
HAL Id: in2p3-00367374
https://in2p3.hal.science/in2p3-00367374v1

Submitted on 12 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monte Carlo Simulation With The GATE Software
Using Grid Computing

Romain Reuillon, David R.C. Hill, Christophe Gouinaud, Z. El Bitar, Vincent
Breton, I. Buvat

To cite this version:
Romain Reuillon, David R.C. Hill, Christophe Gouinaud, Z. El Bitar, Vincent Breton, et al.. Monte
Carlo Simulation With The GATE Software Using Grid Computing. 8ème Conférence Internationale
sur les NOuvelles TEchnologies de la REpartition, NOTERE 2008, Jun 2008, Lyon, France. �in2p3-
00367374�

https://in2p3.hal.science/in2p3-00367374v1
https://hal.archives-ouvertes.fr

Monte Carlo Simulation With The GATE Software

Using Grid Computing

R. Reuillon D.R.C Hill
C. Gouinaud

UMR CNRS 6158 - LIMOS
BP 10125 - 63177 Aubière - France

Tel: +33 (0)473 40 53 68

romain.reuillon@isima.fr

Z. El Bitar V. Breton
LPC, 24 av. des Landais,
63000 Clermont-Ferrand

FRANCE
Tel:+33 (0) 473 40 72 19

breton@clermont.in2p3.fr

I. Buvat

UMR S 678 – 91 Bd de l’Hôpital
F-75634 PARIS cedex 13

FRANCE
Tel:+33 (0)1 53 82 84 00

buvat@imed.jussieu.fr

ABSTRACT

Monte Carlo simulations needing many replicates to obtain good

statistical results can be easily executed in parallel using the

“Multiple Replications In Parallel” approach. However, several

precautions have to be taken in the generation of the parallel

streams of pseudo-random numbers. In this paper, we present the

distribution of Monte Carlo simulations performed with the

GATE software using local clusters and grid computing. We

obtained very convincing results with this large medical

application, thanks to the EGEE Grid (Enabling Grid for E-

sciencE), achieving in one week computations that could have

taken more than 3 years of processing on a single computer. This

work has been achieved thanks to a generic object-oriented

toolbox called DistMe which we designed to automate this kind of

parallelization for Monte Carlo simulations. This toolbox, written

in Java is freely available on SourceForge and helped to ensure a

rigorous distribution of pseudo-random number streams. It is

based on the use of a documented XML format for random

numbers generators statuses.

Categories and Subject Descriptors

G.3. [Probability and Statistics]: Statistical Computing. J.3 [Life

and Medical Sciences] Health. I.6.3 [Simulation and

Modeling] Application.

General Terms

Algorithms, Performance, Design, Reliability, Experimentation.

Keywords

Monte Carlo, Grid computing, GATE simulation.

1. INTRODUCTION
Monte Carlo simulations (MCS) are widely used in emission

tomography; for protocol optimization, design of processing or

data analysis methods, tomographic reconstruction, or tomograph

design optimization. GATE [1] is a Monte Carlo simulation tool

based on the Geant4 package and dedicated to Single Photon

Emission Computed Tomography and Positron Emission

Tomography simulations. It was designed to be flexible and

precise, thus GATE simulations are computer intensive and

cannot be used in a clinical context. This work presents a

distributing method and a tool for the parallelization of MCS. This

method is then applied to a practical application in image

reconstruction using GATE and execution times are given for

clusters and the EGEE European grid environment.

2. MATERIAL AND METHODS
MCS are commonly considered to be naturally parallel [2]. It is

widely assumed that with N processors executing N replicates of a

Monte Carlo calculation, the pooled result will achieve a variance

N times smaller than a single instance of calculation in the same

time [3]. In the next sections we discuss why we changed the

default Pseudo-Random Number Generator (PRNG) of the GATE

software and will also present how we separate experiments to

avoid correlations that could slow down the convergence.

2.1 A. Using GATE with a better Pseudo-

Random Number Generator (PRNG)
GATE simulations were initially based on the “James Random”

algorithm [4], [5] as implemented in the “Class Library for High

Energy Physics” (CLHEP) [6]. This generator is 21 years old and

has been shown to have poor statistical properties. We checked

that it succeeded in only 36 tests out of 122 using the recent and

already well-known statistical test battery “TestU01” of L’Ecuyer

[7]. We therefore modified GATE to use the Mersenne Twister

19937 [8] as implemented in CLHEP. This generator is recent, has

a huge period of 219937 and is equidistributed in 623 dimensions. It

passes almost all the tests of the test battery TestU01 and it is fast.

2.2 Parallelization of PRNG
For quantitative Monte Carlo simulations the MRIP or “Multiple

Replication In Parallel” parallelization approach ([13], [14]),

allows a maximum speed up if many replications of the same

experiment have to be made in order to obtain a good

approximation of the result. However, when parallelizing the

underling pseudo-random number generator (RNG), correlations

within and between the random numbers streams generated in

each processor have to be avoided [2]. Different parallel

generation techniques of pseudo random numbers can be found in

the following documentation: [17]. In the “central server

approach”, a central RNG generator provides numbers for all

simulation jobs. This approach is the natural one but doesn’t

fulfill the requirements for a good parallel RNG [18] and creates a

bottleneck that slows down the distributed simulation. The

“sequence splitting” or “blocking” consists in splitting the RNG

cycle into non-overlapping contiguous sections [19]. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

NOTERE 2008, June 23-27, 2008, Lyon, France.
Copyright 2008 ACM 978-1-59593-937-1/08/0003…$5.00.

technique must be used with caution because long range

correlation in the parallelized generator might become short range

inter-sequences correlations. Instead of unrolling the generator,

one might consider to randomly generate states of the pseudo-

random number generator (a status is archiving a precise state).

The average minimal distance between n statuses should be in this

case 1/n2 times the distributed generator period [20]. This is

possible using a cryptographic generator or a hash function to

generate the statuses. The distribution of the Mersenne Twister

19937 algorithm is achieved that way in the library SPRNG [3].

The “leap frog” technique distributes the sequences to the

processor like a deck of cards to card players. Each process of the

distributed simulation uses 1 number out of n in the original

sequence. This last technique requires a generator that allows

cycle division [1]. With this technique long range correlations in

the original sequence might also become short range inter-

sequences correlations if the interval of sampling in the original

sequence is not chosen carefully [20]. The “independent

sequences” technique produces different cycles of numbers

depending on the initial seed. This technique is available for a few

generators like some lagged Fibonacci pseudo-random number

generators. [19]. This last technique is close to the

“parameterization” technique that might be used with some RNG

like the Mersenne Twister [16] or linear congruential generator

with Mersenne or Sophie-Germain prime moduli [21]. It generates

algorithm parameters leading to the generation of highly

independent random number streams. Within the current state of

the art, we are not able to provide a theoretical proof of

independence between pseudo-random number streams. However,

various approaches can be tested empirically, implying heavy

computation that can be achieved once for many applications

under a precise experimental framework. The Mersenne Twister

19937 has a very long period of 219937 drawings. It is an already

parameterized version of the generic Mersenne Twister algorithm

and it has no efficient cycle division technique available. The

Mersenne Twister 19937 generator is well suited to a

parallelization using the “sequence splitting” technique. To

achieve the non-overlapping condition of the “sequence splitting”

parallelization technique, we first estimated the number of random

numbers drawn using a simulation job designed to have an

average execution time of 12 hours (on an average working node

of the European grid). This estimation led to 12 billion drawings

per job. Then we generated over 6000 statuses for the Mersenne

Twister spaced by 15 billion numbers each. We used a similar

approach in [15]. The generated status were archived and

converted into a documented XML format, in order to be reused

with different implementations of the Mersenne Twister 19937

algorithm.

2.3 Creation of a generic parallelizing tool for

MCS
We designed and implemented an open source software tool in

Java called “DistMe”, which is dedicated to parallelize stochastic

simulations. This tool contains a status database and is able to

create jobs for various distributed environments independently

from the random number generation library. It is based on the

intensive use of a documented XML generic format for the

pseudo-random number generator statuses [22]. DistMe is fully

usable and its sources can be found on the Internet

(http://sourceforge.net/projects/distme). With this tool, we could

generate GATE jobs for any distributed execution system: basic

scripts (using ssh for instance), bags of work for the European

Grid using JDL descriptors (the European grid Job Description

Language) and more specially “OpenPBS” (using Portable Batch

System scripts). A tutorial is available (www.isima.fr/~reuillon)

as well as 9000 statuses for the Mersenne Twister 19937

algorithm, spaced of 15 billion drawings each.

2.4 Hardware
We could access 650 worker nodes of the EGEE European

computing grid (Enabling Grid for E-sciencE, www.eu-egee.org)

mainly in France, United Kingdom, Netherlands and Poland. We

also had at our disposal two clusters hosted by local research

laboratories (the LIMOS/ISIMA cluster composed of 14 bi-

processors and the LAMI/IFMA cluster composed of 28 bi-

processors managed by an “OpenPBS” system. Each processor of

the cluster is an Intel Xeon 3 GHz with hyper-threading.

2.5 Merging of simulation results
Each simulation generates two binary output files requiring about

10 megabytes of storage space. Simulation output files produced

on the grid were automatically registered and copied on a Storage

Element (SE). When all the simulations were completed, a script

using grid commands retrieved these files from the SE into a local

machine. When the computing was performed on a local cluster,

the retrieving of the simulation output files was achieved using a

regular and local FTP commands (File Transfer Protocol). The

merging of all files was performed using a simple C code and

required less than 5 minutes for less than 30 Gigabytes (on a local

desktop computer – Xeon 3 GHz with simple SATA disk).

3. RESULTS

3.1 PRNG Parallelization
The computation of the 6000 PRNG status is not possible in

parallel and took around 80 days on a single node of the ISIMA

cluster running at 2.4 GHz. Once the list of status is generated, it

is important to test the resulting random number series. Indeed, a

good parallel PRNG must behave like several good sequential

PRNG. Each sequence was then tested using the statistical tests

battery for sequential PRNG TestU01. As shown in Table I, only

2% of sequences failed in more than 5 tests and no sequence

failed in more than 10 tests out of the 122 tests of the battery. This

calculation has been made on the ISIMA cluster and took 35 days

at full cluster load. If the work has been made on a single machine

it would have taken around 3 years.

3.2 Simulation execution
The two local clusters achieved 600 jobs, which all succeeded and

2300 jobs were executed on the EGEE European grid, (with 1811

usable results). Fig. 1 shows how the jobs were executed on the

different calculation units. The IFMA cluster hosted 400 jobs, 200

jobs ran on the ISIMA cluster, 200 on the Polish worker nodes,

499 on the Dutch ones, 922 in England and 190 in France. A

variance study on the final results showed that after the execution

of 2000 jobs a convergence was reached. The curve on Fig. 2

shows an asymptotic behavior around 2000 jobs. Executing more

jobs was then un-necessary.

3.3 Distribution of the computing time
The time required for the total execution of the simulation on a

single sequential computation unit (Intel Xeon 3 GHz) is 906

days/CPU (Central Processing Unit).

The execution time of the distributed simulation on clusters is

inversely proportional to the number of processors from which

they are composed since the migration time of the jobs is

neglected compared to the total execution time. Hence, the gain

factor was 84 since the number of local bi-processors is 42 (14 bi-

processors on ISIMA cluster; 28 bi-processors on IFMA cluster)

resulting in 84 execution units running in parallel.

Table 1. Failed tests of the battery testu01 for the 6000

random numbers sequences

Figure 1. Repartition of the jobs

Figure 2. Variance of the results as a function of the numbers

of executed jobs

For the grid the problem is a bit trickier. The execution power of

the grid is virtually unlimited, supposing that the number of

processors available on the grid is always greater than the number

of submitted jobs. Furthermore, we may consider that there is no

latency time in the grid architecture: no job migration time, no

data migration time, and that execution units are homogenous and

fast. Hence, the ideal proportional gain factor in time execution is

proportional to the number of jobs in which the sequential

simulation is distributed. In our case the number of jobs has been

arbitrarily set to 1813 jobs. Each job should run during 12 hours

on a fast local computer for completion. This mean the total

execution time of the simulation is 22356 hours / CPU (Central

Processing Unit). To compute the gains in the next paragraph we

compute virtual execution times of jobs under certain conditions:

 taking into account the average execution times of all

jobs or only the longest execution time of a job

 taking into consideration that we have access to a

limited part of the grid or consider the grid as able to

execute all our jobs in parallel

In each case, we compute virtual execution times for our

simulation jobs. After that we consider that the virtual jobs are

executed perfectly in parallel. By consequence the resulting gain

is the total execution time of the simulation divided by the

duration of one virtual job.

On a real grid, the gain factor in term of execution time is

penalized by the latency time affected by the performances of the

targeted worker nodes and the migration time in which a job

passes through the following states: submitted, waiting, ready and

scheduled. Taking into account the latency and the average power

of the execution units, we have computed from the execution log

files the average execution time among all our simulation jobs on

the grid. The average execution time for our simulation is 24.675

hours. This lead to what we have called the average theoretical

gain. In our case we obtain a gain of 906. Unfortunately, the

number of worker nodes available in our real execution

environment was 650. It is greatly inferior to the number of jobs

we had to execute. This means, that we could only execute 650

jobs concurrently. This impact negatively on the virtual execution

time of our global simulation jobs, increasing it to 70,722 hours

by job in average, thus the average practical gain factor is 316.

The end-user might be interested in the global execution time of

the simulation corresponding to the time between the submission

of the jobs and the return of the results from the last job.

Supposing a concurrent submission the simulation ends when the

last part of the results is returned. From the log files, the longest

job with the longest execution time over all jobs is 36 hours. This

leads to a minimal theoretical gain of 621. Taking into account the

fact we are limited by the number of the worker nodes the virtual

length of a jobs increases to 103,2 hours and the minimal practical

gain is about 217. The different gain values are summarized

hereafter:

 ideal proportional gain: 1813

 average theoretical gain: 906

 average practical gain: 316

 minimal theoretical gain: 621

 minimal practical gain: 217

4. CONCLUSION AND DISCUSSION
By distributing the calculation on many execution units our

nuclear medicine simulation was achieved in a few days. It would

have taken more than three years on a single powerful computer

without distributing the simulation using the MRIP approach. We

have not repeated this simulation to study the grid and cluster

overhead, since we may obtain different execution times with

different grid/cluster loads. The simulation results were directly

used by scientists working in nuclear medicine [10], [11].

Improvements can be made in the following directions: the

different gain factors might be improved using more worker nodes

190; 8%

922; 38%

499; 21%

200; 8%

200; 8%

400; 17%

France

United Kingdoms

Netherlands

Poland

ISIMA

IFMA

of the grid and optimization techniques for stochastic simulations

distribution like the “N out of M” strategy presented in [23].

Furthermore, each random number sequence has been tested

individually with the best test battery presently available, but tests

have to be done to check that the correlation between the

sequences is acceptable using the parallel PRNG tests described in

[1] and implemented in SPRNG. It represents a huge amount of

calculation and it will be achieved using the internet computing

platform BOINC [12]. The use of the DistMe toolbox requires the

downloading of the statuses from the internet and a manual

operation to insert them in a database on the local computer

running DistMe. To simplify this task for the end user, the

statuses and the tests results will be published via a central web

service and DistMe will gain a transparent access to this web

service. Last but not least, it might be interesting to optimize the

status generation phase, by combining the sequence splitting

technique with highly independent random numbers sequences

obtained using a “parameterization” technique and then

generating the statuses for each sequence in parallel. A pseudo-

random number generation library, “DistRNG”, is being

implemented and already allow the use of cutting edge

parallelization techniques.

5. ACKNOWLEDGMENTS
The authors would like to thank the Auvergne Regional council

(France) for its research sponsoring, the EGEE consortium and

also ISIMA/LIMOS & IFMA/LAMI laboratories which provided

an easy access to their local clusters.

6. REFERENCES
[1] S. Jan et al., "GATE: a simulation toolkit for PET and

SPECT," Phys. Med. Biol., vol. 49, pp 4543-4561, 2004.

[2] M. Mascagni and A. Srinivasan, "Parameterizing parallel

multiplicative lagged-Fibonacci generators," Parallel

Computing, vol. 30, 2004, pp. 899-916.

[3] M. Mascagni, D. Ceperley and A. Srinivasan, "SPRNG: a

scalable library for pseudorandom number generation," ACM

Transaction on Mathematical Software, vol. 26, 2000, pp.

618-619.

[4] F. James, "A review of pseudorandom number generators,"

Computer Physics Communications, vol. 60, 1990, pp. 329-

344.

[5] G. Marsaglia ans A. Zaman, "Toward a Universal Random

Number Generator," Florida State University FSU-SCRI-87-

50, 1987.

[6] L. Lönnblad, "CLHEP – a project for designing a C++ class

library for high energy physics," Computer Physics

Communication, vol. 84, 1994, pp. 307-316.

[7] P. L’Ecuyer and R. Simard, "TESTU01: a software library in

ANSI C for empirical testing of random number generators,"

Manuscript, Department d’Informatique et de Recherche

Operationnelle, University of Montreal, 2003, pp. 1-206.

[8] M. Matsumoto and T. Nishimura, "Mersenne Twister: A

623-dimensionally equidistributed uniform pseudorandom

number generator," Proceedings of the 29th conference on

Winter simulation, 1997, pp. 127-134.

[9] A. Srinivasan, D. M. Ceperley, and M. Mascagni, "Random

number generators for parallel applications," Monte Carlo

Methods in Chemical Physics, D. M. Ferguson, J. I.

Siepmann, and D. G. Truhlar, editors, Advances in Chemical

Physics Series, vol. 105, John Wiley and Sons, New York,

1999, pp. 13–36.

[10] D. Lazaro, V. Breton and I. Buvat, "Feasibility and value of

fully 3D Monte-Carlo reconstruction in single photon

emission computed tomography," Nucl. Instr. and Meth.

Phys. Res. A, vol. 527, 2004, pp. 195-200.

[11] D. Lazaro, Z. El Bitar, V. Breton, D. R. C. Hill, and I. Buvat,

"Fully 3D Monte Carlo reconstruction in SPECT: a

feasibility study," Phys. Med. Biol., vol. 50, 2005, pp. 3739-

3754.

[12] D.P. Anderson, "BOINC: A System for Public-Resource

Computing and Storage," grid, 2004, pp. 4-10.

[13] D.R.C. Hill, "Object-oriented pattern for distributed

simulation of large scale ecosystems," SCS Summer

Computer Simulation Conference, Arlington, USA, Jul. 13-

17, 1997, pp. 945-950.

[14] K. Pawlikowski, "Towards credible and fast quantitative

stochastic simulation," Proceedings of International SCS

Conference on Design, Analysis and Simulation of

Distributed Systems, DASD'03, Orlando, Florida, 2003.

[15] L. Maigne, D. R. C. Hill, P. Calvat, V. Breton, R. Reuillon,

D. Lazaro, Y. Legre and D. Donnarieix, "Parallelization of

Monte Carlo simulations and submission to a grid

environment," Parallel Processing Letters, vol. 14, 2004,

pp.177-196.

[16] M. Matsumoto and T. Nishimura, "Dynamic creation of

pseudorandom number generators," Monte Carlo and Quasi-

Monte Carlo Methods, vol. 1998, 2000, pp. 56-69.

[17] M. Traore and D.R.C. Hill, "The use of random number

generation for stochastic distributed simulation: application

to ecological modeling," Proceedings of the 13th European

Simulation Symposium, Marseille, France, Oct. 18-20, 2001,

pp. 555-559.

[18] P.D. Coddington, "Random number generator for parallel

computers," NHSE Review, 2nd issue, Northeast Parallel

Architecture Center, 1996.

[19] P.D. Coddington and A.J. Newell, "JAPARA – A java

parallel random number library for high-performance

computing," Proceeding of the 18th International Parallel

and Distributed Processing Symposium (IPDPS'04) -

Workshop 5, 2004, pp. 156-166.

[20] P. Wu; K. Huang, “Parallel use of multiplicative congruential

random number generators,” Computer Physics

Communications, vol. 175, pp. 25–29, 2006.

[21] M. Mascagni; H. Chi, “Parallel linear congruential generators

with Sophie-Germain moduli,” Parallel Computing, vol. 30,

pp. 1217-1231, 2004.

[22] R.Reuillon, D.R.C Hill, Z. El Bitar, V. Breton, “Rigorous

Distribution of Stochastic Simulations Using the DistMe

Toolkit,” IEEE Transactions on Nuclear Science, to be

published, 2008.

[23] Y. Li, M. Mascagni, "Improving Performance via

Computational Replication on a Large-Scale Computational

Grid," ccgrid, 3rd International Symposium on Cluster

Computing and the Grid, 2003, pp. 442-446.

