
HAL Id: in2p3-00662328
https://in2p3.hal.science/in2p3-00662328v1

Submitted on 23 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring a New Paradigm for Accelerators and Large
Experimental Apparatus Control Systems

L. Catani, R. Ammendola, F. Zani, C. Bisegni, S. Calabrò, P. Ciuffetti, G. Di
Pirro, G. Mazzitelli, A. Stecchi, L.G. Foggetta

To cite this version:
L. Catani, R. Ammendola, F. Zani, C. Bisegni, S. Calabrò, et al.. Exploring a New Paradigm for
Accelerators and Large Experimental Apparatus Control Systems. 13th International Conference on
Accelerator and Large Experimental Physics Control Systems, Oct 2011, Grenoble, France. pp.856-
859. �in2p3-00662328�

https://in2p3.hal.science/in2p3-00662328v1
https://hal.archives-ouvertes.fr


EXPLORING A NEW PARADIGM FOR ACCELERATORS AND LARGE

EXPERIMENTAL APPARATUS CONTROL SYSTEMS

L. Catani, R. Ammendola, F. Zani, INFN-Roma Tor Vergata, Roma, Italy

C. Bisegni, P. Ciuffetti, G. Di Pirro, G. Mazzitelli, A. Stecchi, INFN-LNF, Frascati, Italy

S. Calabrò, L. Foggetta, LAL-CNRS, Orsay, France & INFN/LNF, Frascati (RM), Italy

Abstract

The integration of web technologies and web services

has been, in the recent years, one of the major trends in

upgrading and developing control systems for accelerators

and large experimental apparatuses. Usually, web tech-

nologies have been introduced to complement the control

systems with smart add-ons and user friendly services or,

for instance, to safely allow access to the control system to

users from remote sites.

Despite this still narrow spectrum of employment, some

software technologies developed for high performance web

services, although originally intended and optimized for

these particular applications, deserve some features that

would allow their deeper integration in a control system

and, eventually, using them to develop some of the con-

trol system’s core components. In this paper we present the

conclusion of the preliminary investigations of a new de-

sign for an accelerator control system and associated ma-

chine data acquisition system (DAQ), based on a synergic

combination of network distributed object caching (DOC)

and a non-relational key/value database (KVDB). We in-

vestigated these technologies with particular interest on

performances, namely speed of data storage and retrieve

for the distributed caching, data throughput and queries ex-

ecution time for the database and, especially, how much

this performances can benet from their inherent scalabil-

ity.

INTRODUCTION

Two main motivations support the decision to start in-

vestigating a new approach in the design and development

of CS for particle accelerators.

New developments in this eld, similarly to what has

happened in recent years, will be basically directed to-

wards improving their functionalities by introducing new

services, or improving existing ones, to complement the

basic features that are essential for the remote control of

the accelerator’s components.

These new capabilities rather than being accessorial will

be, in many cases, fundamental for the optimal operation of

new accelerators that will require careful tuning to achieve

the desired performance. An example may be the data ac-

quisition system that is intended to provide machine physi-

cists, but also the experimental groups, with all the infor-

mation needed to recreate the operational state of the ac-

celerator (set-point of components, information from the

beam diagnostic etc.) at any instant during the operations

of the machine.

The analysis of recent developments on high-

performance software technologies suggests that the

design of new accelerator CS may prot from solutions

borrowed from cutting-edge Internet services. To fully

prot from this new technologies the CS model has to

be reconsidered, thus leading to the denition of a new

paradigm.

The second strong motivation for this development fol-

low the recent approval, by the Italian Ministry for Educa-

tion, University and Research (MIUR) of the construction

of a new international research centre for fundamental and

applied physics to be built in the campus of the University

of Rome “Tor Vergata”.

It will consist of an innovative very high-luminosity par-

ticles collider named SuperB [1] and experimental appara-

tuses, built by an international collaboration of major scien-

tic institutions under the supervision of Istituto Nazionale

di Fisica Nucleare. Clearly, it will offer great opportuni-

ties not only for new discovering in particle and applied

physics, but also for breakthrough innovation in particle ac-

celerators technologies.

THE !CHAOS FRAMEWORK

A typical example of software technology emerging

from developments of Internet services is the class of non-

relational databases known as key/value database. They

offer an alternative to relational databases (RDMS) that is

having a growing success and interest among developers of

web services because of their high throughput, scalability

and exibility.

Another example is the object caching, distributed sys-

tems that are used to store, in the servers’ RAM, frequently

requested sets of information in order to both respond faster

to requests and distribute the load of the main server to a

scalable cluster of cache servers.

These two software technologies, clearly cited on pur-

pose, represent the core components in the design of this

new control system we named !CHAOS[2].

In particular, the KVDB is used by DAQ for storing what

we call history data, while the DOC implements the service

for distributing live data from the front-end controllers to

clients replacing the client/server communication.

Compared to the typical structure of CS, usually repre-

sented by the so-called standard model [3] of control sys-

tems, in the !CHAOS data ow the client (top) and front-

end (bottom) layers are not directly connected and, espe-

cially, data is not sent by controllers when triggered by

WEPKS028 Proceedings of ICALEPCS2011, Grenoble, France

856C
o

p
y

ri
g

h
t

c ©
2

0
1

1
b

y
th

e
re

sp
ec

ti
v
e

a
u

th
o

rs
—

cc
C

re
a

ti
v
e

C
o

m
m

o
n

s
A

tt
ri

b
u

ti
o

n
3

.0
(C

C
B

Y
3

.0
)

Software technology evolution



+ +

UI Toolkit

Ctl Lib and Ctl Unit

front-end controllers

distributed KVDB

Distributed Object

Cache

GUI, applications

++ +

dev-1

live

dev-1

history

dev-1

+ +++

Figure 1: Data ow in the !CHAOS framework.

client request. Instead, alternatively to the typical point

to point communication of network distributed systems, in

!CHAOS live data ow from front-end controllers to the

DOC servers, according to the independently adjustable re-

fresh rate, from which datasets can be asynchronously read

from any client.

This solution offers a number of advantages.

Firstly, we can use the same strategy, and topology,

for both distributing live data and storing history data as

shown in Fig.1. Datasets that need to be updated are identi-

cally pushed, by front-end controllers, to both DOC and

KVDB servers by issuing set commands. It means that

data collection mechanism for DAQ is inherently included

in the !CHAOS communication framework because both

live and history data are pushed by the data source (the

front-end controllers) to similarly distributed caching and

storage systems. Moreover, since both DOC and KVDB

use key/value data storage, formatting and serialization of

datasets can be identical.

Secondly, both the client applications and the front-

end controllers are simple clients of the distributed object

caching and DAQ. In particular, provided the DOC has an

object container for each dataset of the CS, dened by its

unique key, a GUI client simply send to the !CHAOS DOC

service a get request for the object identied by that partic-

ular key, i.e. the dataset describing the associated device.

On the other side the controller responsible for that device

update its dataset, according to the push rate dened for it,

by issuing set commands to the DOC.

Data refresh rates, as well as other meta-data and global

parameters, will be managed by the meta-data server

(MDS) that will be described later.

It’s worth to underline that in !CHAOS the front-end

controllers don’t need to run servers for providing data to

clients since they themselves are clients of the data distri-

bution and storage services. That improves their robust-

ness, portability and prevents front-end controllers from

overload originated by multiple clients’ requests.

A fundamental property of both DOCs and KVDBs is

their intrinsic scalability that allows distributing a single

service over several computers. Moreover, dynamical keys

re-distribution allows automatic failover by redirecting to

other servers the load of failed one. By taking advantage of

this feature !CHAOS can be easily scaled according to both

different size of the accelerator infrastructure and the per-

formance required thus avoiding any potential bottleneck

that may be expected as the weak link of the star-like com-

munication topology.

In conclusion !CHAOS is a scalable control system in-

frastructure providing all the services needed for communi-

cation, data archiving, timing, etc. to which both front-end

controllers and GUI applications plug-in to access and, to

some extend, expand its functionalities.

Control Units: The !CHAOS Front-end

Fig.2 shows the logical structure of the software running

in a front-end controller. The Control Library (CL) and the

Control Unit (CU) are components of the !CHAOS infras-

tructure while the device management plug-ins (DMPs) are

software drivers complementing the !CHAOS framework

functionalities by providing the interface to the device. The

development of these components is expected either as con-

tribution, or under responsibility, of device experts.

One or more instances of CU can run simultaneously,

though completely independent, in a front-end controller.

Each of them will be dedicated to a particular device or a

family thereof, specialized for that particular components

by means of the device management plug-in. The latter

are a set of routines implementing ve main functionalities:

initialization, de-initialization, control loop, dataset update

and commands execution.

The Control Library, by means of its managers, will pro-

vide both the environment for the execution of the Control

Control Library

fro
n

t-e
n

d
 c

o
n

tro
lle

r

Control

Unit

in
it

c
o
n
tro

l lo
o
p

ru
n
 (u

p
d
a
te

 d
a
ta

s
e
t)

c
m

d
s
 e

x
e
c

d
e
-in

it

Control

Unit

in
it

in
it

c
o
n
tro

l lo
o

pp

ru
n
 (u

p
d
a
te

 d
a
ta

s
e
t)

c
m

d
s
 e

x
e

c

d
e
-in

it

Control

Unit

in
it

in
it

c
o
n
tro

l lo
o

pp

ru
n
 (u

p
d
a
te

 d
a
ta

s
e
t)

c
m

d
s
 e

x
e

c

d
e
-in

it

distributed

KVDB

distributed

object caching

meta-data

server
Commands

(u
s
e

r 
d

e
fi
n

e
d

) 
d

e
v
ic

e

m
a

n
a

g
e

m
e

n
t 

p
lu

g
-i
n

s

dev-1

Figure 2: !CHAOS components for the front-end con-

trollers.

Proceedings of ICALEPCS2011, Grenoble, France WEPKS028

Software technology evolution 857 C
o

p
y

ri
g

h
t

c ©
2

0
1

1
b

y
th

e
re

sp
ec

ti
v
e

a
u

th
o

rs
—

cc
C

re
a

ti
v
e

C
o

m
m

o
n

s
A

tt
ri

b
u

ti
o

n
3

.0
(C

C
B

Y
3

.0
)



Units and the functions needed to access the centralized

services (DOC, KVDB, MDS).

Since the CU will control the execution of DMPs, the

former will be responsible of invoking the run module, ac-

cording to the refresh rate dened for that device, for read-

ing the device status. The data returned will be used by the

CU, via the Control Library, to feed the KVDB and to re-

fresh the value of the correspondent key/value pair in the

distributed object caching service.

On the other side, when a command issued by a client

application will be received by the CU, the command mod-

ule will be invoked for executing it. Parameters passed to

the command’s execution plug-in module will specify the

action to be taken according to the instructions provided.

The use of separated threads assures that requested peri-

odicity of dataset refreshing is preserved even during com-

mands’ execution while serialization of parameters passed

to the command plug-in allow a common interface for all

the commands to be implemented.

Live Data Caching, DAQ and Central Services

Caching of live data, by means of distributed object

caching service, and continuous archiving of accelerator

data, by using a distributed key/value database, are the

main innovations introduced by the !CHAOS paradigm.

DOC service is distributed over many nodes working to-

gether to provide clients with a single virtual pool of solid-

state memory by sharing a portion of the RAM of each

node. Objects are stored in memory as key/value pairs and

a given object is always stored and always retrieved from

the same node in the cluster, unless the number of node

changes for any reason.

In !CHAOS a key identies a unique dataset of the con-

trol system that is the set of information used to fully de-

scribe a real, or virtual, accelerator device.

Each dataset is periodically refreshed by the Control

Unit in charge for the corresponding device. In the DOC

service, dataset refreshing means overwriting the old data

with newer describing the actual state of the device. Re-

fresh rate is set and adjusted independently for each device

and typical values span from milliseconds to few seconds.

Similarly, for the DAQ, key/value pairs are pushed to a

node of the distributed KVDB to be stored on disks. In

this case the key contains encoded both the unique dataset

indicator and the timestamp. By querying the DAQ for all

the datasets corresponding to a given timestamp the status

of the accelerator at that particular time can be recovered.

The software opted for implementing the DOC and the

KVDB are memcached[4] and mongodb[5] respectively.

They demonstrated to offer the needed features and per-

formances and are supported by a large and growing com-

munity of users. Nevertheless the abstraction of services

provided by the !CHAOS components would allow their re-

placement, with other implementation of DOC and KVDB,

without any modication of both its functionalities and

API.

Control Library

Control

Unit

in
it

c
o

n
tro

l lo
o

p

ru
n

 (u
p

d
a

te
 

c
m

d
s
 e

x
e

c

d
e

-in
it

Control

Unit

in
it

in
it

c
o

n
tro

l lo
o

p
c
o

n
tro

l lo
o

p

ru
n

 (u
p

d
a

te

c
m

d
s
 e

x
e

c

d
e

-in
it

Control

Unit

in
it

in
it

c
o

n
tro

l lo
o

p
c
o

t
o

o
o

p

ru
n

 (u
p

d
a

te

c
m

d
s
 e

x
e

c

d
e

-in
it

Meta Data Server

distributed

KVDB

distributed

object

caching

Relational

DB

MDS

admin

UI toolkits

live data client

(spymemcached)

history data client

(Mongo client)

MDS Admin Interface

(Google Web Toolkit)

Object Relational

Mapping

(Apache Cayenne)

c
o
m

m
u
n
ic

a
ti
o
n

fr
a
m

e
w

o
rk

R
P

C
 C

o
m

m
 (

M
s
g

P
a

c
k
)

UI toolkits

di

c

di

R
)

rver

Control L

ll

Figure 3: The !CHAOS meta-data server.

A key aspect in the !CHAOS development is the solu-

tion used to format data for both storing it, either into DOC

or KVDB, and passing it between the different CS compo-

nents.

Binary serialization is a convenient solution for atten-

ing even complex data structure into a one-dimensional

stream of bits suited for transmission through network. It

is well suited especially for large binary arrays that are fre-

quently included in datasets of accelerator’s components.

What’s more, both DOC and KVDB allows binary seri-

alized data. In !CHAOS BSON[6] serialization is used for

encoding dataset to be stored both in the live data DOC and

in the DAQ . BSON serialization is also used by UI toolkit

(see next section) for formatting commands sent to front-

end Control Units and for passing parameters between CU

and device management plug-ins.

Another fundamental component in the !CHAOS frame-

work is the meta-data server (Fig.3). It is designed to

store information such as CU conguration, commands list,

commands and data semantic, naming service etc.

Object Relational Mapping (ORM) packages will be

used to abstract the relational database, used for storing

meta-data, by mapping its tables into Java object.

User Interface Toolkit

Client access to !CHAOS services will uniquely allowed

through the API provided by the User Interface toolkit.

The set of API aiming to abstract and simplify the access

of client applications to the !CHAOS service.

Fig.4 shows the logical structure of the UI toolkit layer

with the blocks of API to client application and the sub-

strate of API for the abstraction of the !CHAOS services.

In the gure is also introduced the concept of UI data

WEPKS028 Proceedings of ICALEPCS2011, Grenoble, France

858C
o

p
y

ri
g

h
t

c ©
2

0
1

1
b

y
th

e
re

sp
ec

ti
v
e

a
u

th
o

rs
—

cc
C

re
a

ti
v
e

C
o

m
m

o
n

s
A

tt
ri

b
u

ti
o

n
3

.0
(C

C
B

Y
3

.0
)

Software technology evolution



U
I 
to

o
lk

it

distributed

KVDB

distributed

object caching

meta-data

server
Commands

client

applications

RPC

commands

API

meta-data

server API

History

data API

live data API

live data cache

low-level API

Figure 4: The User Interface toolkit components.

cache we are currently developing to achieve a further im-

provement of UI toolkit performance.

Practically it consist of a local cache of data and meta-

data where UI toolkit APIs may store and share both fre-

quently used meta-data, produced by queries to MDS, and

live data read from distributed object cache. Similarly to

distributed live data caching, we are considering a solution

based on a key/value object caching to store locally this in-

formation. Caching of live data will take into account the

refresh rate of the particular device dataset for setting its

expiration time.

While most of the !CHAOS code is written in C, C++

and Java, development of both client applications and de-

vice management plug-ins should include a larger selection

of programming languages.

Since at INFN LNF and Roma TV there is a long tra-

dition in developing control and data acquisition systems

with National Instruments LabVIEW we already started

remodeling of existing front-end software to adapt it to

!CHAOS DMP requirements.

On the client side, UI toolkit will provide APIs for most

common measurement and analysis software like Matlab

and the before mentioned LabVIEW.

CONCLUSION

!CHAOS is a scalable control system infrastructure pro-

viding all the services needed for communication, data

archiving, timing, etc. in a control system for a particle

accelerator or any other large apparatus. Front-end con-

trollers and GUI applications can be seen as plug-ins that

access and expand its functionalities.

The innovative communication framework is based on a

distributed object caching service while continuous archiv-

ing of data is implemented by means of a non-relational

distributed key/value database.

The use of the before mentioned software technologies

introduces a new paradigm of control system in which the

two layers representing the front-end and the client level

are complemented by a third intermediate level collecting

and distributing the the data produced by the lower front-

end controllers.

The control groups at INFN-LNF and INFN-Roma Tor

Vergata are committed to nalizing the development of this

conceptual design, validating its functionalities and perfor-

mance, and candidate !CHAOS as the control system for

future INFN particle accelerators.

REFERENCES

[1] SuperB-CDR2 INFN-LNF-11/9(P) 15 Jun 2011

[2] G. Mazzitelli et.al., “High Performance Web Applica-

tions for Particle Accelerator Control Systems”, Proceed-

ings of IPAC2011, San Sebastian, Spain, pp.2322-2324,

http://www.JACoW.org.

[3] M.E. Thuot, L.R. Dalesio, “Control system architecture: the

standard and nonstandard models,” Particle Accelerator Con-

ference, 1993., Proceedings of the 1993, pp.1806-1810 vol.3,

17-20 May 1993

[4] http://memcached.org.

[5] http://www.mongodb.org.

[6] http://bsonspec.org.

Proceedings of ICALEPCS2011, Grenoble, France WEPKS028

Software technology evolution 859 C
o

p
y

ri
g

h
t

c ©
2

0
1

1
b

y
th

e
re

sp
ec

ti
v
e

a
u

th
o

rs
—

cc
C

re
a

ti
v
e

C
o

m
m

o
n

s
A

tt
ri

b
u

ti
o

n
3

.0
(C

C
B

Y
3

.0
)


