the
mode m = {M,ν} is given by

dW (m)

dω
=

1

2πP (m)(ω)
×

∣∣∣∣∫ d2r
[
TB(r)ET

(m)∗(ω; r)×BT
in(ω; r)

+TE(r)ET
in(ω; r)×BT

(m)∗(ω; r)
]∣∣∣2 . (37)

where {Ein,Bin} is the incoming field on the cutting plane. TE(r), TB(r) are
the Fresnel refraction coefficients at normal incidence, given by

TE(r) = 2/(1 +
√
ε(r)) , TB(r) =

√
ε(r)TE(r) . (38)

ε(r) is the local permittivity of the fiber. Outside the fiber, TE(r) = TB(r) = 1.
Equation (37) is deduced from the orthonormalization relation (5).

With some caution (37) can be applied to the capture of virtual photons
from the Coulomb field of a relativistic particle passing near the entrance face
(see Fig. 7b). The transverse component of this field is given by [12, 13]

ET
in(ω; r) =

Zeω

2πγv2b
K1

(
ωb

γv

)
b, BT

in(ω; r) = v ×ET
in(ω; r) . (39)
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Here b = r − rparticle is the impact parameter relative to the particle. It must
be large enough compared to λ– , otherwise the incoming photon is too different
from a real one.

3.2 PIGL from a conical end of fiber

The sharp-cut fiber has a wide angular acceptance but is not optimized for
capturing the virtual photon cloud accompagning an ultrarelativistic particle,
which has an angular divergence ∼ 1/γ. A more efficient capture is possible
with a narrow conical end (Fig. 7a), at the price of a smaller acceptance. The
wave function of a parallel photon may be quasi-adiabatically transformed into
a guided mode without too much loss. This should be true for the photons
of the Coulomb field in the impact parameter range λ– ≪ b <∼ γλ– , which are
quasi-real and have a small transverse momentum kT ∼ 1/b.

3.3 PIGL from metallic balls

It is also possible to capture a virtual photon with a metallic ball glued to the
fiber, either at the extremity (Fig. 7c) [14, 15], or on the side as in Fig. 7d. Then
a plasmon is created [16, 18], which has some probability pf to be evacuated as
guided light in the fiber.

A rough estimate of the capture efficiency can be obtained when the impact
parameter of the particle is large compared to the ball radius R and the time
scale ∆t ∼ b/(γv) of the transient field is short compared to the reduced period
1/ω = λ– of the plasmon : the particle field boosts each electron of the ball with
a momentum q ≃ 2Zαb/(vb2). It results in a collective dipole excitation of the
electron cloud, of energy

W (b) ≃ 4πR3ne
3

(
2Zα

vb

)2
1

2me
=

2Z2α

3v2
ω2
PR

3

b2
(R≪ b≪ γvλ– ) , (40)

where ωP = (4παne/me)
1/2 is the plasma frequency of the infinite medium. For

a spherical ball the dipole plasmon frequency is simply given by ω = ωP /
√
3,

assuming the Drude formula ε = 1 − ω2
P /ω

2 and neglecting the retardation
effects (case R <∼λ– ). The number of stored quanta is then

N (b) =
W (b)

ω
≃ 2Z2α

v2
· R

3

λ– b2
. (41)

Taking bmin = R and bmax = γvλ– , the cross section for this process is

σ =

∫ bmax

bmin

2π b dbN (b) ≃ 4Z2α

v2
· R

3

λ–
· ln γvλ

–

R
. (42)

More precise values of the plasmon frequencies are used in [16, 17, 18] in the
context of Smith-Purcell radiation. Retardation effects and other mutipoles are
taken into account in [17, 18]. A typical order of the cross section, σ ∼ 10−2λ– 2
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is obtained with R ∼ λ– , Z = 1, γv ∼ 1. The plasmon wavelength is typically
λ– ∼ 102 nm. Larger cross section can be realized by increasing R, but higher
multipoles will dominate, unless γ is increased simultaneously. Discussions and
experimental results about this point are given in [18].

The efficiency of the ball scheme depends on the ball-to-fiber transmission
probability pf , which is less than unity because the plasmon may also be radiated
in vacuum or decay by absorption in the metal.

3.3.1 Interferences between several balls

If several metallic balls are glued at equal spacing l on one side of the fiber (Fig.
7d), constructive interferences (resonance peaks) are obtained when

ω/v ∓ p ≡ (1/v ∓ 1/vph)ω = 2kπ/l (k integer) , (43)

ω and p being linked by (3). The − and + signs correspond respectively to
lights propagating forward and backward in the fiber. The forward light has
the highest frequency. This process is in competition with the Smith-Purcell
radiation from the balls, where ∓1/vph is replaced by − cos θrad. We can call
it “guided Smith-Purcell” radiation. It is advantageous to choose l such that ω
lies on a plasmon resonance of the ball.

3.3.2 Shadowing

The guided Smith-Purcell spectrum for N balls can be written as(
dN (m)

dω

)
N balls

≃
(
dN (m)

dω

)
1 ball

× sin2(N∆Φ/2)

sin2(∆Φ/2)
× shadow factor . (44)

This is similar to (34) except for a shadow factor which is less than unity.
Indeed, each ball intercepts part of the virtual photon flux, thus makes a shadow
on the following balls. The shadow of one ball has a longitudinal extension
lf ∼ vλ/(1−v) ∼ γ2vλ. Beyond this region, called formation zone, the cloud of
virtual photons of wavelength λ is practically restored if there is no other piece
of matter in the formation zone.

The shadow effect has been directly observed in diffraction radiation [19].
In the case of mettalic balls it is included in the rescattering effects studied by
Garćıa et al [20].

3.4 Application of Type-II PIGL to beam diagnostics

Type-II PIGL captures real as well as virtual photons : it acts both as a near
field and a far field detector. Type-II PIGL can therefore be used for beam
monitoring, but, like OTR and ODR, it is sensitive to backgrounds from distant
radiation sources.

If the particle beam is ultrarelativistic, the quasi-real photons of the Coulomb
field at impact parameter up to bmax ∼ γλ– can be captured. They give the
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logarithmic increase of (42) with γ and a similar one in (37). They can de-
grade somewhat the resolution power of Type-II PIGL in transverse beam size
measurements, but experience with OTR monitors shows that this effect is not
drastic [21, 22, 23, 24].

4 Conclusion

This chapter shows the various possibilities of optical fibers in charged particle
beam physics. The phenomenon of light production by a particle passing near
the fiber, which has some theoretical interest, has not been tested experimentally
up to now.

The flexibility of a fiber is an advantage over the delicate optics of OTR and
ODR. A narrow fiber has less effects on the beam emittance than the metallic
targets used in OTR and ODR.

Much work remains to be done before using the Type-I and Type-II PIGL :
find the most convenient wavelength domain (infra-red, visible or ultraviolet)
and fiber diameter ; determine the ball-to-fiber transmission coefficients pf , etc.

The fiber has to be monomode if one wants to emphasize the interference
effects. However it would be interesting to make simulations and experiments of
the excitations of modes higher than HE11. In particular the M = 0 TM mode
has a significant Ez component, therefore may be excited at small crossing angle
as much as the HE11 mode.
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