Development of an Anger camera in Lanthanum Bromide for gamma-ray space astronomy in the MeV range
Abstract
Lanthanum bromide is a very promising scintillator material for the next generation of g-ray telescopes. We present in this paper first g-ray imaging results obtained by coupling a LaBr3 crystal with a position-sensitive 8×8 multianode photomultiplier tube to form a simple Anger camera module. The readout of the 64 signals is carried out with the most recent evolution of the MultiAnode ReadOut Chip (MAROC) which was initially designed for the luminometer of the ATLAS detector. Measured charge distributions are compared with detailed GEANT4 simulations that include the tracking of the optical photons produced in the scintillation crystal. The depth of interaction (d.o.i.) of 662-keV g-rays inside the crystal is derived from the charge distributions using an artificial neural network. We obtain for an irradiation at detector centre a mean standard deviation of the d.o.i. of 1.69 mm. Such a position-sensitive g-ray detector can form an innovative building block for a future space calorimeter
Origin | Files produced by the author(s) |
---|
Loading...