Two years of INTEGRAL monitoring of GRS 1915+105 Part 1: multiwavelength coverage with INTEGRAL, RXTE, and the Ryle radio Telescope
Résumé
(Abridged) We report the results of monitoring observations of the Galactic microquasar GRS 1915+105 performed simultaneously with INTEGRAL and RXTE Ryle . We present the results of the whole \integral campaign, report the sources that are detected and their fluxes and identify the classes of variability in which GRS 1915+105 is found. The accretion ejection connections are studied in a model independent manner through the source light curves, hardness ratio, and color color diagrams. During a period of steady ''hard'' X-ray state (the so-called class chi) we observe a steady radio flux. We then turn to 3 particular observations during which we observe several types of soft X-ray dips and spikes cycles, followed by radio flares. During these observations GRS 1915+105 is in the so-called nu, lambda, and beta classes of variability. The observation of ejections during class lambda are the first ever reported. We generalize the fact that a (non-major) discrete ejection always occurs, in GRS 1915+105, as a response to an X-ray sequence composed of a spectrally hard X-ray dip terminated by an X-ray spike marking the disappearance of the hard X-ray emission above 18 keV. We also identify the trigger of the ejection as this X-ray spike. A possible correlation between the amplitude of the radio flare and the duration of the X-ray dip is found in our data. In this case the X-ray dips prior to ejections could be seen as the time during which the source accumulates energy and material that is ejected later.