

Alpha decay potential barriers and half-lives and analytical formula predictions for superheavy nuclei

Guy Royer, H.F. Zhang

▶ To cite this version:

Guy Royer, H.F. Zhang. Alpha decay potential barriers and half-lives and analytical formula predictions for superheavy nuclei. Workshop on the State of the Art in Nuclear Cluster Physics (SOTANCP2008), May 2008, Strasbourg, France. pp.2270-2274, 10.1142/S021830130801146X . in2p3-00356024

HAL Id: in2p3-00356024 https://in2p3.hal.science/in2p3-00356024v1

Submitted on 26 Jan 2009 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. International Journal of Modern Physics E © World Scientific Publishing Company

ALPHA DECAY POTENTIAL BARRIERS AND HALF-LIVES AND ANALYTICAL FORMULA PREDICTIONS FOR SUPERHEAVY NUCLEI

GUY ROYER

Laboratoire Subatech, UMR 6457: IN2P3/CNRS-Université-Ecole des Mines, 44307 Nantes Cedex 03, France, royer@subatech.in2p3.fr

HONGFEI ZHANG

School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China zhanghongfei@impcas.ac.cn

> Received (received date) Revised (revised date)

The α decay potential barriers are determined in the cluster-like shape path within a generalized liquid drop model including the proximity effects between the α particle and the daughter nucleus and adjusted to reproduce the experimental Q_{α} . The α emission half-lives are determined within the WKB penetration probability. Calculations using previously proposed formulae depending only on the mass and charge of the alpha emitter and Q_{α} are also compared with new experimental alpha-decay half-lives. The agreement allows to provide predictions for the α decay half-lives of other still unknown superheavy nuclei using the Q_{α} determined from the 2003 atomic mass evaluation of Audi, Wapstra and Thibault.

1. Introduction

The synthesis of superheavy elements has advanced strongly recently¹ and their main observed decay mode is α emission. Predictions of α decay half-lives of other possible superheavy nuclei are needed. The α decay potential barrier is often described using a finite square well for the one-body shapes plus an hyperbola for the Coulomb repulsion between the α particle and its daughter. An arbitrary adjustment of the parameters allows to reproduce roughly the experimental data. Here the α decay potential barriers are determined in the cluster-like shape path within a generalized liquid drop model² including the proximity effects between the α particle and the daughter nucleus and adjusted to reproduce the experimental Q_{α} . The α emission half-lives are deduced within the WKB penetration probability through these barriers. $\mathbf{2}$

2. Alpha decay potential barriers

The potential barrier governing the α decay of the ¹⁰⁸Te nucleus is displayed in Fig. 1. The introduction of a proximity energy term lowers the barrier of 5.7 MeV and moves the top by 2.4 fm to a more external position. The part of the barrier corresponding to one-body shapes plays a minor role².

Fig. 1. Barrier against α decay of the ¹⁰⁸Te mother nucleus. The broken and full curves correspond respectively to the deformation energy without and with a nuclear proximity energy term. r is the centre-of-mass distance.

3. Alpha decay half-lives

The α decay half-lives have been determined assuming that the incoming point is the contact point and that the outgoing point corresponds to the equality of the Coulomb energy with the experimental Q_{α} . The inertia parameter is simply the reduced mass. Within this unified fission model the decay constant is simply the product of the assault frequency and the penetrability. There is no preformation factor. The Fig. 2 shows that the α decay half-lives of the actinides and heaviest elements and their isotope dependence are correctly reproduced. For a whole set of 373 emitters the RMS deviation of $log_{10}[T_{1/2}(s)]$ is only $0.63^{2,3}$.

Analytical formulae for the α decay half-lives have been proposed². They lead to rms deviations of respectively 0.285, 0.39, 0.36 and 0.35 for the even(Z)-even(N), even-odd, odd-even and odd-odd nuclei².

$$log_{10}\left[T_{1/2}(s)\right] = -25.31 - 1.1629A^{1/6}\sqrt{Z} + \frac{1.5864Z}{\sqrt{Q_{\alpha}}},\tag{1}$$

$$log_{10}\left[T_{1/2}(s)\right] = -26.65 - 1.0859A^{1/6}\sqrt{Z} + \frac{1.5848Z}{\sqrt{Q_{\alpha}}},\tag{2}$$

Fig. 2. Comparison between the theoretical and experimental half-lives of the heavy elements.

$$log_{10}\left[T_{1/2}(s)\right] = -25.68 - 1.1423A^{1/6}\sqrt{Z} + \frac{1.592Z}{\sqrt{Q_{\alpha}}},\tag{3}$$

$$\log_{10} \left[T_{1/2}(s) \right] = -29.48 - 1.113A^{1/6}\sqrt{Z} + \frac{1.6971Z}{\sqrt{Q_{\alpha}}}.$$
 (4)

Later on new α decay half-lives have been measured and they are compared with the predictions of these formulae in the table 1 where Q and T are respectively in MeV and s. The good agreement allows to provide in table 2 predictions of the α decay half-lives of other possible superheavy elements⁴ with the help of the Q_{α} calculated from the 2003 atomic mass evaluation⁵. The half-live can perhaps reach one hour for the ²⁷⁷108 nucleus.

4. Conclusion

The α decay half-lives can be reproduced within an asymmetric fission picture and a generalized liquid drop model taking into account the proximity effects between the α particle and its daughter nucleus. Analytical formulae previously proposed allow to reproduce new recent data and allow to give predictions for the α decay half-lives of other possible superheavy elements based on the Q_{α} calculated from the 2003 atomic mass evaluation. 4

Table 1.	Comparison	between	recently	known	experimental	alpha	decay	half-lives	and
results o	btained with	previous	ly propo	sed for	mulae.				

Nucl.	$\mathbf{Q}_{\alpha}^{exp}$	T $^{exp}_{\alpha}$	T $^{Form.}_{\alpha}$	Nucl.	$\mathbf{Q}_{\alpha}^{exp}$	T $^{exp}_{\alpha}$	T $^{Form.}_{\alpha}$
$^{105}\mathrm{Te}$	4.900	0.70×10^{-6}	0.4×10^{-6}	$^{156}\mathrm{Er}$	3.486	2.3×10^{10}	1.6×10^{10}
$^{158}\mathrm{Yb}$	4.172	4.3×10^{6}	2.7×10^{6}	$^{160}\mathrm{Hf}$	4.902	1.9×10^{3}	1.9×10^{3}
$^{174}\mathrm{Hf}$	2.497	6.3×10^{22}	4.5×10^{23}	^{158}W	6.612	1.5×10^{-3}	1.2×10^{-3}
$^{168}\mathrm{W}$	4.507	1.6×10^{6}	3.1×10^{6}	^{162}Os	6.767	1.9×10^{-3}	2.3×10^{-3}
$^{164}\mathrm{Os}$	6.475	4.2×10^{-2}	2.2×10^{-2}	166 Pt	7.286	3.0×10^{-4}	2.8×10^{-4}
168 Pt	6.997	2.0×10^{-3}	2.2×10^{-3}	170 Pt	6.708	1.4×10^{-2}	2.0×10^{-2}
172 Hg	7.525	4.2×10^{-4}	2.7×10^{-4}	174 Hg	7.233	2.1×10^{-3}	2.0×10^{-3}
188 Hg	4.705	5.3×10^{8}	2.0×10^{8}	$^{178}\mathrm{Pb}$	7.790	2.3×10^{-4}	2.1×10^{-4}
$^{180}\mathrm{Pb}$	7.415	5.0×10^{-3}	2.7×10^{-3}	184 Pb	6.774	6.1×10^{-1}	3.6×10^{-1}
$^{186}\mathrm{Pb}$	6.470	$1.2{ imes}10^1$	4.7×10^{0}	$^{188}\mathrm{Pb}$	6.109	$2.7{ imes}10^2$	$1.3{ imes}10^2$
$^{190}\mathrm{Pb}$	5.697	1.8×10^{4}	8.7×10^{3}	$^{192}\mathrm{Pb}$	5.221	3.6×10^{6}	2.1×10^{6}
$^{194}\mathrm{Pb}$	4.738	9.8×10^{9}	1.3×10^{9}	188 Po	8.087	4.0×10^{-4}	1.1×10^{-4}
189 Po	7.703	5.0×10^{-3}	3.0×10^{-3}	190 Po	7.693	2.5×10^{-3}	1.5×10^{-3}
192 Po	7.319	2.9×10^{-2}	2.2×10^{-2}	210 Po	5.407	$1.2{ imes}10^7$	$1.0{ imes}10^6$
$^{196}\mathrm{Rn}$	7.616	4.4×10^{-3}	1.4×10^{-2}	$^{198}\mathrm{Rn}$	7.349	6.5×10^{-2}	$9.6 imes 10^{-2}$
202 Ra	8.020	2.6×10^{-3}	3.6×10^{-3}	204 Ra	7.636	5.9×10^{-2}	5.5×10^{-2}
$^{210}\mathrm{Th}$	8.053	1.7×10^{-2}	1.3×10^{-2}	212 Th	7.952	3.6×10^{-2}	2.4×10^{-2}
$^{218}\mathrm{U}$	8.773	5.1×10^{-4}	4.0×10^{-4}	^{220}U	10.30	6.0×10^{-8}	5.8×10^{-8}
^{224}U	8.620	7.0×10^{-4}	8.2×10^{-4}	^{226}U	7.701	5.0×10^{-1}	5.7×10^{-1}
228 Pu	7.950	2.0×10^{-1}	5.1×10^{-1}	230 Pu	7.180	1.0×10^2	$2.7{ imes}10^2$
$^{238}\mathrm{Cm}$	6.62	$2.3{ imes}10^5$	$3.3{ imes}10^5$	258 No	8.151	$1.2{ imes}10^2$	$5.4{ imes}10^1$
258 Rf	9.25	9.2×10^{-2}	1.0×10^{-1}	260 Rf	8.901	1.0×10^0	1.0×10^0
266 Hs	10.34	2.3×10^{-3}	2.1×10^{-3}	270 Hs	9.02	2.2×10^{1}	1.0×10^{1}
$^{270}\mathrm{Ds}$	11.2	1.0×10^{-4}	6.7×10^{-4}	^{271}Sg	8.65	$1.4{ imes}10^2$	$1.1{ imes}10^2$
^{272}Bh	9.15	9.8×10^{0}	1.8×10^{1}	275 Hs	9.44	1.5×10^{-1}	1.9×10^{0}
$^{275}\mathrm{Mt}$	10.48	9.7×10^{-3}	3.2×10^{-3}	$^{276}\mathrm{Mt}$	9.85	7.2×10^{-1}	$6.5 imes 10^{-1}$
^{279}Ds	9.84	1.8×10^{-1}	$6.5 imes 10^{-1}$	279 Rg	10.52	1.7×10^{-1}	1.1×10^{-2}
280 Rg	9.87	$3.6{ imes}10^0$	3.1×10^0	$^{282}113$	10.63	7.3×10^{-2}	4.2×10^{-2}
283112	9.67	4.0×10^0	$9.6{ imes}10^0$	285112	9.29	$3.4{ imes}10^1$	$1.3{ imes}10^2$
²⁸³ 113	10.26	1.0×10^{-1}	2.3×10^{-1}	$^{284}113$	10.15	4.8×10^{-1}	2.4×10^{0}
286114	10.35	1.6×10^{-1}	1.1×10^{-1}	287114	10.16	5.1×10^{-1}	$1.8{ imes}10^0$
288114	10.09	8.0×10^{-1}	5.2×10^{-1}	289114	9.96	2.7×10^{0}	6.1×10^{0}
287115	10.74	3.2×10^{-2}	5.3×10^{-2}	288115	10.61	8.7×10^{-2}	5.8×10^{-1}
290116	11.00	1.5×10^{-2}	8.9×10^{-3}	$^{291}116$	10.89	6.3×10^{-3}	8.9×10^{-2}
$^{292}116$	10.80	1.8×10^{-2}	2.7×10^{-2}	$^{293}116$	10.67	5.3×10^{-2}	3.1×10^{-1}
$^{294}118$	11.81	$1.8^{\times}10^{-3}$	$3.9 imes10^{-4}$				

References

- 1. Yu. Ts. Oganessian et al., Phys. Rev. ${\bf C76}$ (2007) 011601(R).
- 2. G. Royer, J. Phys. G: Nucl. Part. Phys. 26 (2000) 1149.
- 3. R. Moustabchir and G. Royer, Nucl. Phys. ${\bf A683}$ (2001) 266.
- 4. G. Royer and H. F. Zhang, *Phys. Rev.* C77 (2008) 037602.
- 5. G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A729 (2003) 337.

A Z	Q	$T_{1/2}^{form.}$	$\stackrel{A}{Z}$	\mathbf{Q}	$T_{1/2}^{form.}$	$\stackrel{A}{Z}$	\mathbf{Q}	$T_{1/2}^{form.}$
293	12.30	$187 \ \mu s$	$292 \\ 117$	11.60	6.47 ms	$291 \\ 117$	11.90	$0.32 \mathrm{ms}$
291 115	10.00	$4.8 \mathrm{s}$	290 115	10.30	$4.2 \mathrm{~s}$	289 116	11.70	1.05 ms
289	10.60	113 ms	$\frac{1}{287}$	9.34	$99.4 \mathrm{~s}$	286	9.68	$61.5 \mathrm{~s}$
285	11.00	12 ms	285	10.02	$1.0 \mathrm{~s}$	284	9.30	$25.1 \mathrm{~s}$
283	8.96	$5.5 \min$	$\frac{1}{282}$	9.96	$0.297 \ s$	282	9.38	$99.8 \mathrm{\ s}$
281	10.28	$0.2 \ s$	$\frac{1281}{111}$	9.64	$2.72 \mathrm{~s}$	281	8.96	$4.6 \min$
$\frac{1}{280}$	10.62	25.4 ms	280	9.98	$1.43 \mathrm{~s}$	279	10.96	3.88 ms
279	8.70	$7.72 \min$	$278 \\ 112$	11.38	$0.083 \mathrm{\ ms}$	278	10.72	12.5 ms
$\frac{103}{278}$	10.00	51.8 ms	278	9.10	$143 \mathrm{~s}$	$\frac{1}{277}$	11.62	$0.12 \mathrm{ms}$
277	11.18	$0.28 \mathrm{\ ms}$	277 110	10.30	39 ms	277	9.50	$1.48 \mathrm{~s}$
$\frac{1}{277}$	8.40	$65.25 \min$	$\frac{1}{276}$	11.32	$0.39 \mathrm{\ ms}$	276	10.60	$1.47 \mathrm{\ ms}$
$\frac{100}{276}$	8.80	$40.6 \mathrm{\ s}$	$\frac{1}{275}$	11.55	$42.3 \ \mu s$	$\frac{1}{275}$	11.10	$0.43 \mathrm{\ ms}$
274	11.60	$88.1 \ \mu s$	$274 \\ 110$	11.40	$19.5 \ \mu s$	274	10.50	$9.84 \mathrm{ms}$
$\frac{1}{274}$	9.50	$0.3 \mathrm{s}$	$\frac{1}{274}$	8.50	$48.45 \min$	273	11.20	$0.29 \mathrm{\ ms}$
273	11.37	$0.11 \mathrm{ms}$	273	10.82	0.5 ms	$\frac{1}{273}$	9.90	101 ms
273 107	8.90	$21.1 \ s$	$\frac{1}{272}$	10.76	$0.697 \mathrm{\ ms}$	$\frac{1}{272}$	10.60	$5.74 \mathrm{\ ms}$
$\frac{1}{272}$	10.10	$6.9 \mathrm{ms}$	272 106	8.30	$6.38 \min$	$\frac{271}{110}$	10.87	$1.79 \mathrm{\ ms}$
$271 \\ 109$	10.14	$29.9 \mathrm{\ ms}$	$271 \\ 108$	9.90	$109.7~\mathrm{ms}$	271 107	9.50	$0.338~{\rm s}$
$270 \\ 110$	11.20	$0.067~\mathrm{ms}$	$\frac{270}{109}$	10.35	30 ms	$\frac{270}{108}$	9.30	1.4 s
$270 \\ 107$	9.30	$6.25 \ s$	$\frac{270}{106}$	9.10	$0.99 \ s$	$\frac{270}{105}$	8.20	$94.58 \min$
269 109	10.53	3.12 ms	$\frac{269}{108}$	9.63	$0.68 \ s$	$\frac{269}{107}$	8.84	39 s
$269 \\ 106$	8.80	$37.5 \mathrm{\ s}$	$269 \\ 105$	8.40	$3.01 \min$	$\frac{268}{110}$	11.92	$1.84 \ \mu s$
$\frac{268}{109}$	10.73	$3.07 \mathrm{\ ms}$	$\frac{268}{108}$	9.90	28.6 ms	$\frac{268}{107}$	9.08	$35.4 \mathrm{~s}$
$\frac{268}{106}$	8.40	$3.4 \min$	$\frac{268}{105}$	8.20	$102.7 \min$	$\frac{268}{104}$	8.10	$5.88 \min$
$267 \\ 110$	12.28	$1.57 \ \mu s$	$\frac{267}{109}$	10.87	$0.49 \mathrm{\ ms}$	$\frac{267}{108}$	10.12	32.9 ms
$267 \\ 107$	9.37	$0.97 \mathrm{~s}$	$\frac{267}{106}$	8.64	$2.25 \min$	$\frac{267}{105}$	7.90	$205 \min$
$\frac{267}{104}$	7.80	$306 \min$	$\frac{266}{109}$	10.996	$0.69 \mathrm{\ ms}$	$\frac{266}{108}$	10.336	2.16 ms
$\frac{266}{107}$	9.55	$1.21 \mathrm{~s}$	$\frac{266}{105}$	8.19	$121.8 \min$	$\frac{266}{104}$	7.50	20.09 h
$\frac{265}{109}$	11.07	$0.178 \mathrm{\ ms}$	$\frac{265}{107}$	9.77	$74.4 \mathrm{\ ms}$	$\frac{265}{105}$	8.49	$1.76 \min$
$\frac{265}{104}$	7.78	$6.58 \ h$	$264 \\ 107$	9.97	$74.1 \mathrm{\ ms}$	$\frac{264}{106}$	9.21	$0.60 \mathrm{~s}$
$\frac{264}{105}$	8.66	$154 \mathrm{~s}$	$\frac{264}{104}$	8.14	$5.03 \min$	$\frac{263}{108}$	10.67	$1.52 \mathrm{~ms}$
$\frac{263}{107}$	10.08	11.6 ms	$263 \\ 105$	9.01	$2.4 \mathrm{~s}$	$\frac{263}{104}$	8.49	$76.8 \mathrm{\ s}$
$\frac{262}{107}$	10.30	$9.51 \mathrm{ms}$	$\frac{262}{106}$	9.60	47.5 ms	$\frac{262}{105}$	9.01	$10.9 \mathrm{~s}$
$\frac{262}{104}$	8.49	$20.6 \mathrm{~s}$	$\frac{261}{107}$	10.56	$0.74 \mathrm{\ ms}$	$\frac{261}{106}$	9.80	$56.1 \mathrm{ms}$
$\frac{261}{105}$	9.22	$0.60 \mathrm{~s}$	$\frac{260}{107}$	10.47	$3.58 \mathrm{\ ms}$	$\frac{260}{104}$	8.90	$1.08 \mathrm{\ s}$
$259 \\ 106$	9.83	$50.5 \mathrm{\ ms}$	$\frac{259}{105}$	9.62	$45.9 \mathrm{\ ms}$	$\frac{259}{104}$	9.12	$0.93 \mathrm{~s}$
$258 \\ 106$	9.67	$36.1 \mathrm{ms}$	$\frac{258}{105}$	9.48	$0.42 \mathrm{~s}$	$\frac{258}{104}$	9.25	103 ms
$257 \\ 105$	9.23	$0.67 \mathrm{\ s}$	$257 \\ 104$	9.04	$1.76 \mathrm{~s}$	$\frac{256}{105}$	9.46	522 ms
$\frac{256}{104}$	8.93	$1.04 \mathrm{~s}$	$\frac{255}{105}$	9.72	$28.9~\mathrm{ms}$	$255 \\ 104$	9.058	$1.69 \mathrm{\ s}$

Table 2. Predicted α decay half-lives using the formulae (1-4).