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ABSTRACT

Aims. A variation of the fundamental constants is expected to affect the thermonuclear rates important for stellar nucleosynthesis.
In particular, because of the very low resonant energies of 8Be and 12C, the triple α process is extremely sensitive to any such
variations.
Methods. Using a microscopic model for these nuclei, we derive the sensitivity of the Hoyle state to the nucleon-nucleon potential,
thereby allowing for a change in the magnitude of the nuclear interaction. We follow the evolution of 15 and 60 M� zero-metallicity
stellar models, up to the end of core helium burning. These stars are assumed to be representative of the first, Population III stars.
Results. We derive limits on the variation in the magnitude of the nuclear interaction and model dependent limits on the variation of
the fine structure constant based on the calculated oxygen and carbon abundances resulting from helium burning. The requirement that
some 12C and 16O be present at the end of the helium burning phase allows for permille limits on the change in the nuclear interaction
and limits of the order of 10−5 on the fine structure constant relevant at a cosmological redshift of z ∼ 15−20.

Key words. atomic processes – nuclear reactions, nucleosynthesis, abundances – stars: chemically peculiar – stars: evolution –
early Universe – cosmological parameters

1. Introduction

The equivalence principle is a cornerstone of metric theories of
gravitation and in particular of general relativity (Will 1993).
This principle, including the universality of free fall, the local
position and Lorentz invariances, postulates that the local laws
of physics and, in particular the values of the dimensionless con-
stants such as the fine structure constant αem ≡ e2/4πε0�c, must
remain fixed and thus be the same at any time and in any place.
It follows that by testing the constancy of fundamental constants
one actually performs a test of General Relativity, which can be
extended on astrophysical and cosmological scales (for a review,
see Uzan 2003, 2009a)

We define a fundamental constant as any free parameter of
the fundamental theories at hand (Weinberg 1983; Duff 2002;
Duff et al. 2002; Barrow 2002; Uzan & Leclercq 2008). These
parameters are contingent quantities that can only be measured
and are assumed constant since (i) in the theoretical framework
in which they appear, there is no equation of motion for them and
they cannot be deduced from other constants; and (ii) if the the-
ories in which they appear have been validated experimentally,
it means that these parameters have indeed been checked to be
constant at the precision of the experiments. By testing for their
constancy we extend our knowledge of the domain of validity of
the theories in which they appear. In that respect, astrophysics
and cosmology allow one to probe the largest time-scales, typi-
cally close to the age of the universe.

One can, however, question the constancy of these dimen-
sionless numbers and the physics that determine their value.
This sends us back to the phenomenological argument by Dirac
(1937), known as the “large number hypothesis”, according to
which the dimensionless ratio Gmemp/�c, or simply G in atomic
units, should decrease as the inverse of the age of the universe,
followed by Jordan (1937), who formulated a field theory in
which both the fine structure constant and the gravitational con-
stant were replaced by dynamical fields. It was soon pointed out
by Fierz (1956) that astronomical observations can set strong
constraints on the variations of these constants. This paved the
way to two complementary directions in the research on the fun-
damental constants.

On the one hand, from a theoretical perspective, many the-
ories involving “varying constants” have been designed. This
is in particular the case of theories involving extra dimen-
sions, such as the Kaluza-Klein mechanism (Kaluza 1921; Klein
1926) and string theory, in which all the constants (including
gauge, Yukawa and gravitational couplings) are dynamical quan-
tities (Wu & Wang 1986; Wetterich 1988; Taylor & Veneziano
1988; Witten 1984), or in theories such as scalar-tensor the-
ories of gravity (Jordan 1949; Brans & Dicke 1961; Damour
& Esposito-Farese 1992) and in many models of quintessence
(Uzan 1999; Damour et al. 2002a,b; Wetterich 2003; Lee et al.
2004; Riazuelo & Uzan 2002) that aim at explaining the accel-
eration of the universe by the dynamics of a scalar field. It is
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impingent on these models to explain why the constants are so
constant today and provide a mechanism for fixing their value
(Damour & Nordtvedt 1993; Damour & Polyakov 1994). In this
respect, testing for the constancy of the fundamental constants is
one of the few windows on these theories.

On the other hand, from an experimental and observa-
tional perspective, the variations of various constants have been
severely constrained. This is the case for the fine structure
constant for which the constraint α̇em/αem = (−1.6 ± 2.3) ×
10−17 yr−1 at z = 0 has been obtained from comparing alu-
minium and mercury single-ion optical clocks (Rosenband et al.
2008). On a longer timescale, it was demonstrated that αem can-
not have varied by more than 10−7 over the last 2 Gyr from the
Oklo phenomenon (Shlyakhter 1976; Damour & Dyson 1996;
Fujii et al. 2000; Olive et al. 2002; Petrov et al. 2006; Flambaum
& Wiringa 2009) and over the last 4.5 Gyr from meteorite dat-
ing (Dicke 1959; Dyson 1972; Fujii & Iwamoto 2003; Olive
et al. 2004). At higher redshift, 0.4 < z < 3.5, there are con-
flicting reports of an observed variation of αem from quasar ab-
sorption systems. Using the many-multiplet method, Webb et al.
(2001) and Murphy et al. (2003, 2007) claim a statistically sig-
nificant variation Δαem/αem = (−0.54 ± 0.12) × 10−5, indicat-
ing a smaller value of αem in the past. More recent observations
taken at VLT/UVES using the many multiplet method have not
been able to duplicate the previous result (Chand et al. 2004;
Srianand et al. 2004; Quast et al. 2004; Srianand et al. 2007).
The use of Fe lines in Quast et al. (2004) on a single absorber
found Δαem/αem = (−0.05 ± 0.17) × 10−5. However, since the
previous result relied on a statistical average of over 100 ab-
sorbers, it is not clear that these two results are in contradic-
tion. In Chand et al. (2004), the use of Mg and Fe lines in a set
of 23 systems yielded the result Δαem/αem = (0.01 ± 0.15) ×
10−5 and therefore represents a more significant disagreement
and can be used to set very stringent limits on the possible varia-
tion of αem. A purely astrophysical explanation for these results
is also possible (Ashenfelter et al. 2004a,b). At larger redshifts,
constraints at the percent level have been obtained from the ob-
servation of the temperature anisotropies of cosmic microwave
background at (z ∼ 103) (e.g. Martins et al. 2004; Stefanescu
2007; Nakashima et al. 2008; Scóccola et al. 2008) and from big
bang nucleosynthesis (BBN) (z ∼ 1010) (e.g. Kolb et al. 1986;
Campbell & Olive 1995; Bergström et al. 1999; Nollett & Lopez
2002; Ichikawa & Kawasaki 2002; Flambaum & Shuryak 2002;
Müller et al. 2004; Ichikawa & Kawasaki 2004; Landau et al.
2006; Coc et al. 2007; Dent et al. 2007). We refer to Uzan (2003,
2004, 2009b) for recent reviews on this topic. For the time being,
there is no constraint on αem for redshifts ranging from 4 to 103

although it has been proposed that 21 cm observations may al-
low one to fill in the range 30 < z < 100 (Khatri & Wandelt
2007).

This article focuses on the effect of the possible variation
of the fundamental constants on the stellar evolution of early
stars, hence possibly providing constraints in a domain of red-
shifts where no such constraint is available. A similar issue was
actually considered by Gamow (1967) (see also the recent work
by Adams 2008) who showed that the evolution of the Sun was
able to exclude the Dirac model of a varying gravitational con-
stant. In this case, non-gravitational physics is kept unchanged
and the evolution of the star is affected only by the modifica-
tion of gravity. Changing the non-gravitational sector has more
drastic implications on stellar physics since the nuclear physics
and thus the cross-sections and reaction rates of all the processes
should be modified.

Rozental’ (1988) argued that the synthesis of complex el-
ements in stars (mainly the possibility of the triple α reaction
(3α) as the origin of the production of 12C) sets constraints on
the values of the fine structure and strong coupling constants.
There have been several studies on the sensitivity of carbon pro-
duction to the underlying nuclear rates (Barrow 1987; Livio et al.
1989; Fairbairn 1999; Csótó et al. 2001; Oberhummer et al.
2000, 2003; Schlattl et al. 2004; Tur et al. 2007). The produc-
tion of 12C in stars requires a triple tuning: (i) the decay life-
time of 8Be, of order 10−16 s, is four orders of magnitude longer
than the time for two α particles to scatter; (ii) an excited state
of the carbon lies just above the energy of 8Be + α and finally
(iii) the energy level of 16O at 7.1197 MeV is non resonant and
below the energy of 12C + α, at 7.1616 MeV, which ensures that
most of the carbon synthesised is not destroyed by the capture
of an α-particle. The existence of this excited state of 12C was
actually predicted by Hoyle (1954) and then observed at the pre-
dicted energy by Dunbar et al. (1953) as well as its decay (Cook
et al. 1957). The variation of any constant which would modify
the energy of this resonance, known as the Hoyle level, would
dramatically affect the production of carbon.

Qualitatively, and perhaps counter-intuitively, if the energy
level of the Hoyle level were increased, 12C would probably be
rapidly processed to 16O since the star would, in fact, need to be
hotter for the 3α reaction to be triggered. On the other hand, if it
is decreased very little oxygen will be produced. From the gen-
eral expression of the reaction rate (see Appendix B for details,
definitions of all the quantities entering this expression, and a
more accurate computation)

λ3α = 33/2N3
α

(
2π�3

MαkBT

)3
Γ

�
exp

[
−Qααα

kBT

]
,

where Qααα ∼ 380 keV is the energy of the resonance, one de-
duces that the sensitivity of the reaction rate to a variation in
Qααα is

s =
d ln λ3α

d ln Qααα
= −Qααα

kBT
∼

(−4.4
T9

)
,

where T9 = T/109 K. This effect was investigated by Csótó
et al. (2001) and Oberhummer et al. (2000, 2003) who related
the variation in Qααα to a variation in the strength of the nucleon-
nucleon (N-N) interaction. Focusing on the C/O ratio in red gi-
ant stars up to thermally pulsing asymptotic giant branch stars
(Oberhummer et al. 2000, 2003) and in low, intermediate and
high mass stars (Schlattl et al. 2004) at solar metallicity, it was
estimated that outside a window of 0.5% and 4% for the values
of the strong and electromagnetic forces respectively, the stellar
production of carbon or oxygen will be reduced by a factor 30
to 1000 (see also Pochet et al. 1991).

Indeed, modifying the energy of the resonance alone is not
realistic since all cross-sections, reaction rates and binding en-
ergies etc. should be affected by the variation of the constants.
One could indeed have started by assuming independent varia-
tions in all these quantities but it is more realistic (and hence
more model-dependent) to try to deduce their variation from a
microscopic model. Our analysis can then be outlined in three
main steps:

1. Relating the nuclear parameters to fundamental constants
such as the Yukawa and gauge couplings, and the Higgs
vacuum expectation value. This is a difficult step because
of the intricate structure of QCD and its role in low energy
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nuclear reactions, as in the case of BBN. The nuclear param-
eters include the set of relevant energy levels (including the
ground states), binding energies of each nucleus and the par-
tial width of each nuclear reaction. This involves a nuclear
physics model of the relevant nuclei (mainly 4He, 8Be, 12C,
and 16O for our study).

2. Relating the reaction rates to the nuclear parameters, which
implies an integration over energy of the cross-sections.

3. Deducing the change in the stellar evolution (lifetime of the
star, abundance of the nuclei, Hertzprung-Russel (HR) dia-
gram, etc.). This involves a stellar model.

Let us summarise the main hypothesis of our work for each of
these steps.

The first step is probably the most difficult. We shall adopt a
phenomenological description of the different nuclei based on a
cluster model in which the wave functions of the 8Be and 12C nu-
clei are approximated by a cluster of respectively two and three α
wave functions. When solving the associated Schrödinger equa-
tion, we will modify the strength of the electromagnetic and nu-
clear N-N interaction potentials respectively by a factor (1 + δα)
and (1 + δNN) where δα and δNN are two small dimensionless
parameters that encode the variation of the fine structure con-
stant and other fundamental couplings. At this stage, the rela-
tion between δNN and the gauge and Yukawa couplings is not
known. This will allow us to obtain the energy levels, including
the binding energy, of 2H, 4He, 8Be, 12C and the first Jπ = 0+ 12C
excited energy level. Note that all of the relevant nuclear states
are assumed to be interacting alpha clusters. In a first approxima-
tion, the variation in the α particle mass cancels out. The partial
widths (and lifetimes) of these states are scaled from their ex-
perimental laboratory values, according to their energy depen-
dence. δNN is used as a free parameter. The dependence of the
deuterium binding energy on δNN then offers us the possibility
of relating this parameter to the gauge and Yukawa couplings if
one matches this prediction to a potential model via the σ and
ω meson masses (Flambaum & Shuryak 2003; Dmitriev et al.
2004; Coc et al. 2007; Damour & Donoghue 2008) or the pion
mass, as suggested by Yoo & Scherrer (2003); Epelbaum et al.
(2003); Beane & Savage (2003).

The second step requires an integration over energy to de-
duce the reaction rates as functions of the temperature and of the
new parameters δα and δNN.

The third step involves stellar models and in particular some
choices about the masses and initial metallicity of the stars. In a
hierarchical scenario of structure formation, Population III stars
(Pop III) were formed a few ×108 years after the big bang, that
is at a redshift of z ∼ 10−15 with zero metallicity. While theo-
retically uncertain, it is usually thought that the first stars were
massive; however, their mass range is presently unknown, (for a
review, see Bromm et al. 2009). Pop III stars are interesting to
the present study because of their redshift of formation (as men-
tioned above) but also because they are sensitive to the 3α re-
action as early as Main Sequence (MS): having no initial 12C to
ignite the CNO cycle, they must contract until the 3α reaction is
triggered and some He is burned. We thus focus on Pop III stars
with masses 15 and 60 M�, assuming no rotation. Our computa-
tion is stopped at the end of core helium burning.

The final step uses these predictions to set constraints on the
fundamental constants, using stellar constraints such the C/O ra-
tio which is in fact observable in very metal poor stars. While
this article can be seen as a theoretical investigation that de-
scribes the expected effect of a variation of the fundamental

constants, it also sheds some interesting light on stellar physics
and its sensitivity to fundamental physics.

The article is logically organised as follows. Section 2 recalls
the basis of the 3α-reaction, Sect. 3 describes the nuclear physics
modelling (first step), Sect. 4 is devoted to stellar implications
and Sect. 5 to the discussion. Technical details are gathered in
the Appendices.

2. Stellar carbon production

The 3α process is one of the most delicate of all reactions in
nuclear astrophysics. It is also one of the most influential since
it bypasses the deep gap between BBN and stellar nucleosyn-
thesis. More specifically, BBN stops at mass 7 (7Li) because of
the lethal instability of parent nuclei with strongly bound 4He
offsprings, namely nuclei with masses 5 and 8. The 3α reac-
tion allows nuclear complexity to proceed up to uranium through
core collapse supernova explosions. Note that the gap between
BBN and stellar nucleosynthesis is filled by non-thermal pro-
cesses (spallative processes induced by galactic cosmic rays)
producing 6,7Li, 9Be and 10,11B. Once these nuclear obstacles
are overcome, the physical conditions within stars allow nuclear
production of elements from carbon and beyond. As such, the
3α reaction is the first step of helium burning which is followed
in massive stars by C, Ne, O, and Si burning and then explosive
nucleosynthesis. The mass of the C-O core and the C/O ratio at
the end of helium burning is important for determining i) the sub-
sequent phases of stellar evolution and nucleosynthesis since it
fixes the mass of the iron core and ii) the final fate of stars (black
holes, neutron stars, or white dwarfs). In particular for the first
stars, the 3α reaction is of great importance since no metals have
yet been formed and the CNO cycle cannot proceed as usual.
Unfortunately, the 3α reaction is a two step sequential process
and the 8Be(α, γ)12C cross section has not been measured di-
rectly in the laboratory. Indeed, the 8Be lifetime (about 10−16 s)
is so short that such a measurement is not currently feasible.

Consequently, the C and O abundances at the end of helium
burning is very sensitive to small variations in the 3α reaction
rate. In this context, any anomalous abundance of C and O in
very metal poor stars could potentially be taken as an indication
of the variation in the nucleon - nucleon interaction and there-
fore in either or both of the electromagnetic and strong coupling
constants.

In our analysis, we focus on the C/O ratio. It is of interest,
therefore, to comment on the destruction of carbon (production
of oxygen) as well as the destruction of oxygen. If the reaction
following the 3α process, namely 12C(α, γ)16O, is sufficiently
fast, then most α particles would be converted to 16O or heavier
nuclei with little 12C left at the end of helium burning. However,
the fact that in general the C/O ratio in the Universe is about 0.4
suggests that the 12C(α, γ)16O reaction is sufficiently slow that
some 12C remains after helium exhaustion. The presence of com-
parable quantities of C and O implies also that the subsequent
16O( α, γ)20Ne reaction is not too fast, otherwise O would be
converted to Ne or heavier nuclei and little O would survive dur-
ing helium burning. We would like to stress the importance of
the nuclear balance between C and O. The observation of C/O
in very metal poor stars may hold the key to any variation in the
chain of processes described above.

In Fig. 1, we show the low energy level schemes of the nu-
clei participating to the 4He(αα, γ)12C reaction: 4He, 8Be and
12C. The 3α process begins when two alpha particles fuse to
produce a 8Be nucleus whose lifetime is only ∼10−16 s but is
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Fig. 1. Level scheme showing the key levels in the 3α process.

sufficiently long so as to allow a second alpha capture into the
second excited level of 12C, at 7.65 MeV above the ground
state (of 12C). In the following, we shall refer to the successive
α captures as first and second steps, that is αα ↔8Be + γ and
8Be +α↔12C∗ →12C + γ. The excited state of 12C corresponds
to an 
 = 0 resonance, as postulated by Hoyle (1954) in order to
increase the cross section during the helium burning phase. This
level decays to the first excited level of 12C at 4.44 MeV through
an E2 (i.e. electric with 
 = 2 multipolarity) radiative transition
as the transition to the ground state (0+1 → 0+2 ) is suppressed
(pair emission only). At temperatures above T9 ≈ 2, which are
not relevant for our analysis and therefore not treated, one should
also consider other possible levels above the α threshold.

We define the following energies:

– ER(8Be) as the energy of the 8Be ground state with respect
to the α + α threshold;

– ER(12C) as the energy of the Hoyle level with respect to the
8Be + α threshold, i.e. ER(12C) ≡ 12C(02

+) + Qα(12C) where
12C(02

+) is the excitation energy and Qα(12C) is the α parti-
cle separation energy;

– Qααα as the energy of the Hoyle level with respect to the
3α threshold so that

Qααα = ER(8Be) + ER(12C); (1)

– Γα(8Be) as the partial width of the beryllium decay
(αα↔8Be + γ);

– Γγ,α(12C) as the partial widths of 8Be +α↔12C∗ →12C + γ.

Their standard values are given in Table 1.
Assuming i) thermal equilibrium between the 4He and

8Be nuclei, so that their abundances are related by the Saha
equation and ii) the sharp resonance approximation for the alpha

Table 1. Nuclear data for the two steps of the 3α-reaction.

Nucleus Jπ ER (keV) Γα (eV) Γγ (meV)
8Be 0+ 91.84 ± 0.04 5.57 ± 0.25 −
12C 0+2 287.6 ± 0.2 8.3 ± 1.0 3.7 ± 0.5

Notes. See text for the definitions of the quantities.

References. (Tilley et al. 2004; Ajzenberg-Selove 1990; Audi et al.
2003).

capture on 8Be, the 4He(αα, γ)12C rate can be expressed
(Nomoto et al. 1985; Iliadis 2007) as:

N2
A〈σv〉ααα = 33/26N2

A

(
2π

MαkBT

)3

�
5ωγ exp

(−Qααα
kBT

)
(2)

with ω = 1 (spin factor), γ = Γγ(12C)Γα(12C)/(Γγ(12C) +
Γα(12C)) ≈ Γγ(12C) for present day values, and Mα is the mass
of the α nucleus.

During helium burning, the only other important reaction is
12C(α, γ)16O (Iliadis 2007) which transforms 12C into 16O. Its
competition with the 3α reaction governs the 12C/16O abundance
ratio at the end of the helium burning phase. Even though, the
precise value of the 12C(α, γ)16O S-factor1 is still a matter of de-
bate as it relies on an extrapolation of experimental data down to
the astrophysical energy (≈300 keV), its energy dependence is
much weaker than that of the 3α reaction. Indeed, as it is domi-
nated by broad resonances, a shift of a few hundred keV in en-
ergy results in a S-factor variation of much less than an order
of magnitude. For this reason, we can safely neglect the effect
of the 12C(α, γ)16O reaction rate variation when compared to the
variation in the 3α rate. Similar considerations apply to the rate
for 16O(α, γ)20Ne.

During hydrogen burning, the pace of the CNO cycle is given
by the slowest reaction, 14N(p,γ)15O. Its S-factor exhibits a well
known resonance at 260 keV which is normally outside of the
Gamow energy window (≈100 keV) but a variation in the N-N
potential could shift its position downward, resulting in a higher
reaction rate and more efficient CNO H-burning.

3. Microscopic determination of the 3α rate

3.1. Description of the cluster model

In order to analyse the sensitivity of the 3α reaction to a varia-
tion in the strength of the electromagnetic and NN interactions,
we use a microscopic model (see Wildermuth & Tang 1977;
Korennov & Descouvemont 2004, and references therein). In
such an approach, the wave function of a nucleus with atomic
number A, spin J, and total parity π is a solution of a Schrödinger
equation with a Hamiltonian given by

H =
A∑
i

T (ri) +
A∑

i> j=1

V(ri j). (3)

T (ri) is the kinetic energy of nucleon i. The nucleon-nucleon
interaction V(ri j) depends only on the set of relative distances
ri j = ri − r j. It can be decomposed as

V(ri j) = VC(ri j) + VN(ri j), (4)

1 The astrophysical S-factor is just the cross section corrected for
the effect of the penetrability of the Coulomb barrier and other trivial
effects.
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where the potential VC(r) arises from the electromagnetic inter-
action and VN(r) from the nuclear interaction. The expression
for VN is detailed in Appendix A. The eigenstatesΨJMπ with en-
ergy EJπ of the system are solutions, as usual, of the Schrödinger
equation associated with the Hamiltonian given in Eq. (3),

HΨJMπ = EJπΨJMπ. (5)

The total wave function ΨJMπ is a function of the A − 1 coordi-
nates ri j.

When A > 4, no exact solutions of Eq. (5) can be found
and approximate solutions have to be constructed. For those
cases, we use a cluster approximation in which ΨJMπ is writ-
ten in terms of α-nucleus wave functions. Because the binding
energy of the α particle is large, this approach has been shown
to be well adapted to cluster states, and in particular to 8Be
and 12C (Kamimura 1981; Suzuki et al. 2008). In the particu-
lar case of these two nuclei, the wave functions are respectively
expressed as

ΨJMπ
8Be = AφαφαgJMπ

2 (ρ)

ΨJMπ
12C = AφαφαφαgJMπ

3 (ρ, R), (6)

where φα is the α wave function, defined in the 0s shell model
with an oscillator parameter b; A is the antisymmetrisation op-
erator between the A nucleons of the system. For two-cluster
systems, the wave function gJMπ

2 (ρ) depends on the relative coor-
dinate ρ between the two α particles. For three-cluster systems,
R is the relative distance between two α particles, and ρ the rel-
ative coordinate between the third α particle and the 8Be centre
of mass. The relative wave functions, g2 and g3, are obtained by
solving the Schrödinger Eq. (5).

One then needs to specify the nucleon-nucleon poten-
tial VN(ri j). We shall use the microscopic interaction model
(Thompson et al. 1977) which contains one linear parameter
(admixture parameter u), whose standard value is u = 1. It can
be slightly modified to reproduce important inputs, such as the
resonance energy of the Hoyle state. The binding energies of
the deuteron (−2.22 MeV) and of the α particle (−24.28 MeV)
do not depend on u. For the deuteron, the Schrödinger equa-
tion is solved exactly. More details about the model are given
in Appendix A.

To take into account the variation of the fundamental con-
stants, we introduce the parameters δα and δNN to characterise
the change of the strength of the electromagnetic and nucleon-
nucleon interaction respectively. This is implemented by modi-
fying the interaction potential (4) so that

V(ri j) = (1 + δα)VC(ri j) + (1 + δNN)VN(ri j). (7)

Such a modification will affect BD and the energy levels of
8Be and 12C simultaneously. Of course, one could have imag-
ined a more complex parameterisation of the variations (e.g., by
varying all quantities in Eq. (A2)), but since we expect to con-
sider only small variations in all quantities, as an approximation,
the system should be linear in the variations and our approach
should be sufficient for extracting the physical effects of any such
small variation.

3.2. Sensitivity of the nuclear parameters

For each set of values (δα, δNN) we solve Eq. (5) with the inter-
action potential (7). We emphasise that the parameter u is de-
termined from the experimental 8Be and 12C(0+2 ) energies (u =
0.954). We assume that δNN varies in the range [−0.015, 0.015].

Fig. 2. Variation in the resonance energies as a function of δNN. The
symbols represent the results of the microscopic calculation while the
lines correspond to the adopted linear relationship between ER and δNN.

First, concerning the deuteron, this analysis implies that its
binding energy scales as

ΔBD/BD = 5.716 × δNN. (8)

Second, concerning 8Be and 12C, we can extract the sensitivity
of ER(8Be) and ER(12C). They scale as

ER(8Be) = (0.09184 − 12.208 × δNN) MeV (9)

and

ER(12C) = (0.2876 − 20.412 × δNN) MeV. (10)

The numerical results for the sensitivities of ER(8Be) and
ER(12C) to δNN as well as the above linear fits are shown in Fig. 2.
The effect of δα on these quantities is negligible. Note that for
δNN >∼ 0.007, ER(8Be) is negative and 8Be would become stable.
Using the bijective relation (8) between BD and δNN we can also
express our results as

ER(8Be) = (0.09184 − 2.136 × ΔBD/BD) MeV, (11)

ER(12C) = (0.2876 − 3.570 × ΔBD/BD) MeV. (12)

It follows that the energy of the Hoyle level with respect to the
3α threshold (and not with respect to 8Be+α threshold) is given
by (see Eq. (1))

Qααα = (0.37945− 5.706 × ΔBD/BD) MeV, (13)

= (0.37945− 32.620 × δNN) MeV. (14)

To estimate the effect of δα in Eq. (7), we can approximate the
Coulomb energy by (3/5)Z(Z − 1)αem�c/Rc where Rc = 1.3A1/3

fm which gives 9 MeV for 12C and 0.9 MeV for 4He. The vari-
ation in Qααα is thus of the order of +6 MeV × δα. The direct
effect of δα is thus of opposite sign but considerably less im-
portant. This is in qualitative agreement with Oberhummer et al.
(2000) and Oberhummer et al. (2001).
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Fig. 3. The ratio between the 3α rate obtained for −0.009 ≤ δNN ≤
+0.006 and the NACRE rate, as a function of temperature. Note that
the effect is less pronounced for negative δNN values because the non-
resonant (tail) contribution that becomes dominant is much less energy
dependent (see Appendix B). Hatched areas: values of Tc where H and
He burning phases take place in a 15 M� model at Z = 0.

It is appropriate at this point to further note that within the
limits of variation in δNN that we are considering here, the ef-
fect on promoting the stability of dineutron or diproton states
is negligible. Working within the context of the same nuclear
model, we estimate that a value of δNN ≥ 0.15 (for the dineutron)
or ≥0.35 (for the diproton), would be required in order to induce
stability for the dineutron or diproton respectively. As such, we
can safely ignore their potential effects on our results.

3.3. Sensitivity of the 3α-reaction rate

The method described above provides a consistent way to eval-
uate the sensitivity of the 3α-reaction rate to a variation of the
constants. This rate has been computed numerically as explained
in Angulo et al. (1999) and as described in Appendix B where
both an analytical approximation valid for sharp resonances and
a numerical integration are performed.

The variation in the partial widths of both reactions have
been computed in Appendix B and are depicted in Fig. A.1.
Together with the results of the previous section and the de-
tails of the Appendix B, we can compute the 3α-reaction rate
as a function of temperature and δNN. This is summarised in
Fig. 3 which compares the rate for different values of δNN to the
NACRE rate (Angulo et al. 1999), which is our reference when
no variation of constants is assumed (i.e. δNN = 0). One can also
refer to Fig. B.1 which compares the full numerical integration
to the analytical estimation (2) which turns out to be excellent in
the range of temperatures of interest. As one can see, for posi-
tive values of δNN, the resonance energies are lower, so that the
3α process is more efficient (see Appendix B).

Let us compare the result of Fig. 3, which gives y ≡
log[λ3α(δNN)/λ3α(0)] to a simple estimate. Using the analytic

expression (2) for the reaction rate, valid only for a sharp res-
onance, y is simply given by

y =
1

ln 10
sδNN (15)

where the sensitivity sδNN ≡ d ln λ3α/d ln δNN is given, from
Eq. (13), by sδNN = δNN × (32.62 MeV)/kT . We conclude that

y = 1.644 ×
(
δNN

10−3

) ( T
108 K

)−1

· (16)

This gives the correct order of magnitude for the curves depicted
in Fig. 3 as well as their scalings with δNN and with temperature,
as long as T9 > 0.1. At lower temperatures differences arise from
the analytical expression for the reaction rate being no longer
accurate (see Appendix B).

The sensitivity to a variation in the intensity of the N-N in-
teraction arises from the fact that dQααα/dδNN ∼ 102Qααα. That
the typical correction to the resonant energies is of the order of
10 MeV (×δNN), compared to the resonant energies themselves
which are around 0.1 MeV, allows one to put relatively strong
constraints on any variation. This is reminiscent of the case of
the resonance producing an excited state of 150Sm of impor-
tance in setting constraints on the variation in couplings using
the Oklo reactor (Shlyakhter 1976; Damour & Dyson 1996; Fujii
et al. 2000; Olive et al. 2002; Petrov et al. 2006). In that case,
the resonant energy is 0.1 eV compared to corrections of about
1 MeV due to changes in the fine structure constant, leading to
limits on Δαem/αem of the order of 10−7.

3.4. Using the Deuterium binding energy as a link
to fundamental constants

The nuclear model described above introduces the parameter
δNN which is itself not directly related to a set of fundamental
constants such as gauge and Yukawa couplings. In order to make
such a connection, we make use of previous analyses relating the
deuterium binding energy BD to fundamental constants.

Using a potential model, the dependence of BD on the nu-
cleon, σ-meson and ω-meson has been estimated (Flambaum
& Shuryak 2002; Dmitriev & Flambaum 2003; Flambaum &
Shuryak 2003; Dmitriev et al. 2004; Coc et al. 2007; Damour &
Donoghue 2008). Furthermore, using the quark matrix elements
for the nucleon, variations in BD can be related to variations in
the light quark masses (particularly the strange quark) and thus
to the corresponding quark Yukawa couplings and Higgs vev, v.
The remaining sensitivity of BD to a dimensionful quantity is
ascribed to the QCD scale Λ. In Coc et al. (2007), it was con-
cluded that

ΔBD

BD
= 18

ΔΛ

Λ
− 17

(
Δv

v
+
Δhs

hs

)
, (17)

Eq. (8) can then link any constraint on δNN to the three funda-
mental constants (hs, v,Λ).

Further relations are possible in the context of unified the-
ories of gauge interactions. From the low energy expression
for ΛQCD,

Λ = μ

(
mc mb mt

μ3

)2/27

exp

(
− 2π

9αs(μ)

)
, (18)

one can determine the relation between the changes in Λ and
the gauge couplings and quark masses (Campbell & Olive 1995;
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Langacker et al. 2002; Dent & Fairbairn 2003; Calmet 2002;
Damour et al. 2002a),

ΔΛ

Λ
= R
Δαem

αem
+

2
27

(
3
Δv

v
+
Δhc

hc
+
Δhb

hb
+
Δht

ht

)
· (19)

Typical values for R are of order 30 in many grand unified the-
ories, but there is considerable model dependence in this coeffi-
cient (Dine et al. 2003).

Furthermore, in theories in which the electroweak scale is
derived by dimensional transmutation, changes in the Yukawa
couplings (particularly the top Yukawa) leads to exponentially
large changes in the Higgs vev. In such theories,

Δv

v
∼ S
Δh
h

(20)

with S ∼ 160, though there is considerable model dependence
in this value as well.

Finally, using the relations in Eqs. (19) and (20), we can
write

ΔBD

BD
= −13(1 + S )

Δh
h
+ 18R

Δαem

αem
· (21)

If in addition, we relate the gauge and Yukawa couplings through
Δh/h = (1/2)Δαem/αem, we can further write,

ΔBD

BD
= −[6.5(1+ S ) − 18R]

Δαem

αem
· (22)

An alternative investigation (Yoo & Scherrer 2003; Epelbaum
et al. 2003; Beane & Savage 2003) suggests a large dependence
of BD on the pion mass mπ,

ΔBD

BD
= −r

Δmπ
mπ

(23)

where r is expected to range between 6 and 10. Again, this al-
lows one to related BD, and thus δNN to (h, v, αem). For an al-
ternative approach to the sensitivity of the nuclear potential to
quark masses see Flambaum & Wiringa (2007).

As these two examples demonstrate, the main problem arises
from the difficulty to determine the role of the QCD parameter
in low energy nuclear physics. They show, however, that such a
link can be drawn, even though it is strongly model-dependent.

4. Stellar implications

The Geneva stellar code was adapted to take into account the re-
action rates computed above. The version of the code we use
is the one described in Ekström et al. (2008). Here, we only
consider models of 15 M� and 60 M� without rotation and as-
sume an initial chemical composition given by X = 0.7514,
Y = 0.2486 and Z = 0. This corresponds to the BBN abundance
of He at the baryon density determined by WMAP (Komatsu
et al. 2009) and at zero metallicity as is expected to be appro-
priate for Population III stars. For 16 values of the free param-
eter δNN in the range −0.009 ≤ δNN ≤ +0.006, we computed a
stellar model which was followed up to the end of core He burn-
ing (CHeB). As we will see, beyond this range in δNN, stellar
nucleosynthesis is unacceptably altered. Note that for some of
the most extreme cases, the set of nuclear reactions now imple-
mented in the code should probably be adapted for a computa-
tion of the advanced evolutionary phases.

Focusing on the limited range in δNN will allow us to study
the impact of a change of the fundamental constants on the pro-
duction of carbon and oxygen in Pop III massive stars. In this

context, we recall that the observations of the most iron poor
stars in the halo offer a wonderful tool to probe the nucleosyn-
thetic impact of the first massive stars in the Universe. Indeed
these halo stars are believed to form from material enriched by
the ejecta of the first stellar generations in the Universe. Their
surface chemical composition (at least on the Main Sequence),
still bear the mark of the chemical composition of the cloud from
which they formed and thus allow us to probe the nucleosyn-
thetic signature of the first stellar generations. Any variation of
the fundamental constants which for instance would prevent the
synthesis of carbon and/or oxygen would be very hard to con-
ciliate with present day observations of the most iron poor stars.
For instance the two most iron poor stars (Christlieb et al. 2004;
Frebel et al. 2008) both show strong overabundances of carbon
and oxygen with respect to iron.

Our results for 15 M� and 60 M� stars are presented in
Sects. 4.1 and 4.2 respectively.

4.1. 15 M� mass star

Figure 4 (left panel) shows the HR diagram for the models with
δNN between −0.009 et +0.006 in increments of 0.001 (from left
to right) and the right panel shows the central temperature at the
moment of the CNO-cycle ignition (lower curve). On the zero-
age main sequence (ZAMS), the standard (δNN = 0) model has
not yet produced enough 12C to be able to rely on the CNO cycle,
so it starts by continuing its initial contraction until the CNO cy-
cle ignites. In this model, CNO ignition occurs when the cen-
tral H mass fraction reaches 0.724, i.e. when less than 3% of
the initial H has been burned. Models with δNN < 0 start the
ZAMS at the same position as in the standard case, but the
lower 3α rate yields a phase of contraction which is longer for
lower δNN (i.e. larger |δNN|): in these models, the less efficient
3α rates need a higher Tc to produce enough 12C for triggering
the CNO cycle. The tracks in the HR diagram follow a strait
up-left-ward line until the ignition of the CNO cycle. Models
with δNN > 0 (i.e. a higher 3α rate) are almost directly sus-
tained by the CNO cycle on the ZAMS: the star can more easily
counteract its own gravity and the initial contraction is stopped
earlier. Their HR tracks are more typical. Once the CNO cycle
has been triggered, the Main Sequence (MS) tracks follow the
usual up-right-ward direction, keeping the initial shift towards
cooler Teff for increasing δNN. There is a difference of about
0.20 dex between the two extreme models. Thus, for increasing
δNN, H burning occurs at lower Tc and ρc (Fig. 4, right), i.e. at
a slower pace. The MS lifetime, τMS, is sensitive to the pace at
which H is burned, so it increases with δNN. The relative differ-
ence between the standard model MS lifetime τMS at δNN = 0
and τMS at δNN = −0.009 (+0.006) amounts to −17% (+19%).

While the differences in the 3α rates do not lead to strong ef-
fects in the evolution characteristics on the MS, the CHeB phase
amplifies the differences between the models. The upper curve
of Fig. 4 (right) shows the central temperature at the beginning
of CHeB. There is a factor of 2.8 in temperature between the
models with δNN = −0.009 and +0.006. To get an idea of what
this difference represents, we can relate these temperatures to
the grid of Pop III models computed by Marigo et al. (2001).
The 15 M� model with δNN = −0.009 starts its CHeB at a higher
temperature than a standard 100 M� of the same stage. In con-
trast, the model with δNN = +0.006 starts its CHeB phase with
a lower temperature than a standard 12 M� star at CNO igni-
tion. Table 2 presents the characteristics of the models for each
value of δNN at the end of CHeB. From these characteristics, we
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Fig. 4. Left panel: HR diagrams for 15 M� models with δNN = 0 (thick black), and ranges from left to right from −0.009 to +0.006 in steps of 0.001
(using same colour code as Fig. 3). The tracks start on the ZAMS and end at the end of CHeB. The position at which the CNO cycle ignites is
naturally marked on the tracks by the change of direction from up-left-wards to up-right-wards. The position at which the CHeB starts is marked
by black squares on the tracks. Right panel: the central temperature at CNO ignition (circles) and at the beginning of CHeB (squares) as a function
of δNN. The labels on the CNO-ignition curve shows the central H mass fraction at that moment. Note that above δNN ∼ +0.001, CNO ignition
occurs on the ZAMS.

Table 2. Characteristics of the 15 M� models with varying δNN at the
end of core He burning.

δNN τMS τCHeB MCO
a X(C)b C/Oc Cased

[Myr] [Myr] [M�]
–0.009 8.224 1.344 3.84 4.4e-10 – III
–0.008 8.285 1.276 3.83 2.9e-10 –
–0.007 8.308 1.200 3.38 8.5e-10 –
–0.006 8.401 1.168 3.61 4.2e-07 –
–0.005 8.480 1.130 3.59 5.9e-06 3.0e-05 II
–0.004 8.672 0.933 3.60 3.2e-05 5.2e-05
–0.003 8.790 0.905 3.60 1.3e-04 1.7e-04
–0.002 9.046 0.892 3.61 5.6e-04 6.4e-04
–0.001 9.196 0.888 3.70 0.013 0.014 I

0 9.640 0.802 3.65 0.355 0.550
+0.001 9.937 0.720 3.61 0.695 2.278
+0.002 10.312 0.684 3.62 0.877 7.112
+0.003 10.677 0.664 3.62 0.958 22.57 IV
+0.004 10.981 0.659 3.62 0.981 52.43
+0.005 11.241 0.660 3.61 0.992 123.9
+0.006 11.447 0.661 3.55 0.996 270.2

Notes. (a) Mass coordinate where the abundance of 4He drops be-
low 10−3; (b) here, X(C) = X(12C), the central value for the carbon mass
fraction; (c) ratio of the carbon to oxygen mass fractions; (d) see text, p. 8
for the description of the different cases.

distinguish four different cases (see the last column of Table 2
and Fig. 5):

I In the standard model and when δNN is very close to 0, 12C is
produced during He burning until the central temperature is
high enough for the 12C(α, γ)16O reaction to become effi-
cient: during the last part of the CHeB phase, the 12C is pro-
cessed into 16O. The star ends its CHeB phase with a core
composed of a mixture of 12C and 16O (see the top left panel
of Fig. 5).

Fig. 5. The evolution of the central mass fraction for the main chemical
species inside the core of the 15 M� models during core He burning.
Top left: standard case (representative of case I, see text), bottom left:
δNN = −0.003 (case II), bottom right: δNN = −0.007 (case III), top right:
δNN = +0.005 (case IV).

II If the 3α rate is weakened (−0.005 ≤ δNN ≤ −0.002), 12C is
produced at a slower pace, and Tc is high from the begin-
ning of the CHeB phase, so the 12C(α, γ)16O reaction be-
comes efficient very early: as soon as some 12C is produced,
it is immediately transformed into 16O. The star ends its
CHeB phase with a core composed mainly of 16O, without
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Fig. 6. The composition of the core at the end of the central He burning
in the 15 M� models as a function of δNN.

any 12C and with an increasing fraction of 24Mg for decreas-
ing δNN (see the bottom left panel of Fig. 5).

III For still weaker 3α rates (δNN ≤ −0.006), the central temper-
ature during CHeB is such that the 16O(α, γ)20Ne(α, γ)24Mg
chain becomes efficient, reducing the final 16O abundance.
The star ends its CHeB phase with a core composed of nearly
pure 24Mg (see the bottom right panel of Fig. 5). Because the
abundances of both carbon and oxygen are completely neg-
ligible, we do not list the irrelevant value of C/O for these
cases.

IV If the 3α rate is strong (δNN ≥ +0.003), 12C is very rapidly
produced, but Tc is so low that the 12C(α, γ)16O reaction can
hardly enter into play: 12C is not transformed into 16O. The
star ends its CHeB phase with a core almost purely com-
posed of 12C (see the top right panel of Fig. 5).

These results are summarised in Fig. 6 which shows the com-
position of the core at the end of the CHeB phase. One can
clearly see the dramatic change in the core composition as a
function of δNN showing a nearly pure Mg core at large and neg-
ative δNN, a dominantly O core at low but negative δNN, and
a nearly pure C core at large and positive δNN. These results
are qualitatively consistent with those found by Schlattl et al.
(2004) for Population I type stars. Note that their cases with
ΔER = ±100 keV correspond roughly to our δNN ≈ ∓0.005.

Table 2 shows also the core size at the end of CHeB. As in
Heger et al. (2000) the CO core mass, MCO, is determined as
the mass coordinate where the mass fraction of 4He drops be-
low 10−3. The mass of the CO core increases with decreas-
ing δNN, the increase amounting to 8% between δNN = +0.006
and −0.009. This effect comes from the higher central temper-
ature and greater compactness at low δNN. The same effect was
found by other authors (Schlattl et al. 2004; Tur et al. 2007).
As shown by these authors, this effect is expected to have an im-
pact on the remnant mass and thus on the strength of the final
explosion.

Table 3. Characteristics of the 60 M� models with varying δNN.

δNN τMS τCHeB MCO X(C) C/O Case
[Myr] [Myr] M�

–0.009 3.061 0.374 22.3175Mg 2.3e-08 – III
–0.008 3.098 0.373 22.1675Mg 2.1e-08 –
–0.007 3.133 0.387 22.4375Mg 2.4e-08 –
–0.006 3.171 0.418 19.7175Mg 4.3e-05 –
–0.005 3.211 0.389 22.6675Mg 1.4e-08 –
–0.004 3.252 0.382 21.90 3.5e-05 2.7e-04 II
–0.003 3.294 0.347 21.76 2.1e-04 4.8e-04
–0.002 3.338 0.328 22.27 9.3e-04 1.4e-03

–0.001 3.379 0.347 18.4075 0.008 0.009 I
0 3.418 0.299 21.37 0.163 0.200

+0.001 3.458 0.267 21.59 0.513 1.062
+0.002 3.495 0.244 21.14 0.761 3.193
+0.003 3.534 0.259 21.14 0.899 9.233

+0.004 3.571 0.265 19.8675 0.952 19.89 IV
+0.005 3.607 0.808 27.22 0.963 32.85
+0.006 3.644 – – – –

Notes. Same quantities as in Table 2. The mark “75” after MCO indicates
that it has been calculated as the mass coordinate where the C+O abun-
dance rises above 0.75. The mark “75Mg” after MCO indicates that it is
the 24Mg abundance which has become higher than 0.75.

4.2. 60 M� mass star

As it is widely believed that Pop III stars are massive, we next
present results for 60 M� models (at Z = 0). The characteristics
of these models for different values of δNN are collected in
Table 3.

Figure 7 shows the HR diagram for our 60 M� models.
During the MS, the shift of the tracks in Teff are slightly re-
duced compared to the 15 M� models: by 0.18 dex. Also, all
the 60 M� models are almost instantly sustained by the CNO cy-
cle on the ZAMS, so the tracks are just shifted regularly, without
affecting the shape of the tracks. During CHeB, however, the
behaviour we described for the 15 M� models with δNN < 0
is more pronounced in the case of the 60 M� models: 12C and
16O are already exhausted at the end of CHeB (case III) for
δNN ≤ −0.005. This can be understood because the 12C(α, γ)16O,
the 16O(α, γ)20Ne and the 20Ne(α, γ)24Mg reaction rates, are a
factor of 10 to 100 higher than the 3α rate when log Tc ≈ 8.48,
i.e. when there is still about 5% of helium in the core. Instead of
a CO core, these models are left with an almost pure 24Mg core.

For the 60 M� models with δNN > 0, there is still a reason-
able abundance of oxygen up to δNN = +0.003. At higher values
of δNN, we are again left with a nearly pure carbon core. For nu-
merical reasons, the model with δNN = +0.006 has proven to be
very difficult to follow at the end of CHeB and was stopped be-
fore complete He exhaustion. The results for the 60 M� models
are summarised in Fig. 8 which shows the composition of the
core at the end of the CHeB phase. As in the case of the 15 M�
models, one can clearly see the strong dependence of the core
composition on δNN.

The effect of varying δNN on the core size is less clear in
the case of the 60 M� models. In some cases, the model under-
goes a CNO boost in the H-burning shell during CHeB, which
reduces the core mass2. The occurrence of the boost does not
follow a clear trend with δNN. It appears on the HR diagram as a

2 We refer the interested reader to Hirschi (2007) or Ekström et al.
(2008) for a more detailed description of this phenomenon.
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Fig. 7. Left panel: HR diagrams for 60 M� models with δNN = 0 (thick black), and ranges from left to right from −0.009 to +0.006 in steps of
0.001 (using the same colour code as in Figs. 3 and 4). The tracks start on the ZAMS, and the position at which the CHeB starts is marked by
black squares on the tracks. Right panel: the central temperature at CNO ignition (circles) and at the beginning of core He burning (squares) as a
function of δNN. In the 60 M� models, CNO-ignition occurs while the hydrogen mass fraction at the centre is still equal to its initial value (0.75).

Fig. 8. The composition of the core at the end of the central He burning
in the 60 M� models as a function of δNN.

sudden drop in luminosity and effective temperature in the red-
wards evolution during CHeB (see Fig. 4, left).

4.3. Limits on the variation of the fundamental constants

All of the models considered were followed without any nu-
merical or evolutionary problem through the MS. The differ-
ences in lifetimes and tracks during this phase are not con-
straining enough to allow the exclusion of some range in δNN
between −0.009 and +0.006. However, the CHeB phase ampli-
fies these differences.

At the end of CHeB, the models with δNN ≤ −0.005 for
the 15 M� model and δNN ≤ −0.004 for the 60 M� model
have virtually no 12C in the core, which means that the “stan-
dard” succession of stellar evolution burning phases will not be

respected (see the bottom right panel of Fig. 5). These mod-
els are also devoid of 16O or 20Ne as well, leaving us with a
nearly pure 24Mg core. Note that at this phase, the central tem-
perature is close to that which would allow the 24Mg(γ, α)20Ne
or 24Mg(α, γ)28Si reactions to take place. Therefore, there is a
possibility that the nucleosynthetic chain could go on despite its
strange evolution. However, the Geneva code is developed to fol-
low the standard phases of stellar evolution, making it necessary
to be modified before being able to follow further the evolution
in these odd cases.

The models with δNN between −0.002 and −0.005 (be-
tween −0.002 and −0.004 for the 60 M� model) end the
CHeB phase with a central abundance of 12C between 10−4 and
10−7, which means that the central C-burning phase will be ex-
tremely short. The 20Ne abundance at that stage is comprised be-
tween 0.04 and 0.10, so there will be a short phase of neon pho-
todisintegration. Moreover, the 16O abundance ranges between
0.94 and 0.44 so the oxygen fusion phase will be almost normal.
While the succession of the burning phases seems preserved, one
can however suppose that these models will present very differ-
ent yields than the standard case with δNN = 0. This point could
be the subject of a future study. It is interesting to note here that
since the C-burning phase is very short (because of the very low
12C abundance at the end of CHeB), the model will not have
much time to lose entropy by neutrinos losses. We can suppose
that the iron core will be hotter and bigger, so the remnant could
be a black hole instead of a neutron star (Woosley & Weaver
1986; Schlattl et al. 2004).

The models with δNN > 0 end the CHeB phase with larger
and larger 12C abundances for increasing δNN. The carbon burn-
ing phase will thus be much longer for these models which
will lose a lot of energy through neutrino emission. A more
suspicious feature is that the 16O production becomes negligi-
ble or even null for δNN ≥ +0.003 (see the top right panel
of Fig. 5) (≥+0.004 for the 60 M� model). Normally the bulk
of the 16O production occurs during CHeB: during C burning,
the 16O abundance is reduced by 16O(α, γ)20Ne, and during
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Ne burning, only a small fraction is produced by the photo-
disintegration reaction 20Ne(γ, α)16O. It would thus mean that
such stars do not produce any 16O. This would pose difficulties
for explaining the high O overabundances observed in extremely
iron-poor stars found in the Galactic halo (see Frebel et al. 2008).

From the preceding discussion, if we exclude a core com-
posed exclusively of 24Mg (case III), we must reject δNN <
−0.005 for the 15 M� model. If we consider that a core only
composed of 12C is not acceptable either (case IV), we must re-
ject δNN > +0.002. If we consider that a reasonable value of
C/O must lay close to unity, we must also reject case II and the
allowed range for δNN is further restricted to −0.001 to +0.002.
Similarly for the 60 M� model, excluding cases III and IV leads
to a limit −0.004 ≤ δNN ≤ +0.003. The more stringent condition
on C/O ∼ 1 leads to −0.001 ≤ δNN ≤ +0.003.

5. Discussion

As we have seen in the previous sections, the extreme sensitiv-
ity of the 3α process to the resonant energy of the Hoyle state
can lead to very different histories for massive Population III
stars. In particular, we have shown that very slight variations in
the nucleon-nucleon potential (of order a few ×10−3) can lead to
very different core compositions at the end of CHeB. We iden-
tified two cases (III and IV) corresponding to nearly pure 24Mg
or pure 12C cores. These cases were present in both the 15 and
60 M� models studied. Below δNN = −0.005, the stars end the
CHeB phase with a core that is almost completely deprived of
carbon, oxygen and neon. This comes from the 12C production
by the 3α reaction becoming extremely weak compared to the
12C(α, γ)16O reaction (for which we have used the rates of Kunz
et al. 2002). As soon as a little amount of 12C is produced, it is
transformed into 16O, which in turn is transformed into 20Ne and
then 24Mg because of the high temperature and density at which
He burning occurs in these models. Above δNN = +0.002, the
models end the CHeB phase devoid of 16O.

We have checked the limiting values for δNN variation with
stellar models in two different mass domains. For the 15 M�
models, the lower limit is slightly larger than for the 60 M� mod-
els. This is the result of the fusion phases occurring at higher Tc
in the more massive stars, at conditions where the 12C(α, γ)16O,
16O(α, γ)20Ne and 20Ne(α, γ)24Mg reaction rates are largely
dominant over the 3α rate. A weak 3α reaction is a bigger handi-
cap in the high mass domain. In contrast, the upper limit is larger
for the 60 M� models, because the 3α reaction rate is a little less
extreme at higher Tc.

Excluding these cases allows us to set a relatively conserva-
tive limit on δNN,

− 0.004 < δNN < +0.002. (24)

A more aggressive limit would also exclude case II in which
CHeB ends with a 16O and 20Ne core with little or no 12C. In this
case, one could argue

− 0.001 < δNN < +0.002. (25)

For the remainder of the discussion, we will restrict our attention
to the weak limit (24), as our conclusions can be easily scaled to
the stronger limit.

The limit in Eq. (24) stems directly from the variation in
Qααα. Excluding regions III and IV amount to limiting Qααα to a
range 0.3142−0.5100 MeV, or

− 0.17 <
ΔQααα
Qααα

< 0.34. (26)

As discussed in Sect. 3.2, a variation in δNN will result in a
variation in the deuterium binding energy. Using Eq. (8), the
bound (24) thus becomes

− 0.023 <
ΔBD

BD
< +0.011. (27)

In principle, one would like to next convert the limit on δNN
or BD into a limit on the fundamental constants. Unfortunately,
as we have argued earlier, i) the direct limit from the 3α process
based on δα is far weaker than that coming from δNN and ii) in the
absence of some guiding theory of unification, we can not relate
the variation in BD directly to a variation of αem. However, as dis-
cussed above and in more detail in Coc et al. (2007), we can use
gauge coupling unification to relate a variation in BD to a varia-
tion of αem throughΛ. Ignoring first any variation in the Yukawa
couplings and Higgs vev, thus using ΔBD/BD = 18RΔαem/αem,
with R = 36 as is expected in the simplest grand unified theories,
we obtain

− 3.5 × 10−5 <
Δαem

αem
< +1.8 × 10−5. (28)

If we further assume the relations between gauge and Yukawa
couplings and use Eq. (22), the limit, though more speculative,
is actually weakened by a factor of about 2 because of the partial
cancellation between the gauge and Yukawa contributions to BD.

The limits on the variation of the fine structure constant
derived above corresponds to a variation of αem between the
present time and a period around a redshift z ∼ 15−20 where
the Population III stars would have been present. These values
are compatible with the similar limits (also assuming gauge cou-
pling unification) on the variation of αem at a redshift of 1010

from BBN predictions. They are larger by a factor of 10 than
the values found in the claimed detections (Webb et al. 2001;
Murphy et al. 2003, 2007) or a factor of 10 weaker than the limits
from the non-detection (Chand et al. 2004; Srianand et al. 2004;
Quast et al. 2004; Srianand et al. 2007) of a variation of αem from
quasar absorption systems at redshifts z ≤ 3.5.

We remind the reader, that in the present work, the vari-
ation in δNN is only taken into account for the 3α reaction.
If the other rates are also affected, the limits found here would
potentially have to be revised, because they have been deter-
mined by anomalies in the evolution that come from a com-
petition between the efficiency of the various rates. However,
being a resonant reaction, the 3α reaction is expected to be
the most sensitive. Following Oberhummer et al. (2000), the
16O(α, γ)20Ne reaction is not expected to be sensitive to vari-
ations of αem, while the 12C(α, γ)16O could be more affected
by such variations because of subthresholds in the 16O nucleus.
According to the same authors, this last reaction is expected to
be strengthened by a weakening of the nucleon-nucleon interac-
tion. In this case, the effects described for cases II and III would
be more dramatic than the ones presented here, and so the limits
might be tighter.

We conclude by asking: is it reasonable to exclude values of
δNN using nucleosynthetic constraints from stellar models? The
criteria that we applied assumes the possibility for a “normal”
succession of burning phases (H→ He→ C→ Ne→ O→ Si).
Although we have not done so here, a modified code including
“non standard” fusion phases, would allow us to follow these
models further. It is expected that the resulting yields would
present large anomalies. Given the current state of abundance
determination in extremely metal poor stars, it is highly improb-
able that the first stars would not produce fair amounts of 12C
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and 16O. The conservative case seem thus to offer a reasonable
limit on the variations of the fundamental constants.

Appendix A: Details on the microscopic model

Here, we provide some technical details about the microscopic
calculation used to determine the 8Be and 12C binding ener-
gies. This calculation is based on the description of the nucleon-
nucleon interaction by the Minnesota (MN) force (Thompson
et al. 1977), adapted to low-mass systems.

The nuclear part of the interaction potential VN between nu-
cleons i and j is given by

VNi j(r) =

[
VR(r) +

1
2

(1 + Pσi j)Vt(r) +
1
2

(1 − Pσi j)Vs(r)

]

×
[
1
2

u +
1
2

(2 − u)Pr
i j

]
, (A1)

where r = |ri−r j| and Pσi j and Pr
i j are the spin and space exchange

operators, respectively. The radial potentials VR(r),Vs(r),Vt(r)
are expressed as Gaussians and have been optimised to repro-
duce various properties of the nucleon-nucleon system, such as
the deuteron binding energy at δNN = 0, or the low-energy phase
shifts. They have been fit as (Thompson et al. 1977)

VR(r) = 200 exp(−1.487r2)

Vs(r) = −91.85 exp(−0.465r2)

Vt(r) = −178 exp(−0.639r2) (A2)

where energies are expressed in MeV and lengths in fm.
In Eq. (A1), the exchange-admixture parameter u takes stan-

dard value u = 1, but can be slightly modified to reproduce im-
portant properties of the A-nucleon system (for example, the en-
ergy of a resonance). This does not affect the physical properties
of the interaction. The MN force is an effective interaction,
adapted to cluster models. It is not aimed at perfectly repro-
ducing all nucleon-nucleon properties, as realistic forces used
in ab initio models (Navrátil et al. 2009), where the cluster ap-
proximation is not employed. The potentials are expressed as
Gaussian factors, well adapted to cluster models, where the nu-
cleon orbitals are also Gaussians (Wildermuth & Tang 1977).

The wave functions (6) are written in the Resonating Group
Method (RGM) which clearly shows the factorisation of the sys-
tem wave function in terms of individual cluster wave func-
tions. In practice the radial wave functions are expanded over
Gaussians, which provides the Generator Coordinate Method
(GCM), fully equivalent to the RGM (Wildermuth & Tang 1977)
but better adapted to numerical calculations. Some details are
given here for the simpler two cluster case. The radial func-
tion gJMπ

2 (ρ) is written as a sum over Gaussian functions centred
at different values of the Generator Coordinate Rn. This allows
us to write the 8Be wave function (6) as

ΨJMπ
8Be =

∑
n

f Jπ(Rn)ΦJMπ(Rn), (A3)

where ΦJMπ(Rn) is a projected Slater determinant.
This development corresponds to a standard expansion on

a variational basis. The binding energies EJπ of the system are
obtained by diagonalisation of
∑

n

[
HJπ(Rn,Rn′) − EJπNJπ(Rn,Rn′)

]
f Jπ(Rn) = 0, (A4)

Fig. A.1. The partial widths of 8Be and 12C as a function of δNN.

where the overlap and hamiltonian kernels are defined as

NJπ(Rn,Rn′) = 〈ΦJπ(Rn)|ΦJπ(Rn′)〉,
HJπ(Rn,Rn′) = 〈ΦJπ(Rn)|H|ΦJπ(Rn′)〉. (A5)

The Hamiltonian H is given by Eq. (3). Standard techniques ex-
ist for the evaluation of these many-body matrix elements (Brink
1966). The choice of the nucleon-nucleon interaction directly af-
fects the calculation of the hamiltonian kernel, and therefore of
the eigenenergy EJπ.

For three-body wave function, the theoretical developments
are identical, but the presentation is complicated by the presence
of two relative coordinates (ρ,R). The problem is addressed by
using the hyperspherical formalism (Korennov & Descouvemont
2004).

Appendix B: Reaction rates and numerical
integration

To take into account the (energy dependent) finite widths of the
two resonances involved in this two step process, one has to per-
form numerical integrations as was done in NACRE following
Nomoto et al. (1985) and Langanke et al. (1986). Here, the con-
dition of thermal equilibrium is relaxed, but it is assumed that
the time scale for alpha capture on 8Be is negligible compared
to its lifetime against alpha decay. The rate is calculated as in
NACRE for the resonance of interest:

N2
A〈σv〉ααα = 3NA

(
8π�
μ2
αα

) (
μαα

2πkBT

)3/2

×
∫ ∞

0

σαα(E)
Γα(E)

exp(−E/kBT )NA〈σv〉α8Be E dE, (B1)

where μαα is the reduced mass of the α + α system, and E is the
energy with respect to the α + α threshold. The elastic cross sec-
tion of α + α scattering is given by a Breit-Wigner expression:

σαα(E) =
π

k2
ω

Γ2
α(E)

(E − ER))2 + Γ2
α(E)/4

, (B2)
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where k is the wave number, ER≡ER(8Be), Γα≡Γα(8Be), ω is a
statistical factor (here equal to 2 to account for identical particles
with spin zero).

The NA〈σv〉α8Be rate assumes that 8Be has been formed at an
energy E different from E8Be (Langanke et al. 1986). This rate is
given by

NA〈σv〉α8Be = NA
8π

μ2
α8Be

(
μα8Be

2πkBT

)3/2

×
∫ ∞

0
σα8Be(E′; E) exp(−E′/kBT ) E′ dE′, (B3)

where μα8Be is the reduced mass of the α + 8Be system, and E′
is the energy with respect to its threshold (which varies with the
formation energy E). As in Nomoto et al. (1985); Langanke et al.
(1986), we parametrise σα8Be(E′; E) as

σα8Be(E′; E) =
π�2

2μα8BeE′

× Γα(E′)Γγ(E′ + E)

[E′ − ER(12C) + E − ER(8Be)]2 + 1
4Γ(E

′; E)2
, (B4)

where the partial widths are those of the Hoyle state and in par-
ticular, Γ = Γα(12C) + Γγ(12C). The various integrals are calcu-
lated numerically. The experimental widths at resonance energy
can be found in Table 1.

However, one must include i) the energy dependence of those
widths, away from the resonance energy and ii) the variation in
the widths at the resonant energy when this energy changes be-
cause of a change in the nuclear interaction.

The energy dependence of the particle widths Γα(E) is
given by:

Γα(E) = Γα(ER)
P
(E,Rc)
P
(ER,Rc)

, (B5)

where P
 is the penetration factor associated with the relative
angular momentum 
 (0 here) and the channel radius, Rc

3. The
penetration factor is related to the Coulomb functions by:

P
(E,R) =
ρ

F2


(η, ρ) +G2



(η, ρ)

(B6)

where ρ = kR and

η =
Z1Z2αem

v/c
(B7)

is the Sommerfeld parameter.
For radiative capture reactions, the energy dependence of the

gamma width Γγ(E) is given by:

Γγ(E)∝αemE2λ+1 (B8)

where λ is the multipolarity (here 2 for E2) of the electromag-
netic transition.

The relevant widths as a function of δNN are given in
Fig. A.1. They are directly linked to the resulting change of
ER(8Be) and ER(12C).

The radiative width, Γγ(12C) with its E5 energy dependence
shows little evolution. (The energy of the final state at 4.44 MeV
is assumed to be constant). In contrast, the 8Be alpha width un-
dergoes large variations due to the effect of Coulomb barrier

3 We choose Rc = 1.3 (A1/3
1 + A1/3

2 ) fm, for nuclei A1 and A2.

Fig. B.1. The 4He(αα, γ)12C reaction rate as a function of temperature
for different values of δNN. Solid (dashed) lines represent the result
of the numerical calculation (analytical approximation) with δNN = 0
(black), δNN > 0 (red) and δNN < 0 (blue). (For the negative value
of δNN, the larger difference is caused by the failure of the numerical
integration and the analytical solution is preferred (see text).)

penetrability. Note that compared to these variations, those in-
duced by a change of αem in the Coulomb barrier penetrability
(Eqs. (B7), (B6)) and Γγ are considerable smaller.

Numerical integration is necessary at low temperature as
the reaction takes place through the low energy wing of reso-
nances. It takes even more relative importance, at a given tem-
perature, when the resonance energy is shifted upwards. On
the other hand, when δNN increases, the resonance energies de-
crease, and the Γα(8Be) becomes so small that the numerical in-
tegration becomes useless and soon gives erroneous results be-
cause of the finite numerical resolution. For this reason, when
Γα(8Be) < 10−8 MeV, we use instead the Saha equation for the
first step and the sharp resonance approximation for the second
step, i.e. Eq. (2) when Γα(12C) < 10−8 MeV. (Note that for high
values of δNN, the condition Γγ � Γα does not hold anymore and
γ � Γγ.)

At temperatures in excess of T9 � 2, one must include the
contribution of the higher 12C levels like the one observed by
Fynbo et al. (2005). As this is not of importance for this study,
we just added the contribution given by the last terms in the
NACRE analytical approximation and neglected any induced
variation.

Figure B.1 shows the numerically integrated 4He(αα, γ)12C
reaction rates for different values of δNN compared with the an-
alytical approximation (Eq. (2)). The difference is important at
low temperature and small δNN values but becomes negligible
for δNN >∼ 0. At the highest values of δNN we consider, the nu-
merical calculation uses the Saha equation for the first step but
the total widths of the 12C level becomes also too small to be
accurately numerically calculated: we use Eq. (2) instead.

The 8Be lifetime w.r.t. alpha decay, (h/Γα(8Be)), exhibits
the opposite behaviour indicating that for large values of δNN
it becomes stable. Before that, its lifetime is so long that the
4He(αα, γ)12C reaction should be considered as a real two step
process with 8Be included in the network as the assumption that
alpha decay is much faster than alpha capture may not hold
anymore. Fortunately, our network calculations shows that this
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situation is encountered only for δNN >∼ 0.006 for the tempera-
tures and densities considered in our stellar evolution studies.
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