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We use a continued fraction approximation to calculate the RPA response function of nuclear
matter. The convergence of the approximation is assessed by comparing with the numerically exact
response function obtained with a typical effective finite-range interaction used in nuclear physics.
It is shown that just the first order term of the expansion can give reliable results at densities up to
the saturation density value.
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I. INTRODUCTION

There are many physical issues that require the knowledge of the response function of a medium to an external probe.
Well-known examples are the electron scattering by nuclei or the propagation of neutrinos in nuclear matter. In order
to develop a microscopic theory of response functions in finite nuclear systems one usually starts by considering the
limiting case of an infinite medium. Infinite nuclear matter as a homogeneous medium made of interacting nucleons
is a very useful and broadly used concept because of its relative simplicity and its connection with the bulk part of
atomic nuclei. A popular approach consists in using an effective nucleon-nucleon interaction adjusted to describe the
nuclear matter properties in a mean field approximation. Then, this microscopic description can be extended to finite
nuclei.

In a mean field framework the nuclear response functions must take into account the effects of long-range correlations
by the Random Phase Approximation (RPA) which is the small amplitude limit of a time-dependent mean field
approach. This is well suited for those excitations which correspond to small amplitude vibrations, the most typical of
which being the giant resonances and the low-lying collective states [1]. For the theory to be consistent, it is necessary
that the same effective nucleon-nucleon interaction generates the self-consistent Hartree-Fock (HF) mean field and
the RPA correlations which lead to the excitations of the system.

There are two types of interactions widely used in non-relativistic approaches, the zero-range Skyrme-type forces [2]
and the finite-range Gogny-type forces [3]. Skyrme forces are very often used because of their relatively simple analytic
form which allows for quite complete RPA calculations in nuclear matter [4] as well as in finite nuclei [5, 6]. On the
other hand, finite-range forces require heavier computational efforts to calculate RPA responses in nuclei [7, 8].
Furthermore, the only existing methods in this case consist in diagonalizing large size matrices in configuration space.
It would be useful to have alternative methods such as a direct calculation in coordinate space or momentum space of
RPA response functions, to avoid the increasingly large configuration spaces. This is possible with Skyrme forces [9]
but in the case of finite range forces the exchange interactions complicate the problem.

In this work we study an approximation based on a continued fraction expansion of the response function. Our
aim is to explore a calculational scheme which can be checked in infinite matter and which offers prospects for RPA
calculations with finite range forces in nuclei. The continued fraction method is known in the literature [10] and it
has been used by many authors to study response functions in the quasi-elastic regime (see Ref. [11] and references
therein). However, it is difficult to know where to truncate the continued fraction expansion to obtain a desired
accuracy. It is possible to calculate response functions in infinite matter by performing multipole expansions of the
interaction and to have numerically accurate results [12] to evaluate various approximation schemes. Therefore, the
present study aims at assessing the speed of convergence of the continued fraction expansion applied to the response
functions in nuclear matter, using as an example a Gogny force D1 [3]. We show that this expansion gives good results
as compared with the numerically exact calculations, even at lowest order.

In Sec.II we recall the basic features of the continued fraction method applied to the determination of RPA response
functions in an infinite medium, and we show analytically that it gives the correct result in the special case of a
Landau-Migdal interaction. In Sec.III we discuss the results obtained with a finite range interaction of Gogny type.
Conclusions are drawn in Sec.IV .
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II. FORMALISM

A. General framework

A general two-body interaction in momentum representation depends at most on 4 momenta. Because of momentum
conservation there are actually 3 independent momenta, in the case of a translationally invariant interaction. For the
particle-hole (p-h) case we choose these independent variables to be the initial (final) momentum k1 (k2) of the hole
and the external momentum transfer q. We follow the notations of Ref. [12] and we denote by α = (S, M ; T, Q) the
spin and isospin p-h channels with S=0 (1) for the non spin-flip (spin-flip) channel, T=0 (1) the isoscalar (isovector)
channel, M and Q being the third components of S and T . The matrix element of the general p-h interaction including
exchange can be written as:

V
(α,α′)
ph (q,k1,k2) ≡

〈q + k1,k
−1
1 , (α)|V |q + k2,k

−1
2 , (α′)〉 . (1)

To calculate the response of a homogeneous medium to an external field it is convenient to introduce the Green’s
function, or retarded p-h propagator G(α)(q, ω,k1). From now on we choose the z axis along the direction of q. In
the HF approximation the p-h Green’s function is the free retarded p-h propagator [13]:

GHF(q, ω,k1) =
f(k1) − f(|k1 + q|)

ω + ǫ(k1) − ǫ(|k1 + q|) + iη
, (2)

where ǫ(k) is the HF single-particle energy corresponding to momentum k, and the Fermi-Dirac distribution f is
defined for a given temperature T and chemical potential µ as f(k) = [1 + e(ǫ(k)−µ)/T ]−1. The HF Green’s function
GHF does not depend on the spin-isospin channel α.

To go beyond the HF mean field approximation one takes into account the long-range type of correlations by
re-summing a class of p-h diagrams. One thus obtains the well-known RPA [13] whose correlated Green’s function

G
(α)
RPA(q, ω,k1) satisfies the Bethe-Salpeter equation:

G
(α)
RPA(q, ω,k1) = GHF(q, ω,k1) + GHF(q, ω,k1)

∑

(α′)

∫

d3k2

(2π)3
V

(α,α′)
ph (q,k1,k2)G

(α′)
RPA(q, ω,k2) . (3)

Finally, the response function χ(α)(q, ω) in the infinite medium is related to the p-h Green’s function by:

χ
(α)
RPA(q, ω) = g

∫

d3k1

(2π)3
G

(α)
RPA(q, ω,k1) , (4)

where the spin-isospin degeneracy factor g is 4 in symmetric nuclear matter and 2 in pure neutron matter. In the
case of a system of particles without residual interactions the free response is obtained by calculating Eq. (4) with
the HF p-h propagator GHF, thus obtaining the well-known Lindhard function χHF.

B. Continued fraction approximation

A direct numerical solution of Eq. (3) with a general p-h interaction is possible, as it has been shown in Ref. [12]
for the Gogny interaction. However, such a method is specifically designed for infinite systems and it would be
interesting to have an alternative method which can be accurate and at the same time can be used in calculations
of finite systems. We examine now an approximate way to calculate the RPA response function, expressing it as a
continued fraction. To simplify the writing of the equations we shall employ the following conventions. First of all we
omit the variables such as q, ω or k as well as indices (α), unless necessary. For instance, equation (3) is written as

GRPA = GHF + GHFVphGRPA . (5)

Secondly, for any function F (k1) depending on a momentum k1 we denote by 〈F 〉 its integrated value over momentum
space. For example,

〈GHF〉 ≡

∫

d3k1

(2π)3
GHF(k1) , (6)
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so that Eq. (4) is simply written as

χRPA = g〈GRPA〉 . (7)

The Bethe-Salpeter equation is an integral equation which can, in principle, be solved iteratively

GRPA = GHF + GHFVphGHF + GHFVphGHFVphGHF + . . . (8)

Correspondingly, the RPA response function is written as

χRPA = χHF + g〈GHF(1)Vph(1, 2)GHF(2)〉 + g〈GHF(1)Vph(1, 2)GHF(2)Vph(2, 3)GHF(3)〉 + · · · (9)

The brackets imply integrations over chains of variables as shown here.
In Ref. [10] an approximation was suggested by defining an effective interaction Veff(q, ω, T ) such that the RPA

response function is written as

χRPA =
χHF

1 − VeffχHF
. (10)

In the RPA neglecting exchange (the ring approximation) the effective interaction does not depend on the hole
momenta k1 and k2 so that Eq. (10) is exact if one replaces Veff by Vph. However, it is important to treat direct and
exchange terms on equal footing, since they are in general of the same order of magnitude. Here, our point of view
differs from other works where the direct and exchange interactions are treated on different approximation levels [11].
We express the effective interaction as a continued fraction

Veff =
V1

1 −
V2χHF

1 −
V3χHF

1 − . . .

. (11)

Each term Vi entering this definition is deduced by expanding formally Eqs. (11) and (10) in powers of ViχHF and
identifying with Eq. (9). The explicit expression for the first two terms are:

V1 =
g〈GHFVphGHF〉

(χHF)2
,

V2 =
g〈GHFVphGHFVphGHF〉

V1 (χHF)3
− V1 . (12)

First, one can notice that the quantities GHF and χHF are complex functions of q, ω and T , and so are the Vi

and the effective interaction Veff . Second, the calculations of the Vi in the infinite medium involve only products of
functions, which is somewhat easier numerically than the full calculations of response functions where one needs to
perform matrix inversions [12]. Third, one see that V1 is just the average of the full p-h interaction over the squared
free p-h Green’s function. Therefore, the continued fraction approximation could be quite useful for calculating RPA
response functions if one checks how accurate it can be for a general interaction like the Gogny force. This is what
we shall examine in Sec. III.

C. An analytical case: the Landau-Migdal interaction

The convergence of the approximation can be explicitly seen in the schematic case of a p-h interaction of the
Landau-Migdal form containing ℓ = 0 and ℓ = 1 terms:

Vph = g {f0 + f1 cos θ12} (13)

where for brevity the same notation fi is used for the Landau parameters in the four spin-isospin channels. For such
an interaction the RPA response function can be analytically calculated (see e.g. Ref. 4):

χRPA =
χHF

1 −

(

f0 +
f1ν

2

1 + F1/3

)

χHF

, (14)
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where ν = ωm∗/(qkF), F1 = f1N0 is the dimensionless Landau parameter and N0 = gm∗kF/(2π2) is the level density
at the Fermi surface, with m∗ being the effective mass.

To compare with the continued fraction approximation, we have to evaluate Veff using the interaction (13). It is
sufficient to write explicitly the first 3 terms of the expansion of Veff and to obtain the complete series by recursion.
The integrations involving GHF have to be carried out in the Landau limit, i.e. q = 0, but finite ν. We get:

V1 = f0 + f1ν
2 (15)

V2 = −
1

3

f1F1ν
2

V1χHF
(16)

V3 =
1

9

f1F
2
1 ν2

V1V2χ2
HF

− V2 (17)

It is worth noticing that direct and exchange terms have been treated on the same footing in calculating the Vi’s. Of
course for f1 = 0 only V1 is needed and one gets the exact result. The effective interaction is

Veff = V1 + V1V2χHF +
(

V1V2V3 + V1V
2
2

)

χ2
HF + . . .

= f0 + f1ν
2

{

1 +

(

−
1

3
F1

)

+

(

−
1

3
F1

)2

+ . . .

}

= f0 +
f1ν

2

1 + 1
3F1

. (18)

One can see that this Veff leads to the exact result (14) for the RPA response function.

III. RESULTS FOR A GOGNY INTERACTION

In this section we apply the continuous fraction method to calculate response functions in infinite symmetric
matter for a realistic case, using the Gogny effective interaction D1 [3]. We choose this parametrization because at
the mean field level there is a compensation between the direct and the density-dependent contributions. Thus, it
may be expected that the relative contribution of the exchange term will be somehow enhanced. The purpose is to
demonstrate the feasibility and rapid convergence of the method. We only present results at T = 0, for which the
effects of the residual interaction are stronger.

The task of calculating the Vi’s involves carrying out integrals over an increasing number of variables. We find
convenient to use a multipole expansion of both the HF propagator GHF and the p-h interaction Vph, as we did in
the numerically exact calculation of Ref. [12]:

GHF(q, ω,k1) =
∑

ℓ

Gℓ(q, ω, k1)Yℓ0(1) ,

Vph(q,k1,k2) =
∑

ℓ,m

vℓ(q, k1, k2)Y
∗

ℓm(1)Yℓm(2) . (19)

This allows to get rid of all integrations over angles and we are left with only integrals over the absolute values of
momenta. For instance, we have

V1 =
g

(χHF)2

∑

ℓ

〈GℓvℓGℓ〉 , (20)

where the integrals implicit in the brackets refer now to the moduli ki. Similar expressions can be obtained for other
Vi’s.

We can have an idea of the convergence rate by comparing the functions V1χHF and V2χHF. This is shown in Fig. 1
for the case of a momentum transfer q=27 MeV. Notice that the scale used to plot V2χHF is about a factor of ten
larger than that of V1χHF. It can be seen that the imaginary parts of V2χHF are close to zero for the four spin-isospin
channels. The real parts are generally small compared to 1, but the situation seems less favorable in the channel
(S, T ) = (0, 0). From the behavior shown in Fig.1 one can expect a rapid convergence of the calculated responses
already at the level of V2, although perhaps slower in the case of the (0, 0) channel.

We now examine the strength functions

S(q, ω) = −
1

π
Imχ(q, ω) (21)
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FIG. 1: (Color online) Real (solid line) and imaginary (dashed line) part of V1χHF (top row) and V2χHF (bottom row) for
D1 interaction in nuclear matter at saturation density ρ0. The transferred momentum is q=27 MeV. The (S, T ) channels are
shown in each panel.

obtained at various levels of approximation, as compared with the direct numerical solution of Eq. (3) presented
in Ref. [12]. In Figs. 2-3 we show the RPA strength functions for two values of the momentum transfer, at about
kF/10 and kF. The first order gives a reliable description of the strentgh function for all channels except (0, 0) as
expected from the previous analysis. For the (0, 0) channel it is necessary to include the second order. Notice that the
agreement is independent of the value of q, as no expansion in powers of q has been done. Indeed, as it can be seen
in Eq. (11) the convergence of the approximation for the effective interaction does not rely on q but on the functions
ViχHF.
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FIG. 2: (Color online) RPA Strength function (open diamonds) compared with continuous fraction approximation (1st order:
dotted line, 2nd order: dashed line) calculated with Gogny D1 interaction in symmetric nuclear matter, at saturation density
ρ0 and momentum transfer q=27 MeV. The thin lines represent the uncorrelated HF strengths.

However, as the density increases the convergence is deteriorating. In Fig. 4 are plotted the strength functions S(0,0)

and the functions V1χHF, V2χHF at density ρ = 2ρ0 in the (0, 0) spin-isospin channel. It can be seen that V2χHF is no
longer small as compared to V1χHF and consequently, a reliable strength function should require at least the inclusion
of third order terms in the effective interaction. On the other hand, for densities smaller than ρ0 the approximation
Veff = V1χHF is sufficient to get accurate results. Of course, the specific convergence found in each channel (S, T )
depends on the specific interaction used.

Let us remind that the present approximation is not related to the relative importance of the direct and exchange
contributions to the particle-hole interaction. Had the exchange term be small as compared to the direct one, a good
approximation for the response function could be obtained by treating exactly the contribution of the latter and using
some approximation for the contribution of the former term. This is not the case for the D1 interaction, as it can
be seen in Table 1. The explicit expressions of these terms are given in Ref. [12]. As the exchange term depends on
momenta k1, k2 and their relative angle, in the Table are plotted the monopole contributions at the Fermi surface
(k1 = k2 = kF), for two values of q.
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FIG. 3: (Color online) Same as Fig.2, for q=270 MeV.
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FIG. 4: (Color online) Same as Figs. 1 and 2 for the channel (0, 0) and for ρ = 2ρ0.

IV. CONCLUSIONS

We have examined the efficiency of the continuous fraction method for calculating RPA response functions in infinite
nuclear matter using a typical finite range effective force. This issue originates from the need of having self-consistent
theoretical predictions of nuclear responses calculated with realistic interactions.

We have found that, with the Gogny interaction D1 the continued fraction method is very efficient and the exact
RPA response functions in the 4 spin-isospin channels are well reproduced already at first order. This is true when the
nuclear density is of the order of, or less than the saturation density value. At higher densities it becomes necessary to
include second and higher order terms. The rate of convergence is controlled by the decrease of the terms of successive
orders ViχHF. In our expansion the direct and exchange interactions are always treated on equal footing. This is
important since in the nuclear case usually there occurs a strong cancellation of two large numbers, see Table I.

The encouraging results obtained in infinite nuclear matter open the way to important developments. For example,
the continuous fraction method for response functions provides a simpler way to evaluate the propagation of neutrinos
in dense matter such as inside neutron stars. The accuracy of results is under control by the rate of decrease of
the successive terms ViχHF. In finite nuclei, response functions can be calculated consistently with realistic effective
interactions without diagonalizing RPA matrices of extremely large dimensions. This can be of some advantage for
studying heavy and/or deformed nuclei.
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(S,T) channel (0,0) (0,1) (1,0) (1,1)

q (MeV) 27 135 27 135 27 135 27 135

v
(D)
ℓ=0(q) 885 1129 -363 -459 845 798 -46 -146

v
(E)
ℓ=0(k1,2 = kF) -1147 -1147 917 917 -420 -420 583 583

TABLE I: Direct (D) and exchange terms (E) in MeV.fm−3 of the D1 p-h interaction in nuclear matter, for ρ = ρ0 and angular
momentum ℓ=0.
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