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Abstract

In this review paper we discuss the effects of pairing correlations on inner crust
matter in the density region where nuclear clusters are supposed to coexist with non-
localised neutrons. The pairing correlations are treated in the framework of the finite
temperature Hartree-Fock-Bogoliubov approach and using zero range nuclear forces.
After a short introduction and presentation of the formalism we discuss how the pairing
correlations affect the structure of the inner crust matter, i.e., the proton to neutron
ratio and the size of Wigner-Seitz cells. Then we show how thepairing correlations
influence, though the specific heat of neutrons, the thermalization of the crust in the
case of a rapid cooling scenario.
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1. Introduction

The superfluid properties of the inner crust of neutron starshave been considered long ago
in connection to the large relaxation times which follow thegiant glitches. Thus, according
to the present models, the glitches are supposed to be generated by the unpinning of the
superfluid vortex lines from the nuclear clusters immersed in the inner crust of neutron
stars [1, 47]. Later on the superfluidity of the inner crust matter was also considered in
relation to the cooling of isolated neutron stars [34, 12] and, more recently, in the thermal
after-burst relaxation of neutron stars from X-ray transients [56, 13, 29].

The superfluid properties of the inner crust are essentiallydetermined by the non-
localized neutrons. For baryonic densities smaller than about 1.4 x 10−14 g cm−3 the
non-localized neutrons are supposed to coexist with nuclei-type clusters [11, 43]. At higher
densities, before the nuclear matter becomes uniform, the neutrons and the protons can form
other configurations such as rods, plates, tubes and bubbles[46].

A microscopicab initio calculation of pairing in inner crust matter should take into
account the polarization effects induced by the nuclear medium upon the bare nucleon-
nucleon interaction. This is a very difficult task which is not yet completely solved even for
the infinite neutron matter. Thus, compared to BCS calculations with bare nucleon-nucleon
forces, most of variational or diagrammatic models predictfor infinite matter a substantial
reduction of the pairing correlations due to the in-medium polarisation effects [36]. On the
other hand, calculations based on Monte Carlo techniques predict for dilute neutron matter
results closer to the BCS calculations (for a recent study see [23]).

A consistent treatment of polarization effects on pairing is still missing for inner crust
matter (for a recent exploratory study see [6]). Therefore at present the most advanced mi-
croscopic model applied to inner crust matter remains the Hartree-Fock-Bogoliubov (HFB)
approach. Pairing correlations have been also considered in the Quasiparticle Random
Phase Approximation (QRPA)(see Section 2.1 below) in relation to the collective modes
in inner crust matter [31]. However, a systematic investigation of the effect of collective
QRPA excitations on thermodynamic properties of inner crust matter is still missing.

The scope of this chapter is to show how the HFB approach can beused to investigate
the effects of pairing correlations on inner crust matter properties. Hence, in the first part
of the chapter we will discuss the influence of pairing, treated in HFB approach at zero
temperature, on the structure of inner crust matter. Then, using the HFB approach at finite
temperature, we will show how the pairing correlations affect the specific heat and the
thermalization of the inner crust matter in the case of a rapid cooling scenario.

In the present study we will focus only to the region of the inner crust which is sup-
posed to be formed by a bbc crystal lattice of nuclear clusters embedded in non-localized
neutrons. The crystal lattice is divided in elementary cells which are treated in the Wigner-
Seitz approximation.
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2. Treatment of pairing in the inner crust of neutron stars

2.1. Finite-temperature Hartree-Fock-Bogoliubov approach

In this section we discuss the finite-temperature HFB approximation for a Wigner-Seitz cell
which contains in its center a nuclear cluster surrounded bya neutron gas. The cell contains
also relativistic electrons which are considered uniformly distributed.

In principle, the HFB equations should be solved by respecting the bbc symmetry of the
inner crust lattice. However, imposing the exact lattice symmetry in microscopic models
is a very difficult task (for approximative solutions to thisproblem see Refs. [18, 26] and
the references therein). We therefore solve the HFB equations for a spherical WS cell,
as commonly done in inner crust studies [43, 3]. Since we are interested to describe the
thermodynamic properties of the inner crust matter, we present here the HFB approach at
finite temperature.

The HFB equations for a spherical WS cells have the same form as for isolated atomic
nuclei. Thus, for zero range pairing forces and spherical symmetry, the HFB equations at
finite temperature are defined as [24],

(

hT,q(r)− λq ∆T,q(r)
∆T,q(r) −hT,q(r) + λq

)(

Ui,q(r)
Vi,q(r)

)

= Ei,q

(

Ui,q(r)
Vi,q(r)

)

, (1)

whereEi,q is the quasiparticle energy,Ei,q =
√

(ei,q − λq)2 +∆2
i,q, Ui,q(r) andVi,q(r) are

the components of the HFB wave function andλq is the chemical potential (q = n, p is the
index for neutrons and protons) . The quantityhT,q(r) is the thermal averaged mean field
hamiltonian and∆T,q(r) is the thermal averaged pairing field.

In a self-consistent HFB calculation based on a Skyrme-typeforce, as used in the
present study,hT,q(r) and∆T,q(r) are expressed in terms of thermal averaged densities,
i.e., particle densityρT,q(r), kinetic energy densityτT,q(r), spin densityJT,q(r) and, re-
spectively, pairing densityκT,q(r). The thermal averaged densities mentioned above are
given by [53]:
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1

4π

∑

i

gi,q
[

|Vi,q(r)|2(1− fi,q) + |Ui,q(r)|2fi,q
]

, (2)

τT,q(r) =
1

4π

∑

i

gi,q

{[

(

dVi,q(r)

dr
− Vi,q(r)

r

)2

+
li,q(li,q + 1)

r2
Vi,q(r)

2

]

(1− fi,q)

+

[

(

dUi,q(r)

dr
− Ui,q(r)

r

)2

+
li,q(li,q + 1)

r2
Ui,q(r)

2

]

fi,q

}

, (3)

JT,q(r) =
1

4π

∑

i
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(

ji,q(ji,q + 1)− li,q(li,q + 1)− 3

4

)

×
(

|Vi,q(r)|2(1− fi,q) + |Ui,q(r)|2fi,q
)

, (4)

κT,q(r) =
1

4π

∑

i

gi,q U
∗
i,q(r)Vi,q(r)(1 − 2fi,q), (5)

wherefi,q = [1+exp(Ei,q/T )]
−1 is the Fermi-Dirac distribution of quasiparticles, T is the

temperature expressed in energy units, andgi,q = 2ji,q + 1 is the degeneracy of the statei
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with angular momentumji. The summations in the equations above are over the spectrum
of bound nucleons which form the nuclear cluster and of unbound neutrons which form the
neutron gas. A constant density at the edge of the WS cell is obtained imposing Dirichlet-
Von Neumann boundary conditions at the edge of the cell [43],i.e., all wave functions of
even parity vanish and the derivatives of odd-parity wave functions vanish.

The nuclear mean field has the same expression in terms of densities as in finite nu-
clei [19]. However, for a WS cell the Coulomb mean field of protons has an additional
contribution coming from the interaction of the protons with the electrons given by

upe
Coul

(r) = −e2
∫

d3r′ ρe(r
′)

1

|r − r′| . (6)

Assuming that the electrons are uniformly distributed inside the cell, with the densityρe =
3Z/(4πR3

WS), one gets

upe
Coul

(r) = −2πe2ρe

(

R2
WS − 1

3
r2
)

=
Ze2

2RWS

(

(

r

RWS

)2

− 3

)

(7)

It can be seen that inside the WS cell the contribution of the proton-electron interaction to
the proton mean field is quadratic in the radial coordinate.

The pairing field is calculated with a zero range force of the following form

VPair,q(ri, rj) = V0 gPair,q[ρT,n(r), ρT,p(r)](1 − Pσ)δ(rij) , (8)

wherePσ = (1 + σ̂1 · σ̂2)/2 is the spin exchange operator. For this interaction the pairing
field is given by

∆T,q(r) = V0 gPair,q[ρT,n(r), ρT,p(r)] κT,q(r). (9)

In the calculations presented here we use two different functionals for
gPair,q[ρT,n(r), ρT,p(r)]. The first one, called below isoscalar (IS) pairing force, de-
pends only on the total baryonic density,ρT,B(r) = ρT,n(r) + ρT,p(r). Its expression is
given by

gPair,q[ρT,n(r), ρT,p(r)] = 1− η

(

ρT,B(r)

ρ0

)α

, (10)

whereρ0 is the saturation density of the nuclear matter. This effective pairing interaction is
extensively used in nuclear structure calculations and it was also employed for describing
pairing correlations in the inner crust of neutron stars [52, 53, 54, 40]. The parameters
are chosen to reproduce in infinite neutron matter two pairing scenarii, i.e., corresponding
to a maximum gap of about 3 MeV (strong pairing scenario, hereafter named ISS) and,
respectively, to a maximum gap around 1 MeV (weak pairing scenario, called below ISW).
These two pairing scenarii are simulated by two values of thepairing strength, i.e., V0={-
570,-430} MeV fm−3. The other parameters are taken the same for the strong and the weak
pairing, i.e.,α=0.45,η=0.7 andρ0=0.16 fm−3. The energy cut-off, necessary to cure the
divergence associated to the zero range of the pairing force, is introduced through the factor
e−Ei/100 acting forEi > 20 MeV, whereEi are the HFB quasiparticle energies.

The second pairing functional, referred below as isovectorstrong pairing (IVS), de-
pends explicitly on neutron and proton densities and has thefollowing form in the neutron
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Figure 1. (color online) Neutron pairing gap for the interactions ISW (isoscalar weak), ISS
(isoscalar strong) and IVS (isovector strong) in symmetricnuclear matter and in neutron
matter.

channel [38],

gPair,n[ρT,n(r), ρT,p(r)] = 1−ηs(1−I(r))

(

ρT,B(r)

ρ0

)αs

−ηnI(r)

(

ρT,B(r)

ρ0

)αn

, (11)

whereI(r) = ρT,n(r) − ρT,p(r). This interaction is adjusted to reproduce the neutron1S0

pairing gap in neutron and symmetric nuclear matter provided by the BCS calculations with
the bare nucleon-nucleon forces [14]. In addition, the pairing strengthV0 and the cut-off
energy are related to each other through the neutron-neutron scattering length according
to the procedure described in Ref. [9]. Therefore this interaction is expected to describe
properly the pairing for all the nuclear densities of the inner crust matter, including the
low density neutron gas. As shown in Refs. [39, 10], this pairing functional describes well
the two-neutron separation energies and the odd-even mass differences in nuclei with open
shells in neutrons. In the present calculations for this pairing functional we have used the
parameters V0= -703.86 MeV fm−3, ηs=0.7115,αs=0.3865,ηn=0.9727,αn=0.3906. The
cut-off prescription is the same as for the isoscalar pairing force.

The pairing gaps in symmetric matter and neutron matter predicted by the three pairing
forces introduced above are represented in Fig. 1 for a wide range of sub-nuclear densities.
It can be seen that the isovector IVS interaction gives a maximum gap closer to the strong
isoscalar ISS force, and the ISW interaction predict a suppression of the pairing gap up to
saturation density.

To illustrate how the pairing correlations are spatially distributed in the Wigner-Seitz
cells and how they are affected by the temperature, in Fig. 2 are shown the pairing fields
for neutrons in the cells 2 and 5 (see Table 1). It can be noticed that the clusters have a non-
trivial influence on the pairing of neutron gas. Thus, depending of the relative intensity of
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Figure 2. Neutron pairing fields for the Wigner-Seitz cells 2and 5 (see Table 1) labeled,
respectively, as1800Sn and950Sn. The full and the long-dashed lines correspond to the
ISS and ISW pairing interaction. Here the calculations havebeen done with the strenghts
V0 = {−430,−330} MeV fm3 and with an energy cut-off of 60 MeV.

pairing in the cluster and the gas region, the presence of thecluster can suppress or enhance
the pairing in the surface region of the cluster.

2.2. Quasiparticle Random Phase Approximation (QRPA)

Pairing correlations affect not only the ground state properties of inner crust matter but also
its excitations modes. The non-collective excitations arecommonly described by the quasi-
particle energies obtained solving the HFB equations. To calculate the collective excitations
one needs to take into account the residual interaction between the quasiparticles. In what
follows we discuss briefly the collective modes of the inner crust matter in the framework
of QRPA, which takes properly into account the pairing correlations [31].

The QRPA can be obtained from the time-dependent HFB approach in the limit of linear
response. In the linear response theory the fundamental quantity is the Green function
which satisfies the Bethe-Salpeter equation

G = (1−G0V)−1
G0 = G0 +G0VG. (12)

The unperturbed Green’s functionG0 has the form:

G0
αβ(rσ, r′σ′;ω) =

∑

ij

∫ Uα1
ij (rσ)Ū∗β1

ij (r′σ′)

h̄ω − (Ei + Ej) + iη
−

Uα2
ij (rσ)Ū∗β2

ij (r′σ′)

h̄ω + (Ei + Ej) + iη
, (13)

whereEi are the HFB quasiparticle energies andUij are 3 by 2 matrices expressed in term of
the two components of the HFB wave functions [32]. The

∑
∫

symbol in the equation above
indicates that the summation is taken over the bound and unbound quasiparticle states. The
latter corresponds here to the non-localised neutrons in the WS cell.

V is the matrix of the residual interaction expressed in termsof the second derivatives
of the HFB energy functional, namely:

V
αβ(rσ, r′σ′) =

∂2E
∂ρβ(r′σ′)∂ρᾱ(rσ)

, α, β = 1, 2, 3. (14)
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Figure 3. Strength distributions for the quadrupole mode inWS cell 2 of Table 1. The
full (dashed) line corresponds to the QRPA (HFB) strength. The results are for ISS pairing
force with the same parameters as used in Figure 1.

In the above equation{ρ1, ρ2, ρ3} ≡ {ρ, κ, κ∗}, whereρ andκ are, respectively, the parti-
cle (2) and pairing (5) densities; the notationᾱ means that wheneverα is 2 or 3 thenᾱ is 3
or 2.

The linear response of the system to external perturbation is commonly described by
the strength function. Thus, when the external perturbation is induced by a particle-hole
external fieldF the strength function writes:

S(ω) = − 1

π
Im

∫

F ∗(r)G11(r, r′;ω)F (r′)dr dr′ (15)

whereG11 is the (ph,ph) component of the QRPA Green’s function.
As an example in Fig. 3 it is shown the strength function for the quadrupole response

calculated for the WS cell 2 of Table 1 below [31]. The resultscorrespond to the isoscalar
pairing force with the strengthV0=-430 MeV fm−3 and an energy cut-off of 60 MeV. It
can be seen that the unperturbed spectrum, distributed overa large energy region, becomes
concentrated almost entirely in the peak located at about 3 MeV when the residual interac-
tion between the quasiparticles is introduced. The peak collects more than 99% of the total
quadrupole strength and it is extremely collective. An indication of the extreme collectivity
of this low-energy mode can be also seen from its reduced transition probability, B(E2),
which is equal to25×103 Weisskopf units. This value of B(E2) is two orders of magnitude
higher than in standard nuclei. This underlines the fact that in this WS cell the collective
dynamics of the neutron gas dominates over the cluster contribution. In Ref. [31] it is shown
that similar collective modes appears for the monopole and the dipole excitations. A very
collective low-energy quadrupole mode it was also found in all the Wigner-Seitz cells with
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Ncell ρB kF N Z RWS

[g cm−3] [fm−1] [fm]
1 7.9 1013 1.12 1460 40 19.7
2 3.4 1013 0.84 1750 50 27.7
3 1.5 1013 0.64 1300 50 33.2
4 9.6 1012 0.55 1050 50 35.8
5 6.2 1012 0.48 900 50 39.4
6 2.6 1012 0.36 460 40 42.3
7 1.5 1012 0.30 280 40 44.4
8 1.0 1012 0.26 210 40 46.5
9 6.6 1011 0.23 160 40 49.4
10 4.6 1011 0.20 140 40 53.8

Table 1. The structure of the Wigner-Seitz cells obtained from a density matrix expansion
(DME) [43] ρB is the baryon density,kF = (3π2nB)

1/3 the Fermi momentum calculated
as in Ref. [3] wherenB is the number of baryons per fm3, N and Z are the numbers of
neutrons and protons whileRWS is the radius of the WS cells. Compared to Ref. [43] here
it is not shown the cell with the highest density located at the interface with the pasta phase.

Z=50 [27]. However, a systematic investigation of the influence of these collective modes
on the thermodynamic properties of inner crust matter is still missing.

3. The effect of pairing on inner crust structure

The first microscopic calculation of the inner-crust structure was performed by Negele and
Vautherin in 1973 [43]. In this work the crystal lattice is divided in spherical cells which
are treated in the Wigner-Seitz (WS) approximation. The nuclear matter from each cell is
described in the framework of Hartree-Fock (HF) and the pairing is neglected. The proper-
ties of the WS cells found in Ref. [43], determined for a limited set of densities, are shown
in Table I. The most remarkable result of this calculation isthat the majority of the cells
have semi-magic and magic proton numbers, i.e., Z=40,50. This indicates that in these
calculations there are strong proton shell effects, as in isolated atomic nuclei.

The effect of pairing correlations on the structure of Wigner-Seitz cells was first inves-
tigated in Refs. [3, 4, 5] within the Hartree-Fock BCS (HFBCS) approach. In this section
we shall discuss the results of a recent calculations based on Hartree-Fock-Bogoliubov ap-
proach [28]. This approach offers better grounds than HF+BCS approximation for treating
pairing correlations in non-uniform nuclear matter with both bound and unbound neutrons.

As in Ref. [43], the lattice structure of the inner crust is described as a set of independent
cells of spherical symmetry treated in the WS approximation. For baryonic densities below
ρ ≈ 1.4 × 1014 g/cm3, each cell has in its center a nuclear cluster (bound protonsand
neutrons) surrounded by low-density and delocalized neutrons and immersed in a uniform
gas of ultra-relativistic electrons which assure the charge neutrality. At a given baryonic
density the structure of the cell, i.e., the N/Z ratio and thecell radius is determined from
the minimization over N and Z of the total energy under the condition of beta equilibrium.
The energy of the cell, relevant for determining the cell structure, has contributions from



Pairing correlations and thermodynamic properties of inner crust matter 9

the nuclear and the Coulomb interactions. Its expression iswritten in the following form

E = EM + EN + Te +EL. (16)

The first term is the mass differenceEM = Z(mp+me)+ (N −A)mn where N and Z are
the number of neutrons and protons in the cell and A=N+Z.EN is the binding energy of
the nucleons, which includes the contribution of proton-proton Coulomb interaction inside
the nuclear cluster.Te is the kinetic energy of the electrons whileEL is the lattice energy
which takes into account the electron-electron and electron-proton interactions. The contri-
bution to the total energy coming from the interaction between the WS cells [44] it is not
considered since it is very small compared to the other termsof Eq.(1).

We shall now discuss the effect of pairing correlations on the structure of the WS cells.
To study the influence of pairing correlations we have performed HFB calculations with the
three pairing interactions introduced in Section 2.1.
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Figure 4. (color online) The HFB energies per particle as function of proton number for the
pairing forces ISW (dotted line), ISS (dashed line) and IVS (dashed-dotted line). The solid
lines represent the HF results. In the left pannel are shown the results obtained including
the finite size corrections.

The structure of the WS cells obtained in the HFB approach is given in Table II while
in Fig. 4 it is shown the dependence of the binding energies, at beta equilibrium, on protons
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number. The contribution of pairing energy, nuclear energyand electron kinetic energy to
the total energy are given in Fig. 5 for the cells 2 and 6. From this figure we can notice
that the nuclear binding energy is almost compensated by thekinetic energy of the electrons
which explains the weak dependence of the total energy on Z seen in Fig. 4. In Fig.4 we
observe also that pairing is smoothing significantly the variation of the HF energy with Z.
For this reason the HFB absolute minima are very little pronounced compared to the other
neighboring energy values.

Ncell N Z Zcorr

HF ISW ISS IVS HF ISW ISS IVS HF ISW ISS IVS
2 40 40 22 42
3 318 514 442 554 16 24 20 24 54 40 28 38
4 476 534 382 570 28 28 20 28 40 40 40 28
5 752 320 328 344 46 20 20 20 46 48 44 20
6 454 428 374 346 50 48 36 34 50 50 50 34
7 316 344 324 240 50 50 50 36 50 50 50 50
8 174 220 186 174 36 50 38 36 36 50 38 36
9 120 112 128 116 38 36 38 36 38 36 38 36
10 94 82 90 82 38 36 38 36 36 36 36 36

Table 2. The structure of Wigner-Seitz cells obtained in theHF and HFB approximation.
The results corresponds to the isoscalar weak (ISW), isoscalar strong (ISS) and isovector-
isoscalar (IVS) pairing forces. In the last 4 columns are shown the proton numbers obtained
with the finite size corrections. In the table are shown only the structures of the cells which
could be well-defined by the present calculations.

From Fig. 4 we observe that in the cells 1-2 the binding energydoes not converge to a
minimum at low values of Z. For the cells 3-4, although absolute minima can be found for
HF or/and HFB calculations, these minima are very close to the value of binding energy at
the lowest values of Z we could explore. Therefore the structure of these cells is ambiguous.
The situation is different in the cells 5-10 where the binding energies converge to absolute
minima which are well below the energies of the configurations with the lowest Z values.

From Table II it can be observed that the structure of some cells becomes very differ-
ent when the pairing is included. Moreover, these differences depend significantly on the
intensity of pairing (see the results for ISW and ISS). However, as seen in Fig. 4, for the
majority of cells the absolute minima are very little pronounced relative to the other energy
values, especially for the HFB calculations. Therefore onecannot draw clear quantitative
conclusions on how much pairing is changing the proton fraction in the cells.

When the radius of the cell becomes too small the boundary conditions imposed at the
cell border through the WS approximation generate an artificial large distance between the
energy levels of the nonlocalized neutrons. Consequently,the binding energy of the neutron
gas is significantly underestimated. An estimation of how large could be the errors in the
binding energy induced by the WS approximation can be obtained from the quantity

f(ρn, RWS) ≡ Binf.(ρn)−BWS−inf.(ρn, RWS) , (17)

where the first term is the binding energy per neutron for infinite neutron matter of density
ρn and the second term is the binding energy of neutron matter with the same density



Pairing correlations and thermodynamic properties of inner crust matter 11

1.5

2.0

2.5

3.0

3.5

E
T
/A

E
N
/A

T
e
/A

16 24 32 40 48 56
Z

-2.0

0.0

2.0

4.0

E
/A

   
[M

eV
]

(Cell 6)

(Cell 2)

-1.9

4.2

4.3

4.4

4.5

4.6

E
T
/A

E
Pair

/A

16 24 32 40 48 56

Z
0.5

0.6

0.7E
/A

  [
M

eV
]

(Cell 6)

+5.5

+0.9

(Cell 2)

Figure 5. (color online) The different contributions to thetotal energy in the cells 2 and 6
for the HF (left pannel) and HFB (right pannel) calculations. Are shown: the total energy
(solid line), the nuclear energy (dashed line), the kineticenergy of the electrons (dashed-
dotted line), and the pairing energy for the ISS pairing interaction (dotted line). The pairing
energies are shifted up as indicated in the figure.

calculated inside the cell of radiusRWS and employing the same boundary conditions as in
HF or HFB calculations. In Ref. [37] it was proposed for the finte size energy correction,
Eq. 26, the following parametrisation

f(ρng
, RWS) = 89.05(ρng

/ρ0)
0.1425R−2

WS , (18)

whereρng
is the average density of neutrons in the gas region extracted from a calculation

in which the cell contains both the nuclear cluster and the nonlocalized neutrons whileρ0
is the nuclear matter saturation density.

How the energy corrections described by Eq. (18) influences the HF (HFB) results
can be seen in Fig. 4 (right pannel) and in Table II (last four columns). As expected, the
influence of the corrections is more important for the cells 1-5, in which the neutron gas has
a higher density, and for those configurations corresponding to small cell radii

4. Effect of pairing on the thermodynamic properties in the in-
ner crust matter

4.1. Specific heat of the baryonic matter

The specific heat of the inner crust has contributions from the electrons, the lattice (or Ion)
and the baryonic matter (essentially the de-localized neutrons). The contribution of these
3 components is shown in Fig. 6 where different scenarios forthe neutrons are considered.
If neutrons are non-superfluid they dominate the contribution of the other component in the
inner crust. The effect of the neutron superfluidity is the reduce strongly the contribution of
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Figure 6. Specific heat in the crust of the neutron star for thedifferent components of the
star matter and for a temperature of 109 K.

the neutrons. It is therefore expected a very large effect induced by the neutron superfluidity
that we now discuss. The specific heat of the neutrons is calculated from the quasiparticle
energies obtained solving the HFB equations at finite-temperature in the Wigner-Seitz ap-
proximation, as discussed in Section 2.1. For the WS cells weuse the structure determined
in Ref.[43] (see Table 1).

The specific heat of the neutrons is calculated by

CV =
T

V

∂S

∂T
, (19)

where V is the volume of the Wigner-Seitz cell, T is the temperature and S is the entropy.
The latter is given by

S = −kB
∑

i,q

gi,q(fi,q ln fi,q + (1− fi,q) ln(1− fi,q)). (20)

In Fig. 7 are shown the results obtained for the specific heat in the case of a strong
isoscalar pairing interaction. To illustrate the particular behavior of the specific heat in
non-uniform matter and the validity of various approximations, in what follows we shall
discuss in more detail the results for the cell number 6, which contains N=460 neutrons
and Z=40 protons (see Table 1). In this cell the HFB calculations predict 378 unbound
neutrons. The specific heat given by the HFB spectrum, in which the contribution of the
cluster is included, is shown in Fig. 8 by full line. In the same figure are shown also
the specific heats corresponding to two approximations employed in some studies [34, 48,
45]. In these approximations the non-uniform distributionof neutrons is replaced with
a uniform gas formed either by the total number of neutrons inthe cell (N=460, dashed
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line), or by taking only the number of the unbound neutrons (N=378, dashed-dotted line).
How these approximations work is seen in Fig. 8. To make the comparison meaningful,
the calculations for the uniform neutron gas are done solving the HFB equations with the
same boundary conditions as for the non-uniform system, i.e., neutrons+cluster. As seen
in Fig. 8, the transition from the superfluid phase to the normal phase is taking place at a
lower temperature in the case of uniform neutron gas, especially when are considered only
the unbound neutrons. The critical temperature is therefore lower in uniform matter (for the
two prescriptions often used) than in non-uniform matter.

4.2. Pairing and thermalization time of the inner crust

Several studies have shown that the thermalization time depends significantly on the super-
fluid properties of the inner crust baryonic matter [34, 25, 48, 40, 54]. This dependence
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is induced through the specific heat of unbound neutrons, strongly affected by the pairing
energy gap. As an example we refer to Fig. 6 where it is seen that neutron superfluid-
ity strongly suppress the neutron specific heat which, in theabsence of the pairing would
dominate over the specific heat of electrons and the lattice.

To estimate the effect of neutron superfluidity to the thermalization time of inner crust
matter we use a rapid cooling scenario in which the core arrives quickly to a much smaller
temperature than the crust due to the direct URCA colling process. The thermalization
time is defined as the time for the core nd the crust temperatures to equilibrate. The heat
diffusion is described by the relativistic heat equation [57]:

∂

∂r

[

Kr2

Γ(r)
eφ

∂

∂r
(eφT )

]

= r2Γ(r)eφ
(

CV
∂T

∂t
+ eφQν

)

, (21)

wheret is the time,K is the thermal conductivity,CV is the specific heat andQν is the
neutrino emissivity. The effect of the gravity is given through the gravitational potential
φ, which enters in the definition of the redshifted temperature T̃ = Teφ, and the quantity

Γ(r) =
(

1− 2Gm(r)/rc2
)−1/2, whereG is the gravitational constant andm(r) is the

gravitational mass included in a sphere of radiusr. The latter is obtained from the Tolman-
Oppenheimer-Volkoff (TOV) equations [29] based on an equation of state obtained from
SLy4 Skyrme interaction [20]. More details on the cooling model are given in Ref. [22].

The time evolution of the apparent surface temperatureT eff
∞ is displayed in Fig. 9 for

the initial temperatures of the crustTi = 500 keV [22]. The effective surface temperature
shown in Fig. 9 is obtained from the temperature at the bottomof the crust,Tb = T (ρb),
whereρb = 1010 g.cm−3, using the relationship given in Ref. [50] for a non-accreted
envelope. The results shown in Fig. 9 corresponds to a neutron star of mass 1.6M⊙ in



Pairing correlations and thermodynamic properties of inner crust matter 15

 2

 2.5

 3

 3.5

 4

 4.5

 5

-1 -0.5  0  0.5

lo
g 

(t
w

 [y
ea

rs
])

log (α)

t w
 = 66.6 α

0.86

tw
 = 26.9 α

0.87t w
 = 37.9 α

0.85

t w
 = 68.9 α

t w
 = 39.3 α

t w
 = 27.8 α

 Normal Neutrons
 Strong Pairing
 Weak Pairing

Figure 10. Cooling timestw versus scaling parameterα for three pairing scenarii as dis-
cussed in the text. The results correspond to neutron stars with masses between 1.4 and 2.0
M⊙. The fitting curves are given for the case of a linear scale (dashed lines, right side) and
for a fractional power of the scaling parameterα (solid lines, left side).

which the inner crust extends fromRc=10.72 km, which is the radius at the core-crust
interface, to 11.19 km. As can be noticed, the pairing enhances significantly the cooling at
the surface of the star. In Fig. 9 are also shown the apparent surface temperatures obtained
neglecting the effect of the clusters, i.e., supposing thatthe neutron specific heat is given
solely by that of the neutron gas. In this case the neutron specific heat is calculated from
the quasiparticle spectrum of BCS equations solved for infinite neutron matter at a density
corresponding to that of the external neutrons in the WS cell[35]. In the case of weakly
pairing scenario (ISW), the apparent surface temperature is dropping faster for superfluid
non uniform matter than for superfluid uniform matter. For the strong pairing scenario,
since the pairing correlations suppress the role of the neutron in almost the entire inner
crust, the effect of the clusters is less important [22].

A simple random walk model for the cooling is sometimes used to estimate the thermal-
ization time [12, 48, 40]. In this model the diffusion of the cooling wave towards the core
is calculated without taking into account the dynamical change of the temperature through
the whole crust and neglecting the neutrino emissivity in Eq. (21). The crust is divided into
shells of thicknessRi for which the thermal diffusivelyDi = Ki/CV,i is considered as
constant. From a dimensional analysis of the heat equation (21), the relaxation time of each
of these shells is defined as,

τi = Γ(R)3R2
i /(γDi), (22)

whereγ is a geometrical factor andR is the radius of the neutron star. The total relaxation
through the crust is given by,

τth =

(

∑

i

√
τi

)2

. (23)
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The thermalization time defined as (23) satisfy the condition that in a uniform density case,
τth is independent of the shell discretization. Using this model, the effect of the neutron
superfluidity has also been estimated to be large [48, 40], and is qualitatively similar to the
result deduced from solving of the heat diffusion equation (21).

In some previous studies [34, 25] it was found that the thermalization time, defined as
the time needed for the crust to arrive to the same temperature with the core, satisfies the
scaling relationtth = t1α

β where

α =

(

∆Rcrust
1 km

)2 (

1− 2GM/Rc2
)−3/2

(24)

depends solely on the global properties of the neutron star,i.e., the crust thickness∆Rcrust,
the star radiusR and the mass of the starM . The scaling relation can be inferred from the
random walk model presented above. In Fig. 10 are shown as a function of the scaling
parameterα the cooling times we have obtained from the solution of the heat diffusion
equation (21) for various neutron stars masses lying between 1.4 and 2.0M⊙ with a step
of 0.1M⊙. In this figure are displayed two sets of fits fortw versusα, i.e., a linear fit
with β = 1 (dashed line) and a fit with a fractional value forβ (solid line). It can be
noticed that the best fit is obtained with a fractional value for β, which is equal to 0.86
for the normal neutrons, to 0.85 for weakly paired neutrons and to 0.89 for strongly paired
neutrons. Considering the simpler linear fit, i.e.,tw ≈ αt1, as done in [34, 25], we get for
the normalized timet1 the valuest1 = {68.9, 39.3, 22.3} corresponding, respectively, to
the normal neutrons, neutrons with weak pairing and neutrons with strong pairing. For a
1.5M⊙ neutron star withα = 1.15, we obtaint1 = {66.4, 37.4, 26.6}. These values fort1
are larger than that of Ref. [25] (Table 2) by a factor 2.3 in the non-superfluid case, and 3.4
(3.0) for the weak (strong) pairing scenario. These differences could be explained by the
effects of the nuclear clusters on the neutron specific heat,disregarded in Ref. [25], and by
different neutrinos processes and thermal conductivitiesin the core matter used in the two
calculations.

5. Summary and Conclusions

In the first part of this chapter we have discussed the influence of pairing correlations on
the structure of inner crust of neutron stars. The study was done for the region of the
inner crust which is supposed to be formed by a lattice of spherical clusters embedded in
a gas of neutrons. The lattice was treated as a set of independent cells described in the
Wigner-Seitz approximation. To determine the structure ofa cell we have used the nuclear
binding energy given by the Skyrme-HFB approach. For the cells with high density and
small radii the binding energies do not converge to a minimumwhen the proton number
has small values. We believe that it is related to the discretization of the continuum. For a
small radius of the cell the average distance between the energy levels of the non-localised
neutrons becomes artificially large which cause an underestimation of the binding energy.
To correct this drawback we have used an empirical expression based on the comparison
between the binding energy of neutrons calculated in infinite matter and in a finite-size
spherical cell [37]. We found that the finite size corrections to the binding energies are
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significant for the high density cells with small proton numbers. This conclusion indicates
the need of a more accurate evaluation of the errors induced by the finite size of the WS
cells on nuclear binding energy, which requires to go beyondthe empirical expression used
here.

In the second part we have discussed how thermalization of neutron stars crust depends
on pairing properties and on cluster structure of the inner crust matter. The thermal evolu-
tion was obtained by solving the relativistic heat equationwith initial conditions specific to
a rapid cooling process. The specific heat of neutrons was calculated from the HFB spec-
trum. The results show that the crust thermalization is strongly influenced by the intensity
of pairing correlation. It is also shown that the cluster structure of the inner crust affects
significantly the time evolution of the surface temperature.

The thermodynamic properties of the inner crust discussed in this chapter are based
on the excitation spectrum of HFB equations. As it was shown in Section 2.2, the QRPA
approach predicts in some cells collective excitations located at low energies, comparable
with the pairing energy gap. It is thus expected a significantcontribution of the collective
modes to the specific heat and to the thermalization process of inner crust matter. This is an
open issue which deserves further investigations.
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