Electrostatic mask for active targets
Abstract
Active gas targets have been used in nuclear physics since 30 years. They are promising systems in view of the new exotic beams soon available at facilities like SPIRAL2 or FAIR, but the system can still be improved. One of the main limitation is the dynamic range in energy deposition. The energy deposited per unit length can be 3 decades higher for the beam than for the light reaction products and the risk to saturate the electronics or that the detector spark are not negligible. A simple solution using a wire plane to mask partially the beam is presented here. Some simulation has been realized and some experimental results are shown confirming the feasibility of this wire tunable mask. The mask can be used from full transparency to full opacity without degrading neither the drift electric field of the chamber nor the performances of detection of the beam or the light products.