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Underwater Robotic: localization with electrolocation

for collision avoidance

Guillaume Baffet, Pol Bernard Gossiaux, Mathieu Porez and Frédéric Boyer

Abstract— This paper proposes and compares two observers
designed to calculate the location of an obstacle. The two
methods are bio-inspired with a sense used by electric fishes
of equatorial forests: the electrolocation. Firstly, this study
presents the electrolocation and then develops two models of
emitter-sensors inspired by the electrical sense. Secondly, the
two models are used in different observers for detection and
localisation of wall obstacles. The estimation methods are based
on an Extended Kalman Filter algorithm. Observers are tested
on simulations in order to assess their potentials and to analyze
observability.

I. INTRODUCTION

The perception of aquatic surroundings is essential for

the enhancement of safety and trajectory-control systems

of underwater robots. There are various applications such

as recognition, object location and obstacle avoidance. This

study focuses on the perception in troubled and dark waters.

In these conditions, classical approaches based on sound and

optics, i.e. sonars and cameras, are nowadays inadequate.

The perception method applied here is bio-inspired from the

electric sense electrolocation discovered recently in the 50s

by H.W. Lissman [9]. This sense is employed by electric

fishes in order to explore, hunt and communicate in dark

and muddy environments [10], [16], [17].

For electric fishes, the principle of active electrolocation is

based on electric field emissions produced by an Electric

Organ Discharge (EOD, illustrated in Fig. 1). The field

EOD

Fig. 1. Electric fish, field distorted by two obstacles. The cylinder represents
an insulator, field lines are deviated whereas the cube is a conductor,
focalizing electric field.
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lines are focalized by the fish body because of its height

conductivity. Disseminated in the skin, numerous fish sensors

gather electric information, then the fish has an electric

image of it surroundings. In the presence of obstacles, the

electric field is distorted in such a way that the fish deduces

caracteristics (distance, dimension, geometry, conductivity,

..) of the obstacle.

Electrolocation has been widely discussed in biology, neuro-

science literature [3], [5], [6], however this reseach domain

has stayed open in robotics and mechatronics. In [14], B.

Rasnow presents a theoretical model of electric deformation

induced by an obstacle with spherical shape. This model is

used by J. Solberg in [15] with an eye to locate spherical

objects. The sphere location is estimated according to the

measurements of an electrical emitter-sensor. This sensor is

placed on a mobile stand which moves step-by-step. The main

differences in this present study, are the obstacle to locate

has an infinite wall shape, and the emitter-sensor is settled

on a mobile fish robot.

This study is realized in the RAAMO project, the con-

tinuation of a ROBEA project1, where the main results

are experimental bench development (Fig. 2), modeling and

feedback laws for the 3D movement of an Eel-like robot

[1], [4]. Following the biomimetic path, our objective is to

endow the Eel-like robot of a mecatronic system reproduc-

ing the electrolocation sense, in order to locate the object

for collision avoidance. With a view to accomplish this

Fig. 2. Experimental bench: on the left, Eel-like robot, on the right, a
robot vertebra.

objective, this study develops and compares two different

observers, represented in Fig. 3, denoted O f k,1 and O f k,2.

These estimators require in entry the measurements of robot

dynamic and electric sensing. They are constructed according

1RAAMO: Robot Anguille Autonome pour Milieux Opaques, 2007-2010,
ROBEA: Robotique et Entités Artificielles, Eel-robot, 2004-2007



to the same locomotion model and are different in their

emitter-sensor models: 2-spheres and 4-hemispheres. These

models are applied in extended Kalman Filters to calculate

the position and orientation of an infinite wall obstacle.

velocity, yaw rate

Entries : electric measurements

Observator Ofk,1

locomotion model

 2-sphere model

Extended Kalman Filter

Observator Ofk,2

locomotion model

4-hemisphere model

Extended Kalman Filter

main current, 

current differencesmain current

Estimations : obstacle position and orientation 

Entries : robot dynamic measurements

Fig. 3. Locating processes, observators O f k,1 and O f k,2

A. Paper organization

The next section proposes two emitter-sensor models and

a simplified locomotion model. The second part presents the

estimation process, definitions and tools for the observability

analysis. The last part of the paper describes the observer

evaluation in simulations. Table I lists the different notations.

TABLE I

NOMENCLATURE

Symbol Description
d Distance between robot and wall
α Angle between robot and wall
e Emitter-sensor tension
I Emitter-sensor main current
I f ,l , I f ,r Front, left, right current
Ir,l , Ir,r Rear, left, right current
γ Conductivity
ε Permittivity
Γenv Conductance ”water and obstacle”
L Distance between spheres
R Sphere radius
Q Charge Quantity
Vt , Vq Front and rear potentials
X,U,Y State, entry, measurement vectors
f, g Evolution, measurement functions

II. ROBOT-ELECTROLOCATION-OBSTACLE MODELING

The final mecatronic system will be composed of numer-

ous sensors in the Eel-like robot skin. However, preliminary

of the development of the whole mecatronic system (with its

all complexity), the system is analysed in two simple forms:

2-spheres and 4-hemispheres.

A. First emittor-sensor model: 2-spheres

Represented in Fig. 4, the emitter-sensor is modeled with

a dipolar comprising two spheres of radius R, separated

with a distance L ≫ R. A tension e induces opposite charge

quantities in the spheres (+Q and −Q). Current density is

created in the aquatic surroundings between the two spheres.

The total electric current I, along with charge quantities

±Q, depends on environment resistivity and so the obstacle

presence.

+Q -Q

RR L

A
e I

HeadTail

Fig. 4. 2-spheres Model of the electric emittor-sensor.

1) Current intensity I in wall presence: The wall position

relative to the robot is represented with distance d and angle

α (see Fig. 5). The wall is assumed insulating. In this

assumption, the electric current field stays clear from the wall

and is parallel in its proximity. The wall interacts with the

dipole like another dipole in location −d, π− α (illustrated

in Fig. 5), and so the current I is calculated using the method

of image [7].

Consider ε is the environnement permittivity, dt and dq are

geometric variables. Electric potentials at the spheres, Vt and
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Fig. 5. System in the presence of a wall obstacle. Illustration of the dipole
reflection.

Vq, are the sums of the potential impacts originally from the

four spheres:

Vt ≈− Q

4πε

[

1

R
− 1

L
+

1

2dt

− 1
√

4dtdq + L2

]

,

Vq ≈
Q

4πε

[

1

R
− 1

L
+

1

2dq

− 1
√

4dtdq + L2

]

,

(1)

mutual polarisation being neglected because it is assumed

that L,dt ,dq ≫ R. The potential difference Vt −Vq is equal



to tension e:

e ≈ Vt −Vq,

e ≈ Q
4πε

[

2
R
− 2

L
+ 1

2dq
+ 1

2dt
− 2√

4dt dq+L2

]

,
(2)

so charge quantity Q is formulated as the following relation-

ship:

Q ≈ 2πεR

[

(

1 + R
L

)

−R

(

dt+dq

4dtdq
− 1√

4dt dq+L2

)]

e. (3)

The total current I crossing over each sphere, entering by

the robot head, leaving by the tail, is calculated applying the

integral theorem of gauss:

I = ΦSq(
−→
j ) = γΦSq(

−→
E ) =

γ

ε
Q, (4)

where ΦS(
−→
Z ) is defined as the flow of a field

−→
Z , on the

closed surface S. The variable Sq represents a closed surface

around the head sphere,
−→
j is the current density,

−→
E is the

electric field, and γ is the environment conductivity. The

current formulation is:

I ≈ Γenve, (5)

where Γenv is the conductivity of the surroundings (obstacle

and water):

Γenv = γ2πR[
(

1 + R
L

)

−R( 2d
4d2−L2 cos2(α)

− 1√
4d2+L2 sin2(α)

)].

(6)
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Fig. 6. 4-hemispheres model of the electric emittor-sensor.

B. Second emittor-sensor model: 4-hemispheres

As shown in Fig. 6, the head and tail are now constructed

with hemispheres. Consider I f ,l (respectively I f ,r) the current

coming by left hemisphere (respectively right) of the head,

and Ir,l, Ir,r currents leaving by the tail. In the absence

of disturbances, currents satisfy the equalities I f ,l = I f ,r =
Ir,l = Ir,r = I/2, for symetric reasons. The idea is that the

presence of an obstacle on the right or on the left will

change this symetry and so the comparison between left

and right currents reproduce an stereoscopic electrolocation.

Differences between right and left currents are calculated as:

I f ,r − I f ,l ≈ −3γR3πesin(α)[ 1
(2d−Lcos(α))2

− 2d+Lcos(α)

(4d2+L2 sin2(α))3/2 ],

Ir,r − Ir,l ≈ −3γR3πesin(α)[ 1
(2d+Lcos(α))2

− 2d−Lcos(α)

(4d2+L2 sin2(α))3/2 ]

(7)

C. Robot locomotion modeling

A main objective of this study is the observability eval-

uation of measurement systems. In this view, the model

describes electrolocation and reduces locomotion representa-

tion. The evolution model represents a dipole sailing with a

velocity V , and a yaw rate ψ̇ (illustrated in Fig. 7). Simplified

dynamic equations of (d,α) are the following:

ḋ = −V cos(α),
α̇ = ψ̇ .

(8)

Mur

d

α

V

ψ

Fig. 7. Simplified locomotion model of the Eel-like robot.

III. ESTIMATORS O f k,1 , O f k,2 AND OBSERVABILITY

A. Models of the two systems

Systems O f k,1 and O f k,2 have same components in their

state vector X and entry vector U:

U = [V, ψ̇ ]⊤ = [u1,u2]
⊤ ,

X = [d,α]⊤ = [x1,x2]
⊤ .

(9)

Likewise, their evolution models are equivalents:

Ẋ = f(X,U) =
[

−u1 cos(x2),u2

]⊤
, (10)

where f is the evolution function. The two observers are

different in their measurement vectors Y and models g:

• for O f k,1:

Y = g(X,U) = I,

Y =





2πRγe[
(

1 + R
L

)

−R( 2x1

4x2
1−L2 cos2(x2)

− 1
√

4x2
1+L2 sin2(x2)

)]



 ,

(11)



• for O f k,2:

Y = g(X,U) = [I, I f ,r − I f ,l, Ir,r − Ir,l],

Y =
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(12)

Observers O f k,1 and O f k,2 are based on an extended Kalman

filter algorithm [8], [11], [2].

B. Obstacle detection

When the sensor gets away from the wall, current mea-

surement I decreases quickly and the wall becomes rapidly

”invisible”. In these conditions, observers cannot estimate

accurately the wall location, as a consequence state estimates

can diverge. For this reason, observers are ”set in motion”

only when the robot is near an obstacle, that is when

measured current I is sufficiently disturbed to infer the

obstacle presence.

C. Local observability

This section presents an observability method and defini-

tions [12], which are used in section IV in order to analyse

and to justify results.

Definition 1: Two states X1, X2 are said to be indistinguish-

able (denoted X1IX2) if for every admissible input function

U, the output function Y(t,X1,U), t ≥ 0, of the system for the

initial state X(0) = X1, and the output function Y(t,X2,U),
t ≥ 0, of the system for the initial state X(0) = X2, are equal.

The system is called observable if X1IX2 implies X1 = X2.

Definition 2: The system is called locally observable at X1,

if there is a neighborhood W of X1 such that for every

neighborhood X2 ⊂ W the relation X1IX2 implies X1 = X2.

The model is non-linear, so observability is analyzed locally,

around a state and an entry [12]. An observability matrix is

calculated according to Lie derivative, and the state is called

locally observable if the rank of this matrix is equal to the

state dimension.

IV. EVALUATION IN SIMULATION

Observers O f k,1 and O f k,2 are compared using data ob-

tained in simulation. Among numerous tests, three robot

approaches toward the wall are presented: in slalom, in full-

face and in diagonal. Fish-robot paths for the three tests are

presented in Fig. 8. During the first test (slalom), the robot

comes close to the wall, then runs parallel to it undergoing a

slalom. The yaw rate is not null in the major part of this test.

At the second test, the robot swims toward the wall with an

angle α = 0 and a yaw rate equal to zero. At the third and

latest test, the robot approaches the obstacle in a diagonal

without a yaw rate and with an angle approximately at 80o.

As regards conductivity setting, it represents a pure water

Fish robot wall

Fish robot

wall

Initial position

Final position

Initial position

Final position

Fish robot wall

Initial position

Final position

 -5        -4         -3        -2         -1          0         1          2          3          4          5    (m)  

 2

0

 -5         -4          -3         -2          -1           0          1           2           3           4       (m)  

2

0

2

0

-1                 0                 1                 2                  3                 4                (m)  

Slalom

Full face

Diagonal

(m)

(m)

(m)

Fig. 8. Robot paths for the three simulation tests. Initial and final robot
positions are traced out thickly.

with a weak conductance, about 0.01 S/m. Robot velocity V

stays constant whatever the test, and equal to 1 m/s. It is an

unfavorable case because the intended velocity of the robot

is inferior (about 0.5 m/s).

Fig. 9 presents estimation results of wall distance d and

orientation α , obtained from O f k,1 and O f k,2 observers

for the first test (slalom). Up to the fourth second, the

robot is not sufficiently close to the wall to detect the

obstacle, consequently observer estimations remain at their

TABLE II

CONVERGENCE TIME AND WALL DISTANCES.

Test Observer Time (s) Distance (m)

1er test, Slalom O f k,1 5 0.8
Ofk,2 0.3 1.4

2nd test, (⊥ wall) O f k,1 0.1 2
Ofk,2 0.1 2

3rd test, 800/wall O f k,1 8 0.65
Ofk,2 1.1 1.3
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Fig. 9. Slalom test. Observers O f k,1 and O f k,2. Estimation results of wall
position d and angle α .

initial values. From t = 4 s, electric current variations are

sufficiently important, the wall is detected, so observers

O f k,1 and O f k,2 are ”set in motion”. Estimation convergences

are significantly different according to the used observer.

In fact, estimations from observer O f k,2 are faster than the

ones of O f k,1. This can be explained because observer O f k,2

uses more information (measurements) than observer O f k,1.

Table II presents convergence times and associated wall

distance d. This table confirms the fastness of O f k,2 (0.3 s)

comparatively to O f k,1 (5 s) and shows the distance where

the location estimations are relatively accurate.

Transfered in Fig. 10, results show in the second test that

2nd test :    /wall
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Fig. 10. Second test ⊥/wall. Observers O f k,1 and O f k,2 . Estimation results
of wall position d and angle α .

the two observers provide similar estimations close to the

measurements. The obstacle is detected approximately at t ≃
2 s, and is located in a time of 0.1 s and with a wall distance

of 2 meters.

Fig. 11 retraces estimation results for the third test. In order

to give prominence to observability results, estimates were

initialized at two different values:

• initialization 1, [d = 2.5m,α = 0.1rad], and

• initialization 2, [d = 2.5m,α = −0.1rad].

The obstacle is detected at t = 8.3 s, then the convergences

become significantly different according to the distance d or

the angle α .

• As regard distance estimates, this test corroborates the

results of the first test, that is the fastest convergence of

O f k,2 estimates.

• For angle α estimates, observer O f k,2 gives satisfactory

and good results whatever the two initializations. This is

not the case for O f k,1 observer. Indeed, when α estimate

is initialized at 0.1 radians, it converges toward the

true value α ≃ 1.4 radians, whereas for an initialization

at −0.1 radians, it converges towards the false value

α ≃−1.4 radians. These different results are explained

hereinafter in the observability analysis.

3rd Test : 80°/wall
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Fig. 11. Third test 800/wall. Observers O f k,1 and O f k,2. Estimation results
of wall position d and angle α .

A. Observability analysis

Ranks of observability matrix associated to O f k,1 and O f k,2

were calculated at each time steps for the three tests. At the

first test, the observability matrix remains at a rank of two,

so the system is locally observable, tacitly confirmed by the

relatively good estimates.

In the second test, yaw rate ψ̇ and angle α are null, then

ensue different observability ranks, with a rank of 2 for O f k,2

model, which is locally observable, and a rank of 1 for O f k,1

model, which is not observable. In fact, when:



• α = 0, ψ̇ = 0, d = d1, V = V1, ∀d1, ∀V1,

the neighbours dissent from a small ξ , such as

• X1 = [d1,α = +ξ/2] and

• X2 = [d1,α = −ξ/2], (see Fig. 12),

are indistinguishable because measurements I are the same in

the two cases. So the system O f k,1 is not locally observable

(definition 2 in section III-C). If the system O f k,1 would be

improved with measurements (I f ,r − I f ,l, Ir,r − Ir,l), it would

become observable (case O f k,2, stereoscopy).

Wall

X2=(d1, -ε/2)X1=(d1, ε/2)

X3=(d2, ρ/2) X4=(d2, −ρ/2)

Fig. 12. Indistinguishable cases. Yaw rate is null, V velocity is the same,
state X1 is indistinguishable with X2, and X3 is indistinguishable with X4.

At the third test, observability ranks are equal to 2, so

states of the two systems are locally observable. However,

the state of the first system O f k,1 is not observable. Indeed,

around the state:

• α = ρ/2, ψ̇ = 0, d = d2, V = V2, ∀d2, ∀V2, ‖ρ‖ > 0,

the closed neighbours are indistinguishable (conferring the

local observability), however the two states:

• X3 = [d2,α = ρ/2],
• X4 = [d2,α = −ρ/2], (see Fig. 12)

are indistinguishable, so not observable. As a consequence,

the estimate convergence towards one or the other of these

indistinguishable states is strongly conditional on the ini-

tialization. This is shown in the third test for the angle

α estimates of observer O f k,1 (Fig 11). In one case, the

estimation converges toward α = 800 whereas in the other

case, it converges toward its opposite α = −800.

V. CONCLUSION

This study proposes two observers, O f k,1 and O f k,2, for

the location of a wall obstacle. They are based on electrolo-

cation and different emittor-sensor models: 2-spheres and 4-

hemispheres. Simulation results show that the first observer

O f k,1 provides satisfactory estimates if the state is well

initialized because this system is only locally observable. The

first observer is not sufficient because a ”good initialization”

is a priori not expectable. This justifies that the system

complexity is increased by taking account of other mea-

surements, notably electric current differences. That is done

with the second observer O f k,2, constructed with the emittor-

sensor model 4-hemispheres. This observer gives obstacle

location relative accuracy, whatever the test initializations,

and improves the observability of the perception system

using electrolocation.

A. Future Works

An emittor-sensor based on the ”2-spheres” model is under

construction and it will be placed in an experimental aquar-

ium bench. Then, future works will evaluate experimentally

the physical model ”2-spheres”, the observability analysis,

and the observers.
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