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It has been pointed out that the slope of the nuclear symmetry energy at saturation density (L)
is a crucial quantity to determine the mass and width of neutron-star crusts. This letter intends
to clarify the relation between L and the core-crust transition. We confirm that the transition
density is soundly correlated with L despite differences in the nuclear models, and we propose a
clear understanding of this correlation based on a generalized liquid drop model (GLDM). Using
a large number of nuclear models, we evaluate the dispersion affecting the correlation between the
transition pressure Pt and L. Furthermore, from a detailed analysis it is shown that this correlation
is weak due to a cancellation between different terms. We point out that the correlation between
the isovector coefficients Ksym and L plays a crucial role in this discussion.

Stimulated by the development of exotic nuclear
physics, the efforts to determine the nuclear equation of
state (EOS) have focused in the last few years on the
density dependence of the symmetry energy S(ρ) [1]. In
particular, the symmetry-energy slope at saturation den-
sity, represented by the quantity L, has raised a great
deal of interest [1–5]: while the different nuclear models
widely disagree on the value of this basic quantity, in-
creasing experimental data [6–8] are expected to bring
more and more stringent constraints, leading to a radi-
cal progress in our knowledge of the EOS of neutron-rich
matter. This impacts strongly on the physics of compact
stars. In this letter, we will discuss the link between L
and the transition from the liquid core to the solid crust
of a neutron star. It has been claimed that a precise
determination of L would give a tight indication of the
density ρt and pressure Pt at the transition point [1],
and consequently the mass and extension of the crust
which play a crucial role in the interpretation of pulsar
observations [9]. However, the role of L in the determi-
nation of the core-crust transition needs to be checked
against model dependence and clarified, as mentioned in
Ref. [10]. In the present work, we use a variety of nuclear
models to address this issue. We verify and explain the
strong correlation between L and ρt. However, we show
that when independent models are considered there is no
real correlation between L and the pressure at the tran-
sition point. This behavior results from a competition
between opposite effects which destroy the correlation.
This serious limitation has to be taken into considera-
tion when drawing astrophysical consequences from the
experimental determination of L.

Catalyzed matter in compact stars satisfies the β-
equilibrium condition which favors very neutron-rich
matter: the proton fraction is reduced to a few percent
in the region of the core-crust transition. Their structure
crucially depends on the symmetry energy, for a wide
density range. The density dependence of the symme-
try energy , S(ρ), is deduced from the energy density
functional obtained in the framework of mean field nu-
clear models. Besides, it can be expressed as a develop-

ment around the saturation density ρ0, whose coefficients
correspond to the isovector parameters of a Generalized
Liquid-Drop Model (GLDM):

S(ρ) =
∑

n≥0

cIV,n

xn

n!
, (1)

where x = (ρ − ρ0)/(3ρ0). Here and in the sequel,
the index ”IV” (”IS”) attributed to the coefficients of
the GLDM stands for ”isovector” (”isoscalar”). The
first coefficients have received traditional denominations:
cIV,0 = J ≡ S(ρ0), cIV,1 = L, cIV,2 = Ksym, etc. In the
framework of the parabolic approximation, the energy
per particle for asymmetric matter is given by E(ρ, y) =
E(ρ, 0) + S(ρ)y2, where y = (ρn − ρp)/ρ. For conve-
nience, we will use in the following either the isospin-
asymmetry y or the proton fraction Yp = (1 − y)/2.
This approximation allows to emphasize the role of the
GLDM coefficients, so we will use it to analyze our re-
sults, although the calculations have been performed us-
ing the complete density functional of each model. In
the parabolic-GLDM framework, the energy per particle
reads:

E(ρ, y) =
∑

n≥0

(

cIS,n + cIV,ny
2
) xn

n!
. (2)

In the isoscalar channel, we have cIS,0 = E0 ≡ E(ρ0),
cIS,1 = 0, cIS,2 = K∞, etc.
We will show results obtained from a set of non-

relativistic and relativistic effective interactions, together
with results from a microscopic Brueckner-Hartree-Fock
(BHF) calculation using the interaction Av18 [11] with
Urbana three-body forces [12]. As non-relativistic effec-
tive models, we take Skyrme type interactions from dif-
ferent groups (SV, SGII, RATP, SkMP, Gs, Rs, SkI2,
SkI3, SkI4, SkI5, SkI6, Sly10, Sly230a, Sly230b, Sly4,
SkO, NRAPR, LNS, BSk14, BSk16, BSk17); the respec-
tive references can be found in [13–15]. Besides, we con-
sider two different types of relativistic effective nuclear
models: (i) non-linear Walecka models with constant
couplings (NL3 [17], TM1 [18], GM1, GM3 [19], FSU,



2

NLωρ [20], NLρδ [21]); (ii) hadronic models with den-
sity dependent coupling constants (TW [22], DD-ME1,
DD-ME2 [23], DDHδ [24]). Let us remark that the EOS
features present more variability within the relativistic
models than within the Skyrme ones [13].

The inner crust of a neutron star is usually modelized
as a lattice of very neutron-rich nuclei, immersed in a
gas of electrons and dripped neutrons. As the density in-
creases, the difference between the nuclei and surround-
ing neutron gas decreases, until the stellar matter be-
comes homogeneous: this is the transition to the liquid
core. In order to determine the transition point, one
should in principle compare the free energy of homoge-
neous matter to that of any inhomogeneous configuration
[25]. However, it has been verified that the transition
density obtained in this way can be very well approxi-
mated by the entrance into the dynamic spinodal region,
under the constraint of β equilibrium [10]. The spinodal
is the density region where the homogeneous matter is
unstable against density fluctuations, due to the nuclear
liquid-gas phase transition affecting the bulk EOS. In the
case of finite size density fluctuations, the Coulomb and
surface terms reduce the instability: the dynamic spin-
odal region is then smaller than the thermodynamic one
obtained when only the bulk term is considered. The
difference between the two regions is in principle model
dependent, via the nuclear surface term. However, we
found that this effect is too small to play a role in the
present discussion. Thus, for simplicity, we will focus on
the transition density, ρt, proton fraction Yp,t and pres-
sure Pt taken at the crossing point between the β equilib-
rium EOS of stellar matter and the thermodynamic spin-
odal, keeping in mind that they represent shifted values
of the actual density, proton fraction and pressure at the
core-crust transition.

It has been noticed in previous works that the tran-
sition density decreases as L increases [1, 5]; this cor-
relation has been verified with many different models,
see Fig. 1a). We have found that this behavior can
be understood through the energy-density curvature of
pure neutron matter (NM), denoted CNM. More specif-
ically, we have considered the curvature CNM taken at
the density of the upper spinodal border in symmetric
matter, ρs. This quantity, denoted CNM,s = CNM(ρs) =
d2(ρENM)

dρ2 (ρs), where ENM is the energy per particle in

neutron matter, is indeed correlated with the transition
density ρt, as shown in Fig. 2a). This result allows a qual-
itative interpretation. The spinodal region corresponds
to the region of (ρ, Yp) where the energy density has a
negative curvature. For very asymmetric matter such
as β-equilibrium matter, CNM,s gives a good indication
to localize the position of the spinodal border: the larger
CNM,s is, the farther should be the spinodal contour from
the point (ρ = ρs, Yp = 0); and this corresponds to a
lower ρt. Besides, CNM,s is strongly correlated with L:
see Fig 2b). This relation appears clearly when CNM,s

is expressed in the parabolic approximation, in terms of
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FIG. 1: (Color online) Correlation between L and a) the tran-
sition density ρt, b) the transition proton fraction Yp,t, c)
Ksym. The full (empty) symbols are for Skyrme forces (rela-
tivistic models) and the asterisk for BHF.

the isovector coefficients cIV,n:

CNM,s =
2

3ρ0
L+

1

3ρ0

∑

n≥2

cIV,n

xn−2
s

(n− 2)!

[

n+ 1

n− 1
xs +

1

3

]

.

Note that the isoscalar terms of the expansion are exactly
zero at ρ = ρs by definition of ρs. Since x is negative, the
influence of the higher order terms n ≥ 2 is weakened.
Furthermore, for all the models considered, we have ρs ≃
(2/3)ρ0: this makes the contribution of the term n = 2
in Eq. (3) close to zero. As a result, CNM,s depends very
weakly on Ksym, and is essentially determined by L. In
summary, the correlation observed between L and ρt can
be understood as the consequence of the link existing
between L, CNM,s and ρt.

Defining the transition point as the crossing between
the spinodal border and the β equilibrium EOS of stellar
matter, we also have to take into account the model-
dependence of Yp,t, the proton fraction at the transition,
which is expected to decrease with increasing L. Indeed,
a smaller symmetry energy corresponds to a lower pro-
ton fraction. At subsaturation densities, assuming a con-
sensual value of J (about 32 MeV), a larger L means a
smaller symmetry energy and, consequently, a smaller
Ypt, as is shown in Fig. 1b). The dispersion of data in
this figure reflects the model dependence of J . The cor-
relation between Ksym and L is also shown in Fig. 1c)
and will be useful for the following analysis.

At saturation density the pressure in neutron matter is
strongly correlated with L [2, 3]. Indeed, in the parabolic-
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FIG. 2: (Color online) Correlations of the energy-density cur-
vature of neutron matter CNM,s with a) the transition density
ρt, and b) the symmetry energy slope L. The full (empty)
symbols are for Skyrme forces (relativistic models) and the
asterisk for BHF.
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FIG. 3: (Color online) The pressure at the transition point
versus L. The full (empty) symbols are for Skyrme forces
(relativistic models) and the asterisk for BHF.

GLDM, the pressure reads

P (ρ, y) =
ρ2

3ρ0



Ly2 +
∑

n≥2

(

cIS,n + cIV,ny
2
) xn−1

(n− 1)!



 .

(3)
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FIG. 4: (Color online) Expected variation of Pt with L, com-
paring the different contributions: variation due to the ex-
plicit term (diamonds), implicit-1 (down-triangles), implicit-2
(up-triangles), and a first order approximation of implicit-3
(squares). The resulting total pressure variation is very close
to zero (circles). The full (empty) symbols are for Skyrme
forces (relativistic models).

From this expression we conclude that the pressure of
neutron matter, y = 1, at saturation density, x = 0,
is simply PNM(ρ0) = Lρ0/3. The situation is however
different for the transition pressure Pt, x < 0, where
the implicit dependence of the point (ρt, yt) and of the
coefficients cIV,n on L may affect the correlation pattern
between the pressure and L. In Fig. 3 we represent Pt

versus L calculated consistently for each of the models
considered.

If we consider only the sub-group formed by the
Skyrme models, it could be noticed a very slight decreas-
ing correlation of Pt for L >60 MeV. However, consid-
ering all the models in Fig. 3, there is a large dispersion
for the values of Pt and we conclude that the transition
pressure is almost independent of the value of L.

Let us now analyze the result presented in Fig. 3 us-
ing the GLDM for the pressure as shown in Eq. (3).
The variation of the pressure (3) can be decomposed
into different contributions: the one induced by the
explicit dependence of the pressure with respect to L,
δPt

δL
|e = ρ2y2/(3ρ0) (hereafter called explicit), and three

terms coming from its implicit dependence: δρt

δL

[

∂P
∂ρ

]

|i1

(implicit-1), δyt

δL

[

∂P
∂y

]

|i2 (implicit-2), and the final one

summing the implicit dependence of the isovector coeffi-
cients over L, that we will call in the following implicit-3,

[

δP

δL

]

|i3 =
ρ2y2

3ρ0

∑

n≥2

δcIV,n

δL

xn−1

(n− 1)!
. (4)

A qualitative understanding of the correlation pattern for
the term implicit-3 is obtained considering only the first
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term in the sum such that
[

δP

δL

]

|i3 ≈
ρ2y2

3ρ0

δKsym

δL
x . (5)

The implicit dependence of ρt, yt and Ksym is ex-
tracted from linear fits in Figs. 1a)-c), giving the val-
ues δρt/δL = (−3.84 ± 0.24) × 10−4 MeV−1 fm−3 and
δyt/δL = (6.08± 0.82)× 10−4 MeV−1, and δKsym/δL =
3.07±0.33. We show in Fig. 4 the different contributions
to the variation of Pt. The contribution due to the ex-
plicit term is clearly large and positive, as expected. This
term alone would predict an increase of the transition
pressure with L, which is not observed. However, this
term is balanced by the sum of the two terms implicit-1
and implicit-3 which are negative and of similar magni-
tudes. The term implicit-2 brings only a negligible con-
tribution. The sum of the different contributions, repre-
sented by the circles in Fig. 4, is thus very close to zero.
It is important to notice that a) if the term implicit-3
had not been considered the prediction that Pt increases
with L would persist, since the term implicit-1 is not suf-
ficiently large to overcome the explicit term; b) the term
implicit-3 was approximated by the contribution of the
leading term in the sum (4) and the effect of the higher
order terms has not been included, and could be inves-
tigated. We conclude that there is no clear correlation
between L and Pt, due to the non-trivial competition be-
tween several explicit and implicit contributions which
differ among models.
In the present letter we have explained why there is a

good correlation between the crust-core transition den-

sity and the symmetry energy slope, L; and we predict
that this behavior should not depend on the relation be-
tween L and Ksym. On the contrary, no correlation of
the transition pressure with L was obtained. We have
highlightened the competing contributions to the vari-
ation of Pt with L, which weaken the link between L
and Pt; this explains that the dispersion among models
destroys any clear correlation. This means that an ex-
perimental determination of L alone will not be sufficient
for a good estimation of the crust mass and moment of
inertia of a compact star. In fact, the range of variation
of Pt obtained within the present letter with a large set
of nuclear models lies within the interval indicated in [9],
0.20 < Pt < 0.65 MeV/fm3, but completely out of the in-
terval obtained in [1] from the expected values of L, which
was determined from isospin diffusion and supposing the
existence of a correlation between Pt and L. The large
dispersion of the predicted transition pressure obtained
when independent models are considered needs to be re-
duced. A more accurate knowledge of the isoscalar EOS
could improve the situation. As for the isovector EOS,
the striking correlation between Ksym and L appears to
be an important feature, which should be further inves-
tigated.
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