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Abstract

The quark spin degree of freedom is introduced in the string fragmentation
model, using Pauli spinors and matrices. The hadron mass-shell constraints, which
were omitted in a preliminary model, are now satisfied. The algorithm for a recursive
Monte-Carlo generation of a polarized quark jet is described.

1 Introduction

Quark spin plays a dynamical role in jet formation, as confirmed by the Collins effect.
The Collins asymmetry can be used as a quark polarimeter for transversity. Similarly, jet
handedness provides a polarimeter for quark helicity. To optimize these polarimeters, a
theoretical model is needed as a guide. Since helicity and transversity are non-commuting
observables, a model describing both effects must start with quantum amplitudes rather
than probabilities. In this direction a toy model was proposed in [1]. This model, which
uses Pauli spinors, not only reproduces the transverse spin effects of the classical string +
3P0 mechanism [2,3], but yields jet handedness in addition. However, it does not take into
account the hadron mass-shell constraints. This approximation allows a full decoupling
of longitudinal and transverse momenta and makes analytical calculations possible, but
is too crude for realistic Monte-Carlo simulations of jets.

In this paper we propose a model with mass-shell constraints. It combines the spin
factors of the toy model and the kinematical dependance of the string fragmentation
model [2]. In Section 2 we review the two main models of quark jets without spin : the
ordinary recursive model and the string fragmentation model. In Section 3 we review the
toy model of [1]. In Section 4 we write the quantum amplitudes underlying the string
fragmentation model and include spin matrix factors in them. In Section 5 we give the
Monte-Carlo algorithm for a recursive processing of the model.

2 Spinless fragmentation models

Fig.1a depicts an event of e+e− annihilation or W± decay into quark qA + antiquark q̄B,
followed by the hadronisation process

qA + q̄B → h1 + h2...+ hN . (1)

Hadrons at the right and left sides form the quark and antiquark jets. Here we will restrict
ourselves to processes without hard gluon and without initial or final baryon.

1Presented at XIV Advanced Research Workshop on High Energy Spin Physics (DSPIN-11)(Dubna,
September 20-24, 2011)
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(a) (b)

Figure 1: (a) e+e− annihilation or W± decay in quark-antiquark → hadrons. (b) String fragmentation.

The simple recursive model. The most simple model of quark jets for Monte-Carlo
simulations is the recursive model [4, 5]. Looking from right to left at the upper part of
Fig.1a, the process (1) can be decomposed in

q0 → h1 + q1 ,

q1 → h2 + q2 ,

· · · · · · qN−1 → hN + qB .

(2)

q0 ≡ qA and qB ≡ qN is the charge conjugate of q̄B propagating “backward in time” with
4-momentum qB ≡ −q̄B. The 4-momentum conservation qn−1 = pn + qn holds at each
step. pn is the 4-momentum of nth-rank hadron. qn stands either for the species (u, d
or s) of the nth-rank quark or for its 4-momentum. In the simplest receipe, the sharing
between pn and qn is made according to the splitting probability distribution,

dζn d
2qnT f(ζn, qnT) , (3)

where qT = (qx, qy), ζn = q+n /q
+
n−1 and q± ≡ q0 ± qz. The +z and −z directions are along

qA and q̄B.
Including the quark flavor degree of freedom is relatively easy. The q → h+q′ splitting

function depends on the flavors and writes fq′,h,q(ζ, q
′
T).

Notations. The symbol {qn}, with curly brackets, represents the momentum and the
flavor of the nth quark altogether. See, e.g. Eq.(5). A four-momentum q is separated in
transverse part qT = (qx, qy) and time-longitudinal part qL = (q0, qz). The virtual mass
square is q2 = qL

2 − qT
2 = q+q− − qT

2.
The polarization vector of a quark is decomposed as S = (SL,ST) where SL/2 =

⟨helicity⟩, ST = ⟨transversity⟩. The density matrix is ρ = (1 + S.σ⃗)/2.

The string fragmentation model [2,6,7]. One may consider Fig.1a as a diagram of
the dual resonance model. Hadronization is the cascade decay of a massive string (the
dart) stretching between qA and q̄B. The space-time picture is shown in Fig.1b. At the
nth string breaking point (starting from the right) a qnq̄n pair is created. q̄n moves to
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Figure 2: The string + 3P0 mechanism for Collins effect.

the right, meets qn−1 which is moving to the left and both form the hadron hn. If the
null-plane coordinate X− = t− z is used as time variable, the hadrons are emitted in the
ordering of (2) and the string model can be treated as a recursive one, with the symmetric
Lund splitting function [2],

fq′,h,q(ζ,q
′
T,qT) ∝ Za{q} (1/Z − 1)a{q

′} exp

(
−b

m2
h + pT

2

Z

)
. (4)

Z = 1−ζ and a{q} ≡ aq(q
2
T), which generally depends on the quark flavor q and transverse

momentum qT. Eq.(4) is used in the Monte-Carlo simulation code PYTHIA.
The string fragmentation model is invariant under

− (a) rotations about the z-axis,
− (b) Lorentz transformations along the z-axis
− (c) mirror reflection about any plane containing the z-axis (equivalent to parity),
− (d) quark chain reversal or “left-right symmetry”, i.e., interchanging qA and q̄B.
It is not covariant locally (i.e., step-by-step), but globally for the whole process of Fig.1.

3 Review of the toy model of Ref. [1]

The classical string + 3P0 mechanism [2, 3]. We consider the simplest case where
all the emitted partices are pseudoscalar mesons. Then (qnq̄n−1) in hn is a spin singlet.
At a string breaking the qnq̄n pair is assumed to be created in the 3P0 state with zero
total momentum (corresponding to the vacuum quantum numbers). Fig.2 depicts the
recursive decay of the dart when q0 has a transverse, anti-clockwise polarization. (q0q̄1)
is a spin-singlet, therefore q̄1 spins clockwise. (q1q̄1) is a spin-triplet, therefore q1 also
spins clockwise. Due to the 3P0 configuration, the relative q1 − q̄1 orbital momentum L1

is opposite to the spins, therefore anti-clockwise. It makes q̄1 move upward and q1 move
downward in the figure. The upward momentum of q1 is taken by hadron h1, resulting in
a Collins effect, with p1T on the side of S0T × ẑ.

Iterating this reasoning, q2 and q̄2 are spinning anti-clokwise, L2 is clokwise, etc. One
obtains Collins effects of alternate sides for h2, h3, etc. Of course, successive spins are
not so rigidly coupled and the Collins effect decays along the quark chain. Nevertheless
the model predicts a Collins effect for h2 opposite to that of h1 and reinforced by the fact
that q1 and q̄2 move on the same side. This is in agreement with experiment.

The string + 3P0 mechanism also explains the polarization of inclusive hyperons [2].

The covariant quark-multiperipheral amplitude. The upper half of Fig.1a looks
like a multiperipheral diagram [8], but with quark exchanges instead of meson exchanges.
We treat qA and q̄B as on mass-shell quarks and assume that the probability of the
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whole process of Fig.1a factorizes in the probabilities of the upper and lower parts. The
amplitude of (1) writes

M{qAq̄B → h1h2...hN} =
Γ{qB, hN , qN−1}∆{qN−1} · · ·∆{q2}Γ{q2, h2, q1}∆{q1}Γ{q1, h1, qA} . (5)

∆{q} = Dq(q
2) (µq + γ.q) is the quark propagator. µq is the quark mass. Dq(q

2) is a fast
decreasing function of |q2|. Γ{q′, h, q} ≡ Γq′,h,q(q

′, q) is the q → h + q′ vertex function,
which is a 4×4 matrix in the space of Dirac spinors. For the emission of a pseudoscalar
meson, Γ{q′, h, q} = γ5 Gq′,h,q(q

′2, q2). The model is covariant locally, i.e., at each vertex
and propagator.

Another important approximation is to neglect interferences between several diagrams
giving the same final state. Then the total hadronisation cross section writes

σ{q̄B, qA} =
∑
N

∑
h1,...hN

∫
d3p1 · · · d3pN

p01 · · · p0N
δ4(p1 + p2...+ pN − qA − q̄B}

|v̄(q̄B,SB)M{qAq̄B → h1h2...hN}u(qA,SA)|2 . (6)

The second summation bears on the hadron species. u(qA,SA) and v(q̄B,SB) are the Dirac
spinors of qA and q̄B.

Reduction to Pauli spinors. We now describe the spin degree of freedom in the most
economical way, with Pauli instead of Dirac spinors. We give up local covariance, but
maintain the invariances (a), (b), (c) and (d) listed in section 2 about the string model.
For this we replace [1]

• u(q0,S0) by the Pauli spinor χ(S0)

• v̄(qq̄B ,Sq̄B) by −χ†(−Sq̄B)σz

• γ5 by σz

• µq + γ.q by µq + σz σ.qT.

Thus, the propagators has the non-covariant form

∆{q} = Dq(qL
2,qT

2) (µq + σz σ.qT) . (7)

The toy model [1]. We consider only pseudo-scalar mesons, with the momentum-
independent emission vertex σz, and take a factorized, flavor-independent quark propa-
gator

∆{q} = DL(qL
2) exp(−BqT

2/2) (µ+ σz σ.qT) . (8)

Furthermore we ignore the mass-shell constraint m2
n = p+n p

−
n − p2n,T. This crude approxi-

mation achieves the full decoupling of the longitudinal momenta from the transverse ones
and from the quark spin. The joint pT -distibutions of the n first mesons have simple
expressions, for instance

I(p1T,p2T,p3T) ∝ exp(−BqT
2
1 −BqT

2
2 −BqT

2
3) Tr

{
M3M2 M1 ρ0M

†
1M

†
2 M

†
3

}
, (9)

where ρ0 = (1 + S0.σ)/2 is the spin density matrix of q0 and Mn = (µ + σzσ.qTn) σz.
For complex µ one obtains a Collins effect for each meson, the analyzing power of which
depends only on the meson rank. See Ref. [1] for more properties of the model.
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(a) (b)

Figure 3: (a) Trajectories of massive qA and q̄B . (b) Tunneling trajectories of qn and q̄n.

4 The semi-quantized string model

Let us first consider spinless quarks and mesons. Following the sum-over-histories ap-
proach of Feynman, to the classical string history of Fig.1b we associate the amplitude

M(qAq̄B → h1h2...hN) = exp[ (−iκC + 2iκ)A ]
(q+Ap

−
1 )

α{qA} (−p+1 p
−
2 − i0)α{q1} · · · (−p+N−1p

−
N − i0)α{qN−1} (p+N q̄

−
B )α{qB}

g{qB, hN , qN−1} · · · g{q2, h2, q1} g{q1, h1, q0} . (10)

• A is the space-time area swept by the dart. κC = κ − iP/2 is the complex string
tension of the dart [9], accounting for its unstability (in analogy with the complex mass
m− iΓ/2 of an unstable particle). We will use b ≡ P/(2κ2).

The exponent of the first line contains the pure string action of the dart (proportional
to −κC) and “missing propagation phases” (proportional to 2κ) of the final hadrons,
taking into account their different emission points [10].

• The first and last power-law factors of the 2nd line takes into account the quark actions
of qA and q̄B, which in the case of non-zero mass follow the pieces of hyperbolas in Fig.3a.
We have

α{qA} = (b− i/κ)µ2
A /2 (idem for q̄B). (11)

These factors also take into account the “missing string area” [7] between the hyperbolas
and the brokenline trajectories that would be followed by massless quarks.

• The intermediate power-law factors of the 2nd line take into account the actions of
the quarks and antiquarks created in pairs at string ruptures (Fig.3b). They simulate a
multi-Regge behavior at large rapidity gaps, α{q} being the quark Regge trajectory. One
may take the analytic continuation of (11), replacing q+A by −p+n , p−1 by p−n+1 :

α{qn} = (µ2
n + q2

nT) (b− i/κ)/2 . (12)

For real µn the modulus square of the nth factor is

(p+n p
−
n+1)

b(µ2
n+q2

nT) exp[−π(µ2
n + q2

nT)/κ] , (13)
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which exhibits the characteristic exponential factor of Schwinger tunneling [2]. This
tunneling is represented by a dotted line in Fig.3b. There is however a limitation to
Eq.(12). The tunneling length is 2EqT/κ = 2(µ2 + q2

T)
1/2/κ. It must be smaller than the

string length, which is of the order of P−1/2. In fact the production of large ET quarks
should not be described by the string model, but by perturbative QCD. Besides, at large
rapidity gap (large p+n p

−
n+1), the first factor of (13) would too much favor heavy quarks.

A possible sensible choice is to use Eq.(12) with b = 0.

• The last line contains vertex functions

g{q′, h, q} ≡ gq′,h,q(qT
′2,qT

′.qT,qT
2) (14)

which depend on flavours and transverse momenta, but not on longitudinal ones. Quark
chain reversal imposes g to be symmetric under the interchange {q;qT} ↔ {q′;q′

T}.
Taking the modulus square of (10) for the fully differential cross section of (1) is

equivalent to the symmetric Lund model.

Figure 4: Spin matrices to be inserted in the
string amplitude.

Inclusion of quark spin. Spin is simply
included by inserting the 2×2 matrices of the
toy model. Fig.4. indicates where such ma-
trices operate. Restricting ourselves to pseu-
doscalar meson production, we have to mul-
tiply the expression (10) by the chain of 2×2
matrices

σz (µN−1 + σzσ.qTN−1)σz · · ·
(µ2 + σzσ.qT2)σz (µ1 + σzσ.qT1) σz . (15)

To sum up, the cross section of (1) with po-
larized qA and q̄B is given by

σ{q̄B, qA} =
∑
N

∑
h1,...hN

∫
d4q1 · · · d4qN−1 2δ(p21 −m2

1) · · · 2δ(p2N −m2
N)∣∣χ†(−SB)σz Mχ(SA)

∣∣2 , (16)

M being given by (10) times (15). Unlike the toy model, the present string fragmentation
model takes into account the mass-shell conditions properly.

5 Recursive Monte-Carlo Algorithm

• The string amplitude (10) times (15) can be put in a multiperipheral form. The splitting
amplitude, defined as the product of the nth vertex and the nth propagator, is given by

Tn ≡ T{qn, hn, qn−1} ≡ ∆{qn}Γ{qn, hn, qn−1} =

exp

(
i− b

2
q+n−1p

−
n

)
(q+n−1p

−
n )

α{qn−1}
(
−p+n − i0

q+n

)α{qn}

g{q′, h, q} (µn + σzσ.qnT) σz . (17)

Introducing the sub-amplitude MN−n for qn + q̄B → hn+1 + · · ·hN , we have

M ≡ MN = MN−n Tn · · ·T2 T1 . (18)
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Figure 5: Unitarity diagram for R.

• Using (18), the n-particle inclusive cross section with polarized quarks writes

dσ(qA + q̄B → h1, · · ·hn +X)

d3p1/p01 · · · d3pn/p0n
= Tr{ ρ0 T †

1 T
†
2 · · ·T †

n R{qn} Tn · · ·T2 T1} , (19)

where ρ0 is the spin density matrix of qA and

R{qn} =
∑
N>n

∫
d3pn+1 · · · d3pN

p0n+1 · · · p0N
M†

N−n σz
1− σ.S(q̄B)

2
σz MN−n (20)

is the cross section matrix [11] of the reaction qn + q̄B → hadrons. It operates in the spin
space of qn. It also depends on the antiquark polarization S(q̄B), but at large (qn + q̄B)

2

this dependence is negligible and we may take S(q̄B) = 0. Fig.5 represents the unitarity
diagram giving R{qA}. Encircled in dashed line is the unitarity diagram for R{q1}. The
general cross section matrix R{q} satisfies the integral recursion relation

R{q} =
∑
h

∫
d3p

p0
T †{q′, h, q}R{q′}T{q′, h, q} . (21)

• We assume the following Regge behavior at large (q + q̄B)
2 :

R{q} ∼ |(q̄B)−q+|αout
[
βq(q

2
T) + γq(q

2
T) σzσ.qT

]
. (22)

αout is the output Regge intercept. a{q} of Eq.(4) and α{q} of Eq.(10) are linked by [9]

a{q} = αout − 2ℜeα{q} . (23)

A preliminary numerical task consists in calculating αout and the Regge residue functions
βq(q

2
T) and γq(q

2
T), solving the integral equation(21).

• Suppose that we know the flavor and momentum of quark {qn−1} ≡ {q} and its
polarization Sn−1 ≡ S. From Eqs.(21) and (22), one can write

σ{q + q̄B} = Tr {ρ R{q}} = |(q̄B)−|αout
∑
h

∫
d3p

p0

(q′
+
)αout Tr

{
T{q′, h, q} ρ T †{q′, h, q} [βq′(q

′
T
2
) + γq′(q

′
T
2
)σzσ.q

′
T]

}
(24)

with p+q′ = q and ρ = (1+σ.S)/2. The second line is proportional to the probability that
quark {q} ≡ {qn−1} emits a hadron {hn} of species h and 4-momentum p. In the Monte-
Carlo method, one generates h and p at random according to this probability. {q′} ≡ {qn}
is related to {h} by the conservation of charge, strangeness and 4-momentum.
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• Once the flavors and momenta of {p} ≡ {pn} and {q′} ≡ {qn} are known, the q′

polarization is given by

1 + σ.S′

2
≡ ρ′ =

T{q′, h, q} ρ T †{q′, h, q}
Tr ( T{q′, h, q} ρ T †{q′, h, q} )

. (25)

Thus one has obtained {qn} and Sn. Iterating the last two steps, one generates the jet of
a polarized quark.

6 Conclusion

We have given the principle of a recursive quark fragmentation model which includes
the spin degree of freedom. Since spin has essentially quantum properties, we started
from amplitudes rather probabilities. For that we took the amplitudes which underly the
symmetric Lund fragmentation model.

When an imaginary part is given to the quark mass µ, the model produces the spin
asymmetries of Collins and jet handedness, like in the toy model of [1] but with hadron
mass shell contraints duly taken into account. For the moment we have no theoretical
justification for taking a complex µ, but it provides a quantum realization of the string
+ 3P0 mechanism, which up to now is in qualitative agreement with experiment.
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