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Abstract

In global optimization, when the evaluation
of the target function is costly, the usual
strategy is to learn a surrogate model for the
target function and replace the initial opti-
mization by the optimization of the model.
Gaussian processes have been widely used
since they provide an elegant way to model
the fitness and to deal with the exploration-
exploitation trade-off in a principled way.
Several empirical criteria have been proposed
to drive the model optimization, among
which is the well-known Expected Improve-
ment criterion. The major computational
bottleneck of these algorithms is the exhaus-
tive grid search used to optimize the highly
multimodal merit function. In this paper,
we propose a competitive “adaptive grid” ap-
proach, based on a properly derived cross-
entropy optimization algorithm with mix-
ture proposals. Experiments suggest that 1)
we outperform the classical single-Gaussian
cross-entropy method when the fitness func-
tion is highly multimodal, and 2) we improve
on standard exhaustive search in GP-based
surrogate optimization.

1. Introduction
There are numerous important global optimization
problems in which the single evaluation of the target
fitness function is very costly. Parameter optimization
of large complex systems often requires running expen-
sive simulations or carrying out real experiments that
can take a long time. Hyperparameter optimization in
Machine Learning is another example: evaluating one
set of hyperparameters requires the full training that
can take hours or days on today’s large databases.
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A natural way to deal with such problems is to re-
place the fitness function by a cheap-to-evaluate es-
timator, and optimize this surrogate model to pro-
pose a small number of points where the expensive
fitness function is evaluated in an iterative active learn-
ing setup. Gaussian processes (GPs) provide an ele-
gant way to model the fitness and to deal with the
exploration-exploitation trade-off in a principled way.
The paradigm of global optimization based on GPs
dates back to the 70’s with (Mockus et al., 1978). Start
with some initial training points spread over the input
space, evaluate the fitness function f at those points,
and repeat the following steps: 1) choose the next
point to evaluate x∗ by optimizing a cheap sampling
criterion that measures some merit of an additional
evaluation at any point of the input space, 2) evaluate
f at x∗, and 3) add (x∗, f(x∗)) to the training set. GP
regression intervenes in the sampling criterion evalua-
tion which involves the GP posterior over the fitness
function given the training set.

The design of efficient sampling criteria (the so-called
merit functions) is a hot research topic. Recent ad-
vances in this domain include the conditional entropy
of the minimizer (Villemonteix et al., 2006) dealing
with noisy evaluations and a multi-armed bandit cri-
terion (Srinivas et al., 2009) to derive regret bounds.
Although our proposed technique is generic, we will
concentrate throughout this paper on the classical Ex-
pected Improvement (EI) criterion of J. Mockus (see
(Jones, 2001) for a recent extensive review), which
measures the expected amount by which we can im-
prove the best fitness value obtained so far by going
to a new point. These criteria are usually highly mul-
timodal, so optimization is typically done by a grid
search or a Latin hypercube sampling approach that
requires a large number of evaluations of the sampling
criterion. This is a major draw-back of these methods
especially when the evaluation involves Monte Carlo
sampling from the GP (Villemonteix et al., 2006), so
these methods are used mostly to optimize “expensive-
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to-evaluate” functions when the computational time to
evaluate the functions justifies the time to be spent on
proposing the next evaluation point.

In this paper we propose to improve on the compu-
tational bottleneck of these methods by replacing the
exhaustive evaluation of the surrogate and merit func-
tions by a cross-entropy-based mixture method. The
main idea is to replace the grid search by an adap-
tive evolutionary algorithm that iteratively samples
in regions of higher merit value. The search distri-
bution will be a mixture to take advantage of prior
knowledge on the shape of the merit functions like EI.
We have two contributions: a well-formulated mixture
Cross-Entropy method and its application to surro-
gate optimization. Experiments suggest that 1) we
outperform the classical single-Gaussian cross-entropy
method when the fitness function is highly multi-
modal, and 2) we outperform standard exhaustive
search in GP-based surrogate optimization.

The outline of the paper is as follows. In Section 2
we briefly recall GP basics, explain the details of the
EI criterion, and describe the surrogate optimization
problem. Then in Section 3 we formally derive a mix-
ture cross-entropy optimization method and propose
an initialization procedure using triangulation of the
training data. Finally in Section 4 we benchmark
our mixture algorithm as a generic global optimization
method, and compare it experimentally to exhaustive
search on particular EI optimization problems.

2. Surrogate optimization based on
Gaussian processes

The GP (also known as kriging) is a popular model
for surrogate optimization mainly due to its capac-
ity to elegantly handle the uncertainty about the un-
known fitness function. Several criteria have been
proposed to handle the exploration-exploitation trade-
off in global optimization. The most well-known are
the Probability of Improvement and the Expected Im-
provement (Jones, 2001). More recently (Villemonteix
et al., 2006) proposed to use the conditional entropy
of the global minimizer to improve on EI when the
the evaluation of the fitness function is noisy. One of
the most recent novelty in the field is (Srinivas et al.,
2009)’s proposal of using multi-armed bandits based
on a GP surrogate model. After recalling the basics of
GPs in Section 2.1 (based on (Rasmussen & Williams,
2006)), we describe the most well-known criterion of
Expected Improvement (Jones, 2001) in Section 2.2.
We carried out all our experiments using this crite-
rion; note, however, that the proposed technique is
applicable with any GP-based merit function.

2.1. Gaussian processes
Gaussian processes (GP) provide a convenient way to
put priors over functions. Let k be a positive defi-
nite kernel on the input space X . Under a GP(0, k)
prior, the distribution of any vector of function val-
ues f = (f(x1), ..., f(xn))T is a multivariate Gaussian
f ∼ N (0,K), where the matrix K is defined through
Kij := k(xi, xj).

The most useful property of the GP prior is that
it is closed under sampling: given a prior p(f) ∼
GP(0, k) over functions and a set of samples D :={
(xi, f(xi)); 1 ≤ i ≤ n

}
, the posterior p(f |D) is also a

GP form with mean and covariance functions

m̃(x) = k(x,x)K−1f ,

k̃(x, x′) = k(x, x′)− k(x,x)K−1k(x, x′).

It is then straightforward to make predictions about
the function value at a test point x∗ since, ac-
cording to the posterior, f(x∗) has distribution
N (m̃(x∗), k̃(x∗, x∗)). Observe that the posterior vari-
ance at training points is zero, as the observations are
noiseless. Additive Gaussian noise can also be handled
easily (see (Rasmussen & Williams, 2006)).

2.2. The Expected Improvement criterion
Assume we want to minimize an unknown fitness
function f , already evaluated at n points D :=
{(xi, f(xi)); 1 ≤ i ≤ n}. The goal of EI is to find the
next point xn+1 where the expected improvement over
the currently best minimum mn := mini f(xi) is the
highest. We start by fitting a GP on D to obtain,
at every test point x∗, a guess m̃(x∗) and a standard
error σ̃(x∗) = k̃(x∗, x∗)1/2. The EI merit function is
then defined by

EI(x) := E
(
max(mn − f(x), 0)|Fn

)
,

where Fn is the σ-algebra generated by the previous
fitness evaluations summarized in f . An easy compu-
tation yields

EI(x) = σ̃(x)
(
uΦ(u) + φ(u)

)
, (1)

where u = (mn−m̃(x))/σ̃(x), and Φ and φ denote the
cdf and pdf of the N (0, 1) distribution, respectively.
This alternative definition is easier to understand: EI
represents a compromise between regions where the
mean function is close to or better than the best value
obtained so far and regions where the uncertainty is
high. Notice that the EI merit function is always non-
negative and zero at every training point. It is gen-
erally smooth since it inherits the smoothness of the
chosen kernel (which is in practice often at least once
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differentiable). The EI merit function is also likely
to be highly multimodal, especially as the number of
training points increases. The goal of this paper is to
design an optimization algorithm which exploits this
prior knowledge on the shape of the EI merit function
to optimize it efficiently.

3. A mixture cross-entropy algorithm
Optimizing a GP-based merit function such as EI (1)
is itself a difficult optimization problem. Due to its
multimodality, the most common technique is grid
search either on a full grid or, especially in higher di-
mensions, using a Latin hypercube sampling. In any
case, the criterion itself has to be evaluated a lot of
times in each of the outer iterations of the global op-
timization loop. This can be slow even if the evalu-
ation is analytical, let alone the case when the eval-
uation itself requires a Monte Carlo simulation from
the GP (Villemonteix et al., 2006). For this reason,
GP-based global optimization is often “marketed” as
a technique for optimizing expensive functions, where
the high computational complexity of evaluating the
original fitness function f justifies the work invested
in predicting the next evaluation point. In this section
we describe an approach that can improve the com-
putational complexity of the surrogate optimization,
bringing GP-based global optimization closer to the
family of generic global optimizers.

Our approach uses importance sampling to adapt the
search grid to the optimization problem. This is done
by means of the cross-entropy method (CEM; see (Ru-
binstein & Kroese, 2004) for a detailed review) that we
describe in Section 3.1. We make use of the fact that
the multimodality of the merit functions suggests to
model them with mixture distributions. Our main con-
tribution is found in Section 3.2: we show how to use
mixture distributions in CEM. Section 3.3 describes
a specific initialization routine adapted to GP-based
merit functions.

3.1. The cross-entropy method
The cross-entropy method is a technique originally de-
signed for integration on rare events. It proved to ap-
ply quite naturally to optimization. CEM provides a
solid mathematical justification to evolutionary sam-
pling methods, rigorously introducing the selection
step in the estimation procedure. Consider comput-
ing

I := Pu(A) = Eu1A =
∫

1A(x)g(x;u)dx (2)

where the expectation is taken with respect to a pdf
g(x;u) belonging to some parametric family G indexed

by u and A is Pu-rare. If one knows how to sample
from g(x;u), a crude Monte Carlo estimate of (2) is
computable. But as A is rare for Pu, few of the sam-
pled points will happen to fall in A, so it is preferable
to use importance sampling to reduce the variance of
the MC estimator by sampling more points in the re-
gion of interest A. Importance sampling in this case
consists in writing

I =
∫

1A(x)
g(x;u)
q(x)

q(x)dx ≈
N∑

i=1

1A(xi)
g(xi;u)
q(xi)

(3)

for some distribution q we chose for easy sampling,
whose support contains the support of g(.;u) and
x1, ..., xN ∼ q i.i.d. (Robert & Casella, 2004).

There is a theoretical answer to the question of the op-
timal choice of q, as if one takes q = q̃ ∝ 1A(.)g(.;u),
the variance of the MC estimator will be 0. Of course,
this is of no practical use, since to normalize q the in-
tegral of interest I is needed, but one can still try to
approximate q̃ in some sense. In particular, minimiz-
ing over g(.; v) ∈ G the Kullback-Leibler divergence
between q̃ and g(.; v) is equivalent to solve

max
v

∫
1A(.)g(.;u) log g(.; v), (4)

or, taking the empirical counterpart of (4) with even-
tually a new importance sampling step:

max
v

N∑

i=1

1A(xi)
g(xi;u)
g(xi;w)

log g(xi; v) (5)

where the xi’s are drawn i.i.d. according to g(.;w).

Let us now turn this remark into an evolutionary op-
timization algorithm adapted to our original problem.
Let us denote by S the criterion to maximize over X .
The key idea is to think of estimating probabilities of
level sets, i.e., integrals of the form Pu(S(X) ≥ γ). Us-
ing the CEM principle to approximate the optimal im-
portance distribution 1(S(.)≥γ)g(.;u), the importance
sampling paradigm will help us to sample points in
(S(X) ≥ γ). Iteratively repeating the procedure while
cleverly adapting γ to keep enough samples in the re-
gion of interest should lead us to sample from close to
the optima of S.

Since we do not care about the actual estimate of the
integral, we can get rid of the importance weights in (5)
and iteratively optimize our choice of the importance
distribution g(.; v) to estimate Pvt−1(S(X) ≥ γt). The
core algorithm finally proposed by the authors of (Ru-
binstein & Kroese, 2004) is given in Figure 1.

Note that taking G to be the family of Gaussians in
CEM leads to the Estimation of Multivariate Normal
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CEM for Optimization(S, N, ρ, d)

1 Initialize v0, set t← 1.
2 Sample x1, ..., xN ∼ g(.; vt−1) i.i.d.
3 Order S(x1), ..., S(xN ) decreasingly.
4 Take γt to be the (1− ρ)-quantile

of the ordered performances.
5 Solve

vt := arg max
v

N∑

i=1

1(S(xi)≥γt) log g(xi; v) (6)

6 If t ≥ d and γt = γt−1 = ... = γt−d,
then stop. Else set t := t + 1 and go
back to step 2.

Figure 1. The CEM algorithm: the goal is to iteratively
sample in regions of higher criterion value.

Algorithm (EMNA; see (Larrañaga & Lozano, 2001)
for a review on Estimation of Distribution Algorithms
and their applications), a popular evolutionary algo-
rithm used in neural network training.

3.2. Introducing mixtures into the CEM
(Rubinstein & Kroese, 2004) claim that (6) is ana-
lytically solvable when G is an exponential family. It
turns out that there is a certain class of more generic
distributions which would intuitively allow for a bet-
ter fit of disconnected areas (S ≥ γ), performing bet-
ter exploration of multimodal landscapes by cluster-
ing the data: the mixture distributions. Their sim-
plest form is a weighted sum of distributions belong-
ing to parametric family Φ = (ϕ(., v))v, i.e. g(.;v) :=∑D

d=1 αdϕ(.; vd) where
∑

d αd = 1. In the following
subsection, we demonstrate with an EM-flavored tech-
nique that they also lead to analytical update formu-
lae, whenever Φ is an exponential family.

At time t, denoting g(.; vt−1) by π, the problem in its
integral form is maxv ((α, v), where

((α, v) :=
∫

1(S(x)≥γ)×log

(
D∑

d=1

αdϕ(x; vd)

)
×π(x)dx.

Defining the posterior probability of x belonging to the
dth cluster by ρd(x;α, v) ∝ αdϕ(x;µd,Σd), consider

∫ D∑

d=1

1(S(x)≥γ)ρd(x;αt, vt) log(αdϕ(x; vd))π(x)dx

denoted by Lt(α, v). By concavity of the log, we have

Lt(α, v)− Lt(αt−1, vt−1) ≤ ((α, v)− ((αt−1, vt−1),

so any increase in Lt would mean a bigger-or-equal in-
crease in (. At the same time, maximization of Lt(α, v)
leads to a closed formula whenever ϕ belongs to an
exponential family, e.g. in the Gaussian case, writing
ωt

d,γ(x) for ρd(x;αt, µt,Σt)× 1(S(x)≥γ), we derive

αt+1
d =

Z
ωt

d,γ(x)g(x; vt)dx,

µt+1
d =

1

αt+1
d

Z
ωt

d,γ(x)xg(x; vt)dx,

Σt+1
d =

1

αt+1
d

Z
ωt

d,γ(x)(x− µt+1
d )(x− µt+1

d )T g(x; vt)dx

whose empirical versions can be directly used as up-
dates in Line 5 of Figure 1. Remark that this new
algorithm is very similar to Population Monte Carlo
schemes for integration (Robert & Casella, 2004).

3.3. Initialization via triangulation
CEM with mixtures fits the shape of the merit func-
tion, but it does not specify how to initialize the mix-
ture components, a crucial step in practice. Recall that
merit functions are zero at every training point and
nonnegative everywhere. Their local maxima are “in
between” the training points, so we should try to ini-
tialize the mixture components into these areas. The
main idea is to triangulate the set of training points,
and look at the modes in the interior of the simplices.
We propose to initialize a component mean at the cen-
ter of mass of every simplex and its covariance to sI,
where s is the distance from the center of mass to the
nearest corner.

We chose to use the Delaunay triangulation1 because it
keeps the simplices as compact as possible (Preparata
& Shamos, 1988), in the sense that the interior of
the circumsphere of any simplex contains no training
point. In the Euclidean plane, this is equivalent to
saying that the minimum angle of Delaunay’s triangles
is maximum over all triangulations: every triangle is
then “as equilateral as possible”. However, efficient
implementations of Delaunay’s triangulation for large
datasets exist only for dimensions up to 6 (Hornus &
Boissonnat, 2008). In small dimensions, we could af-
ford to build an initial training set containing the 2d

corners of a hypercubic search domain C, whereas in
cases where d ≥ 6, we replaced the complete set of cor-
ners by a small number of uniformly sampled corners.

4. Experiments
We present two sets of experiments. Since the mixture
CE method is a novel proposal, we first benchmark it
on three common test functions taken from the opti-
mization community (Table 1). We then compare the

1When d ≥ 3, triangulation means “simplexification”.
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Table 1. The three benchmark functions.

Function Expression Bound
Sphere

∑d
i=1 x2

i 600

Rastrigin 10d +
∑d

i=1

(
x2

i −
10 cos(2πxi)

) 5

Ackley

20 + e−
20 exp

„
−0.2

q
1
d

Pd
i=1 x2

i

«
−

exp
“

1
d

Pd
i=1 cos(2πxi)

”
10

mixture algorithm with Delaunay initialization against
grid search on single steps of EI optimization with dif-
ferent training set sizes in two and ten dimensions.

4.1. Benchmarking the mixture CE algorithm
In this section we experimentally compare EMNA
(Larrañaga & Lozano, 2001) to our mixture CE algo-
rithm, using mixtures of Gaussians. EMNA is a pop-
ular evolutionary algorithm based on the on-line fit of
a Gaussian surrogate model, and our algorithm can
thus be seen as a generalization of EMNA, allowing to
launch several EMNAs in different loci of the search
space and adapt to the fitness landscape while favor-
ing the best components. A mixture version of EMNA
called EMDA (Estimation of Mixture of Distributions
Algorithm) was already mentioned in (Larrañaga &
Lozano, 2001). Alhough our algorithm can be seen as
an instance of EMDA, it is derived differently and it
has the advantage of theoretically justifying the selec-
tion step by a ghost integration goal which is at the
core of the CE method.

We started the optimization with a relatively large
number of mixture components (10 for dimension 10,
20 for dimension 50), and gradually killed them when
their mixing proportions went below a certain thresh-
old (10−5 in our experiments). We used two different
killing strategies. In the first strategy (red curves in
Figure 4.1), we simply continued the procedure with
the remaining components without replacing the killed
ones. In the second strategy (green curves in Fig-
ure 4.1), we added a new component at the old compo-
nent with highest mixing proportion, and assigned the
new one a large initial variance to favor exploration
around the current detected modes. We performed
seven independent runs for each of the three algo-
rithms. We plot the mean fitness obtained at the mean
of the component with the highest mixing proportion
versus the number of function evaluations. Shaded ar-
eas represent one standard deviation.

We chose common benchmark test functions in the
continuous optimization community. We tried to re-
produce the conditions of (Larrañaga & Lozano, 2001),

initializing means uniformly over the initial ranges
[−B,B]d where B is the specified bound in Table 1,
taking N = 2000 points at each iteration and select-
ing the best µ = 1000 points to compute the updates.
We initialized all variances to 1. The three columns of
Figure 4.1 depict our results on the Sphere, Rastrigin,
and Ackley functions, respectively, the latter two be-
ing highly multimodal. The two columns correspond
to dimensions d = 10 and d = 50. All functions are
normalized to present a unique minimum at the origin.

Fitness graphs and spatial and eigenvalue-based di-
agnoses suggest that EMNA – with the degeneracy-
avoiding update – finds the optimal mode after a rea-
sonable number of function evaluations. Our mix-
ture CE method seems to reach more quickly the best
mode with either killing strategy: it automatically se-
lects the best area according to its global model of
the surface by focusing on the best components. We
observed that after this pre-selection phase, the com-
ponent means quickly concentrated on the best mode.
After this step, the behavior was of course very similar
to EMNA.

Let us insist on the fact that we used the same N and µ
for EMNA and the mixture CEM, so updating a mix-
ture costs the same price in function evaluations as
updating a single distribution. That is why we think
our algorithm can be considered as an automatic way
of tuning the initialization of EMNA. Looking back to
our original problem, this is exactly what we need in
the context of EI optimization, as the EI landscape is
possibly multimodal, and the mixture approach will al-
low us to visit the different modes, progressively select
the best one, and finally sample only in the interesting
area. As both killing strategies performed equally, we
will use the first – no replacement – in what follows,
for the sake of simplicity.

4.2. A comparison on single steps: the setup
To verify experimentally whether the mixture method
is more efficient than a grid search on the EI optimiza-
tion problem, we propose the following setup. We con-
sidered the domain C := [−5, 5]d with d = 2, 10, and
we started by uniformly sampling n′ = 5, 20, 40 points
that we take as our training set, along with the (full
or sampled) domain corners. The different values of
n′ represent different epochs in the final algorithm: as
n′ grows, we steer from an exploration phase to more
advanced (exploitation) stage.

For each n′, we optimized the EI criterion using grids
of different resolution. Then we ran our mixture CE
method with an identical budget, meaning that it was
only allowed to perform as many EI function evalu-
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Figure 2. Empirical comparison of EMNA (blue) with two different killing strategies of our mixture CE algorithm (red
and green, see the text for details) on the three benchmark functions (Sphere, Rastrigin and Ackley, from left to right)
in dimensions 10 (top) and 50 (bottom). Thick lines represent the mean fitness values of the components with highest
mixing proportion, while shaded areas represent one σ error bars.

ations as the number of points in the grid. For ex-
ample, a 2D grid with a step size of 0.5 contains
length(−5 : 0.5 : 5)2 = 441 points, so the red point
corresponding to 0.5 in Figure 4.2 is the value obtained
by the mixture algorithm after 441 EI function evalua-
tions. The algorithms were run several times (3 times
for each grid of stepsize r, with a shift uniformly dis-
tributed in [0, r], and 5 times for each budget); the
mean values obtained are plotted in thick lines, with
shaded areas representing one σ error bars.

The grid search becomes a real bottleneck in higher
dimensions. The most popular solution is to replace
the grid search by a Latin hypercube search, where
the budget is a parameter. Figure 4.2 depicts a com-
parison of Latin hypercube search with our mixture
search (in which we replaced the full set of corners by
a subsample of 10), as detailed in Section 3.3.

The underlying fitness functions were the Sphere, Ras-
trigin and Ackley functions, respectively (Table 1).
The covariance function used in the experiments was
an isotropic squared exponential with noise, for which
the hyperparameters where tuned by maximizing the
marginal likelihood of the GP (Rasmussen & Williams,
2006).

4.3. A comparison on single steps: comments
The mixture search outperforms the grid on all test
functions in 2D for small training set size, and shows
outstanding robustness to budget reduction for every
training set size on the most difficult task (Ackley’s
function). On the Sphere and Rastrigin’s functions

on medium and big size training sets, the mixture
method remains competitive with the grid without
outperforming it, while our method performs poorly
on the Sphere function with the biggest training set.

Several empirical diagnoses can be invoked. The
Sphere function is the easiest to interpolate, and very
quickly, the EI landscape consists only of a thin peak
near the best value obtained so far. For Ackley’s func-
tion, even after 40 iterations, the structure of the func-
tion has not been explored enough, the support of the
EI function is thus broader and allows for better es-
timation by the cross-entropy algorithm. Indeed, the
elite sample of selected points is more representative
of the EI function than in a case where almost all the
samples fall in a very low fitness area of C := [−5, 5]d.

In 10D, the comparison is even more favorable to the
mixture method. It can clearly adapt to the land-
scape whereas the Latin hypercube sampling cannot.
The Latin hypercube, and thus a grid, must contain
a lot more points than the tested budgets to hope to
find a decent mode. It is interesting to note that the
only function that behaves differently is the Sphere,
for which Latin hypercube sampling seems more effi-
cient for very low budget. But the implied EI values
are quite high and do not give evidence for a too peaky
EI landscape as in 2D. We think the problem might
be the number of points given to the mixture algo-
rithm: there must be an optimal trade-off between the
number of iterations and the number of points for a
given budget. This is similar to CMA-ES (Hansen,
2006), another efficient search heuristics based on the
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Figure 3. Empirical comparison of grid search (blue) and mixture search (red) on the three benchmark functions (Sphere,
Rastrigin and Ackley, from left to right) in dimension d = 2 with different training set sizes n = 4 + n′ = 9, 24, 44 (from
top to bottom). Thick lines represent the mean of the best EI values obtained, while shaded areas represent one σ error
bars.
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Figure 4. Empirical comparison of grid (blue) and mixture search (red) on the three benchmark functions (Sphere, Rast-
rigin and Ackley, from left to right) in dimension d = 10 with training set sizes n = 10 + n′ = 17, 25, from top to bottom.
The x-axis r value corresponds to a budget of (1 + 10/r)2. Thick lines represent the mean of the best EI values obtained,
while shaded areas represent one σ error bars.
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evolutionary update of a single Gaussian. Notice that
we forced in our tests the mixture search to perform
at least five iterations, whatever the budget was (by
decreasing the number of points per iteration).

5. Conclusion
We have derived a new adaptive search method based
on mixtures to solve the problem of merit maxi-
mization in GP-based global optimization. We gave
a sound theoretical basis through the link with the
CEM, for which general convergence results are still in
progress. Our method has been experimentally shown
to compare favorably with grid search in 2D with no-
ticeable robustness to budget reduction, and to glob-
ally outperform Latin hypercube sampling in 10D. We
believe that the proposed method can be particularly
useful in GP-based global optimization when the merit
function is not analytical so it needs Monte Carlo sam-
pling from the GP.

Although the basic setup of the mixture CE method
is theoretically sound, we had to make several heuris-
tic algorithmic choices when implementing the prac-
tical method (the number of sample points from the
mixture distribution, the number of components, etc.).
The triangulation initialization procedure is definitly a
step that may be improved, especially in higher dimen-
sions where the curse of dimensionality must be ad-
dressed. We could obviously accelerate the method by
not throwing away the CE mixture components from
one EI iteration to another, since it is likely that the
EI surface would change significantly only around the
newly added test point. This would eliminate the need
of a heuristic initialization procedure in each iteration,
however, it would probably make the procedure more
sensitive to the birth/death policy of the mixture com-
ponents.

An interesting direction to explore would be to fur-
ther relate the method to Monte Carlo Markov chain
(MCMC) integration. On the one hand, the opti-
mized surrogate GP covariance could lead to an adap-
tive initialization of the CE mixture components, sim-
ilarly to adaptive Metropolis-Hastings with Gaussian
proposals (Haario et al., 1998). On the other hand,
the birth/death policy could be governed by a prin-
cipled procedure based on Reversible Jump MCMC
techniques (Green, 1995).
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