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Abstract

Sampling-based Evolutionary Algorithms (EA) are of great use when dealing with
a highly non-convex and/or noisy optimization task, which is the kind of task we
often have to solve in Machine Learning. Two derivative-free examples of such
methods are Estimation of Distribution Algorithms (EDA) and techniques based
on the Cross-Entropy Method (CEM). One of the main problems these algorithms
have to solve is finding a good surrogate model for the normalized target func-
tion, that is, a model which has sufficient complexity to fit this target function,
but which keeps the computations simple enough. Gaussian mixture models have
been applied in practice with great success, but most of these approaches lacked
a solid theoretical founding. In this paper we describe a sound mathematical
justification for Gaussian mixture surrogate models, more precisely we propose
a proper derivation of an EDA/CEM algorithm with mixture updates using Ex-
pectation Maximization techniques. It will appear that this algorithm resembles
the recent Population MCMC schemes, thus reinforcing the link between Monte-
Carlo integration methods and sampling-based optimization. We will concentrate
throughout this paper on continuous optimization.

1 A quick review on existing techniques

1.1 Estimation of Distribution Algorithms

EDAs are optimization algorithms which match the paradigm of evolutionary strategies, summarized
in the following repeated steps: generation, selection, reproduction. The particularity of EDAs
resides in the fact that the generation and reproduction steps at time t are related to an underlying
instrumental probability distribution qt: the generation sample is drawn according to qt and the
reproduction is merely an update of qt to make it approximate some hidden target distribution. The
example of the Estimation of Multivariate Normal Algorithm (EMNA) is given Figure 1.

EMNA(S, N, M)

1 Initialize µ(0),Σ(0), q0 := N (µ(0),Σ(0)), t := 1.
2 Sample x1, ..., xN ∼ qt−1 i.i.d.
3 Take the M points with best fitness, and compute their sample mean µ and covariance Σ.
4 Set the new mean µ(t) and covariance Σ(t) for the Gaussian proposal qt to µ and Σ.
5 Stop if the termination criterion is met, otherwise set t := t + 1 and go back to step 2.

Figure 1: The EMNA algorithm: the surrogate model for the fitness function is a single Gaussian.

A mixture version of EMNA called EMDA (Estimation of Mixture of Distributions Algorithm) al-
ready was mentioned in [1]: it consists of seeing the distribution q as a mixture of conditionally
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Gaussian networks, updating it with a Bayesian-score EM step. The algorithm we derive in Sec-
tion 2 can be seen as an instance of EMDA. It has the advantage though that the selection step is
theoretically justified by a ghost integration goal which is at the core of the Cross-Entropy Method
presented in the following section.

1.2 The Cross-Entropy Method

The Cross-Entropy method (CEM; see [2] for a detailed review) is a method originally designed for
integration on rare events. It proved to apply quite naturally to optimization. CEM provides a solid
mathematical justification to evolutionary sampling methods, rigorously introducing the selection
step in the estimation procedure. Imagine we want to compute

I := Pu(A) = Eu1A =
∫

1A(x)f(dx;u) (1)

where the expectation is taken with respect to a pdf f(x;u) belonging to some parametric family F
and A is Pu-rare. If we know how to sample from f(x;u), we can compute a crude Monte-Carlo
estimate of (1). But as A is rare for Pu, few of the sampled points will happen to fall in A, so we
prefer to use importance sampling to reduce the variance of our MC estimator by sampling more
points in the region of interest A. Importance sampling in this case consists in writing

I =
∫

1A(x)
f(dx;u)

g(x)
g(x)dx ≈

N∑

i=1

1A(xi)
f(xi;u)
g(xi)

(2)

for some distribution g we chose for easy sampling, whose support contains the support of f(.;u)
and x1, ..., xN ∼ g i.i.d (see [3]).

There is a theoretical answer to the question of the optimal choice of g, as if you take
g = g̃ ∝ 1A(x)f(.;u),

the variance of your estimator will be 0. Of course, this is of no practical use, since to normalize g
you would need the integral of interest I , but you can still try to approximate this g̃ in some sense.
In particular, minimizing over f(.; v) ∈ F the Kullback-Leibler divergence between g̃ and f(.; v) is
equivalent to solve

max
v

∫
1A(x)f(.;u) log f(.; v), (3)

or, taking the empirical counterpart of (3) with eventually a new importance sampling step:

max
v

N∑

i=1

1A(xi)
f(xi;u)
f(xi;w)

log f(xi; v) (4)

where the xi’s are drawn independently according to f(.;w).

Let us now turn this remark into an evolutionary optimization algorithm. Imagine we have some
fitness function S to maximize over a domain X . The key idea is to think of estimating integrals
of the form Pu(S(X) ≥ γ). Using the CEM principle to approximate the optimal importance
distribution 1(S(.)≥γ)f(.;u), the importance sampling paradigm will help us to sample points in
(S(X) ≥ γ). Iteratively repeating the procedure while cleverly adapting γ to keep enough samples
in the region of interest should lead us to sample near from the optima of S.

Since we do not care about the value of the integral’s estimate, we can get rid of the importance
weights in (4) and iteratively optimize our choice of the importance distribution f(.; v) to estimate
Pvt−1(S(X) ≥ γt). The core algorithm finally proposed by the authors of [2] is given Figure 2.

Notice that by takingF to be the family of Gaussians in CEM leads exactly to EMNA, with µ = ρN .

2 Derivation of the algorithm

2.1 Introduction of Mixtures in the CEM paradigm

The authors of [2] claim that (5) is analytically solvable when F is an exponential family. It is
true, but there is a certain class of more generic distributions which would intuitively allow for a

2



CEM FOR OPTIMIZATION(S, N, ρ, d)
1 Initialize v0, set t := 1.
2 Sample x1, ..., xN ∼ f(.; vt−1) i.i.d.
3 Compute and order their performances S(x1), ..., S(xN ) decreasingly.
4 Take γt to be the (1− ρ)-quantile γt of the ordered performances.
5 Solve

vt := arg max
v

N∑

i=1

1(S(.)≥γt)(xi) log f(xi; v) (5)

6 If t ≥ d and γt = γt−1 = ... = γt−d, then stop. Else set t := t+1 and go back to step 2.

Figure 2: The CEM algorithm: the goal is to iteratively sample in regions of high fitness.

better fit of disconnected areas (S ≥ γ), performing better exploration of multimodal landscapes by
clustering the data: the mixture distributions. Their simplest form is a weighted sum of distributions
belonging to parametric family Φ = ((ϕ(., v))v:

f(.;v) :=
D∑

d=1

αdϕ(.; vd)

where
∑

d αd = 1. In the following subsection, we demonstrate with an EM-flavored technique that
they also lead to analytical update formulae, whenever Φ is an exponential family.

2.2 Solving the updates with EM

The problem in its integral form is

max
v

%(α, v) :=
∫

1(S(X)≥γ) × log

(
D∑

d=1

αdϕ(x; vd)

)
× f(dx; v(t−1)).

Let us define
ρd(x;α, v) :=

αdϕ(x;µd,Σd)∑D
d=1 αdϕ(x;µd,Σd)

and consider the auxiliary quantity

Lt(α, v) :=
∫ D∑

d=1

1(S(X)≥γ)ρd(x;α, v) log(αdϕ(x; vd))f(dx; v(t−1)).

Using concavity of the log, it comes

Lt(α, v)− Lt(α(t−1), v(t−1)) ≤ %(α, v)− %(α(t−1), v(t−1)),

so any increase in Lt would mean a bigger-or-equal increase in %. At the same time, maximization
of Lt(α, v) leads to a closed formula whenever ϕ belongs to an exponential family, for example in
the Gaussian case, writing ρt

d(x) for ρd(x;αt, µt,Σt), we easily derive

αt
d =

∫
1(S(X)≥γ)ρ

t−1
d (x)f(dx; v(t−1)),

µt
d =

1
αt

d

∫
1(S(X)≥γ)xρt−1

d (x)f(dx; v(t−1)),

Σt
d =

1
αt

d

∫
1(S(X)≥γ)(x− µt

d)(x− µt
d)
′ρt−1

d (x)f(dx; v(t−1))

whose empirical versions can be directly used as updates in Algorithm 2. Remark that this new
algorithm is very similar to Population Monte-Carlo schemes for integration (see [3]).
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Function Expression Initial range
Sphere

∑d
i=1 x2

i [−600, 600]d

Rastrigin 10d +
∑d

i=1

(
x2

i − 10 cos(2πxi)
)

[−5, 5]d

Ackley 20 + e− 20 exp
(
−0.2

√
1
d

∑d
i=1 x2

i

)
− exp

(
1
d

∑d
i=1 cos(2πxi)

)
[−10, 10]d

Table 1: The three benchmark functions.

3 Experiments

In this section we experimentally compare EMNA with the proposed algorithm. Starting the opti-
mization with a relatively large number of mixture components (10 for dimension 10, 20 for dimen-
sion 50), the algorithm progressively kills them when their mixing proportions go below a certain
threshold (10−5 in our experiments). We used two different killing strategies. The first strategy, de-
noted as MN-EDA 1, was to simply continue the procedure with the remaining components without
replacing the killed ones. The second strategy, denoted as MN-EDA 2, was to replace the killed com-
ponents by the ones having the highest mixing proportions, but giving them large initial variances
in order to favor exploration around the current detected modes. For each of the three algorithms,
7 independent runs were performed. We plot the mean values of the fitness obtained at the mean
of the component with the highest mixing proportion against number of function evaluations. The
dotted lines stand for one standard deviation error bars.

As the sample covariance matrix of p points has rank at most p, early degeneracy of the covariance is
likely to appear and hinder exploration. This is a well-known problem in EMNA schemes. To avoid
it, we followed the softening advice of the authors of [2], taking at each time step t = 1, 2, ... the
new covariance matrix to be a weighted sum of the old covariance matrix and the selected sample
covariance matrix, the weight of the latter being

βt = β − β

(
1− 1

t

)q

with β = 0.8 and q = 5. This softening makes the degeneracy appear polynomially with the time
rather than exponentially.

We chose common benchmark test functions in the continuous optimization community. We tried
to reproduce the conditions of [1], initializing means uniformly over the given initial ranges, taking
N = 2000 points at each iteration and selecting the best µ = 1000 points to compute the updates.
We initialized all variances to 1. The three rows of Figure 3 depict our results on the Sphere,
Rastrigin, and Ackley functions, respectively, the latter two being highly multi-modal. The two
columns correspond to dimensions d = 10 and d = 50. The function definitions and initializations
are recalled in Table 3. All functions are normalized to present a unique minimum at the origin.

4 Discussion

The presented fitness graphs and spatial and eigenvalue-based diagnoses suggest that EMNA – with
the degeneracy-avoiding update – finds the optimal mode after a reasonable number of function
evaluations. However, once it has attained it, the covariance matrix eigenvalues do not shrink quickly
enough to optimize more precisely and find a better neighborhood of the located optimum. We
observe a kind of metastability, where the γ’s of successive iterations in the CEM are almost equal.

MN-EDA seems to reach more quickly the best mode with either killing strategy: it automatically
selects the best area according to its global model of the surface by focusing on the best components.
We observed that after this pre-selection phase, the means of the components quickly concentrated
on the best mode. After this step, the behavior is of course very similar to EMNA.

Let us insist on the fact that we used the same N and µ for EMNA and MN-EDA, so updating a
mixture costs the same price in function evaluations as updating a single distribution. That is why
we think MN-EDA can be considered as an automatic way of tuning the initialization of EMNA.
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Figure 3: Empirical comparison of EMNA with two different strategies of MN-EDA on the three
benchmark functions (Sphere, Rastrigin and Ackley, from top to bottom) in dimensions 10 (left) and
50 (right).
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4.1 Two remarks on tails and adaptivity

First, note that heavy-tailed proposals could allow a faster exploration of the landscape when we
do not have much prior information on the location of the modes: the updates for Student mixtures
exist in a closed form (exponential family property) and can be obtained through a little bit more
sophisticated argument than in the Gaussian case.

In our algorithm, we chose to adapt the mixture to the target function by starting with a high number
of components and progressively killing the ones with low mixing proportion. We could try other
paradigms. In particular, the MCMC community provides us with some interesting techniques to
adapt the number of components in a mixture. A first candidate is the Reversible Jump MCMC
algorithm [4] in which split-merge moves allow a component with high probability to be split in two
or two nearby components to be merged together. Another promising technique is to fit a mixture
with an unknown number of components using Dirichlet processes [5, 6].

4.2 Links to CMA-ES

In black-box optimization, the Covariance Matrix Adaptation - Evolutionary Strategies algorithm
(CMA-ES) [7] represents the state-of-the-art in real-valued Rn search spaces. It is a sophisticated
version of EMNA, the major difference being that instead of updating the covariance matrix of the
selected points, it uses the covariance matrix of the selected steps. Furthermore, it adds two suc-
cessful heuristics related to the control of the path length that widen the covariance matrix in the
direction of high gradient, which is in contrast with the behavior of EMNA we mentioned earlier.
There are several connections we foresee to make with CMA-ES: find a similar probabilistic in-
terpretation, introduce mixtures in it to automatically tune the initialization, and try to mimic its
heuristics for MN-EDA, especially the step size control: it would allow us to shrink the covariance
matrix eigenvalues faster once we are in the neighborhood of a mode, and consequently solve the
problem of metastability we observed in the simulations.

4.3 Potential applications to Machine Learning optimization problems

The presented mixture method not only uses Machine Learning clustering tools for better explo-
ration of the search space, but it could also be applied to difficult optimization tasks that appear in
Machine Learning. For example, the authors of [1] claim that EDAs are competitive methods to
learn weights in artificial neural networks, so we plan to apply our mixture model to see if we can
avoid a poor initialization and local minima of the cost function. With the same flavor, we have in
mind applications to the connection design in reservoir computing.
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[1] P. Larrañaga and J. Lozano, editors. Estimation of Distribution Algorithms: A New Tool for

Evolutionary Computation. Springer, 2001.
[2] R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified Approach to Combi-

natorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer, 2004.
[3] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag, New York,

2004.
[4] P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model

determination. Biometrika, 82(4):711–732, 1995.
[5] C. E. Rasmussen. The infinite Gaussian mixture model. In Advances in Neural Information

Processing Systems, volume 12. The MIT Press, 2000.
[6] R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of

Computational and Graphical Statistics, 9:249–265, 2000.
[7] N. Hansen. The CMA evolution strategy: a comparing review. In J.A. Lozano, P. Larranaga,

I. Inza, and E. Bengoetxea, editors, Towards a new evolutionary computation. Advances on
estimation of distribution algorithms, pages 75–102. Springer, 2006.

6


