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We report a measurement of muon-neutrino disappearance in the T2K experiment. The 295-km muon-

neutrino beam from Tokai to Kamioka is the first implementation of the off-axis technique in a long-

baseline neutrino oscillation experiment. With data corresponding to 1:43� 1020 protons on target, we

observe 31 fully-contained single �-like ring events in Super-Kamiokande, compared with an expectation

of 104� 14 ðsystÞ events without neutrino oscillations. The best-fit point for two-flavor �� ! ��

oscillations is sin2ð2�23Þ ¼ 0:98 and j�m2
32j ¼ 2:65� 10�3 eV2. The boundary of the 90% confidence

region includes the points ðsin2ð2�23Þ; j�m2
32jÞ ¼ ð1:0; 3:1� 10�3 eV2Þ, (0.84, 2:65� 10�3 eV2) and

(1.0, 2:2� 10�3 eV2).

DOI: 10.1103/PhysRevD.85.031103 PACS numbers: 14.60.Pq, 13.15.+g, 25.30.Pt, 95.55.Vj

We report a measurement of muon-neutrino disappear-
ance in the T2K experiment. The muon-neutrino beam
from Tokai to Kamioka is the first implementation of the
off-axis technique [1] in a long-baseline neutrino oscilla-
tion experiment. The off-axis technique is used to provide a
narrow-band neutrino energy spectrum tuned to the value
of L=E that maximizes the neutrino oscillation effect due
to �m2

32, the mass splitting first observed in atmospheric

neutrinos [2]. This narrow-band energy spectrum also pro-
vides a clean signature for subdominant electron neutrino
appearance, as we have recently reported [3]. Muon-
neutrino disappearance depends on the survival probabil-
ity, which, in the framework of two-flavor �� ! ��

oscillations, is given by

Psurv ¼ 1� sin2ð2�23Þsin2
�
�m2

32L

4E

�
; (1)

where E is the neutrino energy and L is the neutrino
propagation length. We have neglected subleading oscil-
lation terms. In this paper, we describe our observation of
�� disappearance, and we use the result to measure j�m2

32j
and sin2ð2�23Þ. Previous measurements of these neutrino
mixing parameters have been reported by K2K [4] and
MINOS [5], which use on-axis neutrino beams, and Super-
Kamiokande [6], which uses atmospheric neutrinos.

Details of the T2K experimental setup are described
elsewhere [7]. Here, we briefly review the components
relevant for the �� oscillation analysis. The J-PARC

Main Ring accelerator [8] provides 30 GeV protons with
a cycle of 0.3 Hz. Six bunches (Run 1) or eight bunches
(Run 2) are extracted in a 5-�s spill and are transported to
the production target through an arc instrumented by super-
conducting magnets. The proton beam position, profile,
timing and intensity are measured by 21 electrostatic
beam position monitors, 19 segmented secondary emission
monitors, one optical transition radiation monitor and five
current transformers. The secondary beam line, filled with
helium at atmospheric pressure, is composed of the target,
focusing horns and decay tunnel. The graphite target is
2.6 cm in diameter and 90 cm (1.9 �int) long. Positively-
charged particles exiting the target are focused into the
96 m-long decay tunnel by three magnetic horns pulsed at
250 kA. Neutrinos are primarily produced in the decays of
charged pions and kaons. A beam dump is located at the
end of the tunnel and is followed by muon monitors
measuring the beam direction of each spill.
The neutrino beam is directed 2.5� off the axis between

the target and the Super-Kamiokande (SK) far detector
295 km away. This configuration produces a narrow-band
�� beam with peak energy tuned to the first oscillation

maximum E� ¼ j�m2
32jL=ð2�Þ ’ 0:6 GeV.

The near-detector complex (ND280) [7] is located
280 m downstream from the target and hosts two detectors.
The on-axis Interactive Neutrino GRID [9] records neu-
trino interactions with high statistics to monitor the beam
intensity, direction and profile. It consists of 14 identical
7 ton modules composed of an iron-absorber/scintillator-
tracker sandwich arranged in 10 m by 10 m crossed hori-
zontal and vertical arrays centered on the beam. The
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off-axis detector reconstructs exclusive final states to study
neutrino interactions and beam properties corresponding to
those expected at the far detector. Embedded in the refur-
bished UA1/NOMAD magnet (field strength 0.2 T), it
consists of three large-volume time projection chambers
(TPCs) [10] interleaved with two fine-grained tracking
detectors (FGDs, each 1 ton). It also has a �0-optimized
detector and a surrounding electromagnetic calorimeter.
The magnet yoke is instrumented as a side muon range
detector.

The SK water-Cherenkov far detector [11] has a fiducial
volume of 22.5 kt within its cylindrical inner detector (ID).
Enclosing the ID is the 2 m-wide outer detector (OD). The
front-end readout electronics [7] allow for a dead-time-free
trigger. Spill timing information, synchronized by the
global positioning system with<150 ns precision, is trans-
ferred from J-PARC to SK and triggers the recording of
photomultiplier hits within �500 �s of the expected neu-
trino arrival time.

The results presented in this paper are based on the first
two physics runs: Run 1 (January–June 2010) and Run 2
(November 2010–March 2011). During this time period,
the Main Ring proton beam power was continually in-
creased and reached 145 kW with 9� 1013 protons per
pulse. The fraction of protons hitting the target was moni-
tored by the electrostatic beam position monitors, seg-
mented secondary emission monitors and optical
transition radiation monitor and found to be greater than
99% and stable in time. A total of 2, 474, 419 spills was
retained for analysis after beam and far-detector quality
cuts, corresponding to 1:43� 1020 protons on target
(POT).

We present the study of events in the far detector with a
single muonlike (�-like) ring. The event selection enhan-
ces �� charged-current quasielastic interactions (CCQE).

For these events, neglecting the Fermi motion, the neutrino
energy E� can be reconstructed as

E� ¼ m2
p � ðmn � EbÞ2 �m2

� þ 2ðmn � EbÞE�

2ðmn � Eb � E� þ p� cos��Þ ; (2)

where mp is the proton mass, mn the neutron mass, and

Eb ¼ 27 MeV is the binding energy of a nucleon inside a
16O nucleus. In Eq. (2), E�, p� and �� are, respectively,

the measured muon energy, momentum and angle with
respect to the incoming neutrino. The selection criteria
for this analysis were fixed fromMonte Carlo (MC) studies
before the data were collected. The observed number of
events and spectrum are compared with signal and back-
ground expectations, which are based on neutrino flux and
cross-section predictions and are corrected using an inclu-
sive measurement in the off-axis near detector.

Our predicted beam flux (Fig. 1) is based on models
tuned to experimental data. The most significant constraint
comes from NA61 measurements of pion production [12]
in (p, �) bins, where p is the pion momentum and � the

polar angle with respect to the proton beam; there are
5%–10% systematic and similar statistical uncertainties
in most of the measured phase space. The production of
pions in the target outside the NA61-measured phase space
and all kaon production are modeled using FLUKA [13,14].
The production rate of these pions is assigned systematic
uncertainties of 50%, and kaon production uncertanties are
estimated to be between 15% and 100% based on a com-
parison of FLUKA with data from Eichten et al. [15]. The
software package GEANT3 [16], with GCALOR [17] for
hadronic interactions, handles particle propagation through
the magnetic horns, target hall, decay volume and beam
dump. Additional systematic errors in the neutrino fluxes
are included for uncertainties in secondary nucleon pro-
duction and total hadronic inelastic cross sections, uncer-
tainties in the proton beam direction, spatial extent and
angular divergence, the horn current, and the secondary
beam line component alignment uncertainties. The stabil-
ity of the beam direction and neutrino rate per proton on
target are monitored continuously with Interactive
Neutrino GRID and are within the assigned systematic
uncertainties [3].
Systematic uncertainties in the shape of the flux as

a function of neutrino energy require knowledge of the
correlations of the uncertainties in (p, �) bins of hadron
production. For the NA61 pion-production data [12],
we assume full correlation between (p, �) bins for each
individual source of systematic uncertainty, except for
particle identification where there is a known
momentum-dependent correlation. Where correlations of
hadron-production uncertainties are unknown, we choose
correlations in kinematic variables to maximize the uncer-
tainty in the normalization of the predicted flux.
Neutrino interactions are simulated using the NEUT

event generator [18]. Uncertainties in cross sections of
the exclusive neutrino processes are determined by com-
parisons with recent measurements from the SciBooNE
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FIG. 1. (Top) the predicted flux of �� as a function of neutrino
energy without oscillations at Super-Kamiokande and at the off-
axis near detector; (bottom) the flux of �� and ��� at Super-

Kamiokande. The shaded boxes indicate the total systematic
uncertainty for each energy bin.
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[19], MiniBooNE [20,21] and K2K [22,23] experiments,
comparisons with the GENIE [24] and NuWro [25] gen-
erators and recent theoretical work [26].

An inclusive �� charged-current (CC) measurement in

the off-axis near detector (ND) is used to constrain the
expected event rate at the far detector. From a data sample
collected in Run 1 of 2:88� 1019 POT, neutrino interac-
tions are selected in the FGDs with charged particles enter-
ing the downstream TPC. The most energetic negatively
charged particle in the TPC is required to have ionization
energy loss compatible with that of a muon. The analysis
selects 1529 data events with 38% �� CC efficiency and

90% purity. The agreement between the reconstructed
neutrino energy in data and MC is shown in Fig. 2. The
ratio of measured �� CC interactions to MC is

R
��CC

ND ¼ N
Data;��CC

ND

N
MC;��CC

ND

¼ 1:036� 0:028ðstat:Þþ0:044
�0:037ðdet:syst:Þ

� 0:038ðphys:syst:Þ; (3)

where N
Data;��CC

ND is the number of �� CC events, and

N
MC;��CC

ND is the MC prediction normalized by POT. The

detector systematic errors in Eq. (3) are mainly due to
uncertainties in tracking and particle identification effi-
ciencies. The physics uncertainties result from cross-
section uncertainties but exclude normalization uncertain-
ties that cancel in a far/near ratio.
At the far detector, we select a �� CCQE-enriched

sample. The SK event reconstruction [27] uses PMT hits
in time with a neutrino spill. We select a fully contained
fiducial volume sample by requiring no activity in the OD,
no preactivity in the 100 �s before the event trigger time,
at least 30 MeVelectron-equivalent energy deposited in the
ID and a reconstructed event vertex in the fiducial region.
The OD veto rejects events induced by neutrino interac-
tions outside of the ID and events where energy escapes
from the ID. The visible energy requirement rejects events
from radioactive decays in the detector. The fiducial vertex
requirement rejects particles entering from outside the ID.
Further conditions are required to enrich the sample in ��

CCQE events: a single Cherenkov ring identified as a
muon, with momentum p� > 200 MeV=c, and no more

than one delayed electron. The muon momentum require-
ment rejects charged pions and misidentified electrons
from the decay of unseen muons and pions, and the
delayed-electron veto rejects events with muons accompa-
nied by unseen pions and muons. The number of events in
data and MC after each selection criterion is shown in
Table I. The efficiency and purity of �� CCQE events

are estimated to be 72% and 61%, respectively.
We calculate the expected number of signal events in the

far detector (N
exp
SK ) by correcting the far-detector MC pre-

diction with R
��CC

ND from Eq. (3):

Nexp
SK ðErÞ ¼ R

��CC

ND

X
Et

PsurvðEtÞNMC
SK ðEr; EtÞ: (4)

In Eq. (4), NMC
SK ðEr; EtÞ is the expected number of events

for the no-disappearance hypothesis for T2K Runs 1 and 2
in bins of reconstructed (Er) and true (Et) energies.
PsurvðEtÞ is the two-flavor ��-survival probability and is

applied to �� and ��� CC interactions but not to neutral-

current interactions.
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FIG. 2 (color online). Neutrino energy reconstructed for the
CCQE hypothesis for �� CC candidates interacting in the FGD

target. The data are shown using points with error bars (statistical
only), and the MC predictions are in shaded histograms.

TABLE I. Event reduction at the far detector. After each selection criterion is applied, the
number of observed (Data) and MC expected events of �� CCQE, �� CC non-QE, intrinsic �e,

and neutral current (NC) are given. The columns denoted by �� include ���. All MC CC samples

assume �� ! �� oscillations with sin2ð2�23Þ ¼ 1:0 and j�m2
32j ¼ 2:4� 10�3 eV2.

Data �� CCQE �� CC non-QE �e CC NC

Fiducial Volume interaction n=a 24.0 43.7 3.1 71.0

Fully Contained Fiducial Volume 88 19.0 33.8 3.0 18.3

single ring 41 17.9 13.1 1.9 5.7

�-like 33 17.6 12.4 <0:1 1.9

p� > 200 MeV=c 33 17.5 12.4 <0:1 1.9

0 or 1 delayed e 31 17.3 9.2 <0:1 1.8
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The sources of systematic uncertainty in Nexp
SK are listed

in Table II. Uncertainties in the near-detector and far-
detector selection efficiencies are energy-independent ex-
cept for the ring-counting efficiency. Uncertainty in the

near-detector event rate is applied to N
Data;��CC

ND in Eq. (3).
The flux normalization uncertainty is reduced because of
the near-detector constraint. The uncertainty in the flux
shape is propagated using the covariance matrix when
calculating Nexp

SK . The near-detector constraint also leads

to partial cancellation in the uncertainty in cross-section
modeling, but the cancellation is not complete due to the
different fluxes, different acceptances and different nuclei
in the near and far detectors. The total uncertainty in N

exp
SK

is þ13:3%
�13:0% without oscillations and þ15:0%

�14:8% with oscillations

with sin2ð2�23Þ ¼ 1:0 and j�m2
32j ¼ 2:4� 10�3 eV2.

We find the best-fit values of the oscillation parameters
using a binned likelihood-ratio method, in which
sin2ð2�23Þ and j�m2

32j are varied in the input to the calcu-

lation of N
exp
SK until

2
X
Er

�
Ndata

SK ln

�
Ndata

SK

N
exp
SK

�
þ ðNexp

SK � Ndata
SK Þ

�
(5)

is minimized. The sum in Eq. (5) is over 50 MeV bins of
reconstructed energy of selected events in the far detector
from 0–10 GeV.
Using the near-detector measurement and setting

Psurv ¼ 1:0 in Eq. (4), we expect a total of 103:6þ13:8
�13:4

(systematic) single �-like ring events in the far detector
without disappearance, but we observe 31 events. If
�� ! �� oscillations are assumed, the best-fit point deter-

mined using Eq. (5) is sin2ð2�23Þ ¼ 0:98 and j�m2
32j ¼

2:65� 10�3 eV2. We estimate the systematic uncertainty
in the best-fit value of sin2ð2�23Þ to be �4:7% and that in
j�m2

32j to be �4:5%. The reconstructed energy spectrum

of the 31 data events is shown in Fig. 3 along with the
expected far-detector spectra without disappearance and
with best-fit oscillations.
We construct confidence regions1 in the oscillation pa-

rameters using the method of Feldman and Cousins [28].
Statistical variations are taken into account by Poisson
fluctuations of toy MC data sets, and systematic uncertain-
ties are incorporated using the method of Cousins and
Highland [29,30]. The 90% confidence region for
sin2ð2�23Þ and j�m2

32j is shown in Fig. 4 for combined

statistical and systematic uncertainties.
We also carried out an alternate analysis with a maxi-

mum likelihood method. The likelihood is defined as:

L ¼ Lnormðsin2ð2�23Þ;�m2
32; fÞ

� Lshapeðsin2ð2�23Þ;�m2
32; fÞLsystðfÞ; (6)

TABLE II. Systematic uncertainties on the predicted number of SK selected events without
oscillations and for oscillations with sin2ð2�23Þ ¼ 1:0 and j�m2

32j ¼ 2:4� 10�3 eV2.

Source �N
exp
SK =N

exp
SK (%, no osc) �N

exp
SK =N

exp
SK (%, with osc)

SK CCQE efficiency �3:4 �3:4
SK CC non-QE efficiency �3:3 �6:5
SK NC efficiency �2:0 �7:2
ND280 efficiency þ5:5 �5:3 þ5:5 �5:3
ND280 event rate �2:6 �2:6
Flux normalization (SK/ND280) �7:3 �4:8
CCQE cross section �4:1 �2:5
CC1�=CCQE cross section þ2:2 �1:9 þ0:4 �0:5
Other CC/CCQE cross section þ5:3 �4:7 þ4:1 �3:6
NC/CCQE cross section �0:8 �0:9
Final-state interactions �3:2 �5:9
Total þ13:3 �13:0 þ15:0 �14:8
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FIG. 3. Reconstructed energy spectrum of the 31 data events
compared with the expected spectra in the far detector without
disappearance and with best-fit �� ! �� oscillations. A variable

binning scheme is used here for the purpose of illustration only;
the actual analysis used equal-sized 50 MeV bins.

1In the T2K narrow-band beam, for a low-statistics data set,
there is a possible degeneracy between the first oscillation
maximum and other oscillation maxima in L=E. Therefore, we
decided in advance to report confidence regions both with and
without an explicit bound at j�m2

32j< 5� 10�3 eV2. For this
data set, the bounded and unbounded confidence regions are
identical.
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where the first term is the Poisson probability for the
observed number of events, and the second term is the
unbinned likelihood for the reconstructed neutrino energy
spectrum. The vector f represents parameters related
to systematic uncertainties that have been allowed to
vary in the fit to maximize the likelihood, and the last
term in Eq. (6) is a multidimensional Gaussian probability
for the systematic error parameters. The result is consistent
with the analysis described earlier. The best-fit point

for this alternate analysis is sin2ð2�23Þ ¼ 0:99 and
j�m2

32j ¼ 2:63� 10�3 eV2. The 90% confidence region

for the neutrino oscillation parameters is shown in Fig. 4.
In conclusion, we have reported the first observation of

�� disappearance using detectors positioned off-axis in the

beam of a long-baseline neutrino experiment. The values of
the oscillation parameters sin2ð2�23Þ and j�m2

32j obtained
are consistent with those reported by MINOS [5] and
Super-Kamiokande [6,31].
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