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Abstract

Positivity restrains the allowed domains for pairs or triples of spin observables in
polarised reactions. Various domain shapes in 1

2
+ 1

2
→ 1

2
+ 1

2
reactions are displayed.

Some methods to determine these domains are mentioned and a new one based on
the anticommutation between two observables is presented.

1 The spin observables

We consider the polarised 2 × 2 reaction

A + B → C + D , (1.1)

where A, B, C and D are spin one-half particles. An example is

p̄p → ΛΛ . (1.2)

The fully polarised differential cross section of (1.1) can be expressed as

dσ

dΩ
= I0 F

(

SA, SB, ŠC , ŠD

)

, (1.3)

where F contains the spin dependence. SA and SB are the polarisation vectors of the
initial particles (|S| ≤ 1). ŠC and ŠD are pure polarisations (|Š| = 1) accepted by an
ideal spin-filtering detector. They must be distinguished from the emitted polarisations
SC and SD of the final particles. The latter ones depend on the polarisations of the
incoming particles, e.g.,

SC = ∇
ŠC

F
(

SA, SB, ŠC , ŠD = 0
)

/ F
(

SA, SB, ŠC = 0, ŠD = 0
)

(1.4)
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F is given in terms of the Cartesian reaction parameters [1] by

F
(

SA, SB, ŠC , ŠD

)

= Cλµντ Sλ
A Sµ

B Šν
C Šτ

D . (1.5)

In the right-hand side the S ’s are promoted to four-vectors with S0 = 1. The indices
λ, µ, ν, τ , run from 0 to 3, whereas latin indices i, j, k, l, take the values 1, 2, 3, or x,
y, z. A summation is understood over each repeated index. Sx, Sy, Sz are measured in a
triad of unit vectors {x̂, ŷ, ẑ} which may differ from one particle to the other. A standard
choice is to take ẑ along the particle momentum and ŷ common to all particles and normal
to the scattering plane. For example, C0000 ≡ 1, Cxy00 ≡ Axy is an initial double-spin
asymmetry, C000y is the spontaneous polarisation of particle D along ŷ, C0y0y ≡ Dyy is a
spin transmission coefficient from B to D and C00xy ≡ Cxy is a final spin correlation.

The Cartesian reaction parameters are given by

Cλµντ = Tr{M [σλ(A) ⊗ σµ(B)] M† [σν(C) ⊗ στ (D)] } / Tr{MM† } , (1.6)

which will be symbolically abbreviated as a sort of expectation value:

(λµ|ντ) ≡ Cλµντ = 〈σλ(A) σµ(B) σν(C) στ (D)〉 , (1.7)

with σ0 = 1 ≡

(

1 0
0 1

)

.

2 The positivity constraints

The cross section (1.3) is positive for arbitrary independent polarisations of the external
particles, that is to say

F
(

SA, SB, ŠC , ŠD

)

≤ 1 for SA, SB, ŠC , ŠD ∈ unit ball |S| ≤ 1 . (2.8)

However there are positivity conditions which are stronger than (2.8). The full positivity
condition can be obtained from the positivity of the cross section matrix R defined by

〈c, d|M|a, b〉 〈a′, b′|M†|c′, d′〉 = 〈a′, b′; c′, d′|R|a, b ; c, d〉

= 〈a′, b′; c, d|R̃|a, b ; c′, d′〉
(2.9)

in terms of the helicity or transversity amplitudes 〈c, d|M|a, b〉. R̃ is the partial transpose
R, the transposition R → R̃ bearing on the final particles2. All spin observables of
reaction (1.1) can be encoded in R or R̃. The diagonal elements of R or R̃ are the fully
polarised cross sections when the particles are in the basic spin states. By construction,
R (but not necessarily R̃) is semi-positive definite, that is to say 〈Ψ|R|Ψ〉 ≥ 0 for any Ψ.

Equations (1.3), (1.5) and (1.6) can be rewritten as:

dσ

dΩ
(ρA, ρB, ρ̌C , ρ̌D) = Tr{R̃ [ρA ⊗ ρB ⊗ ρ̌C ⊗ ρ̌D] } ,

Cλµντ = Tr{R̃ [σλ(A) ⊗ σµ(B) ⊗ σν(C) ⊗ στ (D)]} / Tr R̃ ,

= Tr{R
[

σλ(A) ⊗ σµ(B) ⊗ σt
ν(C) ⊗ σt

τ (D)
]

} / Tr R ,

(2.10)

2Alternatively, keeping the same R̃, one may define R as the full transpose of that given by (2.9).
Then the partial transposition between R̃ and R would bear on the initial particles. This choice was done
in Ref. [5], where R is called “grand density matrix”.



with ρ = 1

2
(1+ S · σ), ρ̌ = 1

2
(1+ Š · σ). The last two equations of (2.10) can be inverted

as
R̃1 ≡ (24/ Tr R̃) R̃ = Cλµντ σλ(A) ⊗ σµ(B) ⊗ σν(C) ⊗ στ (D) ,

or R1 ≡ (24/ TrR) R = Cλµντ σλ(A) ⊗ σµ(B) ⊗ σt
ν(C) ⊗ σt

τ (D) .
(2.11)

The matrix R̃1 is normalised to have the same trace as the unit matrix and is directly
obtained from F replacing the Sµ’s by σµ’s.

3 Various domains for pairs of observables

For one observable, for example O = C0µ0ν ≡ 〈σµ(B) σν(D)〉 we have the trivial positivity
condition O ∈ [−1, +1]. For a pair {O1,O2} of such observables we have therefore
{O1,O2} ∈ [−1, +1]2. However, in many cases the allowed domain is more restricted
than the square. An empirical but systematic method [2, 3] to find the domain simply
consists of generating random, fictitious helicity or transversity amplitudes, computing the
observables and plotting the results the one against the other. Once the contours revealed,
it is an algebraic exercise to demonstrate rigorously the corresponding inequalities. Table 1
summarises the shapes of the domains for the sixteen independent observables of the
reaction (1.2). These domains are either the full square [−1, +1]2 or the unit disk or a
triangle.

Table 1: Domain allowed for pairs of observables: the entire square (2), the unit disk
(©), the triangle |2O1| ≤ O2 +1 (∇), or |2O2| ≤ O1 +1

(

∆
)

, where O1 is horizontal and
O2 vertical. The symbol ⊗ indicates that the pair of observables is constrained in the
unit disk, but the corresponding operators do not anticommute.
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3.1 Anticommutation method

Disk-shaped domains are, in many cases, straightforward results of anticommutation of the
observables of the pair. From the last equation of (2.10), one can consider the observables
as expectation values of operators. Since each σ2

µ is equal to the identity, we have O2 = 1.
Furthermore two such operators O and O′ differing by at least one index (λ, µ, ν or τ)
either commute or anticommute.

For pairs of anticommuting observables, disk domains result from the following theo-
rem:

If O2 = O′2 = 1 and O and O′ are anticommuting, then 〈O〉2 + 〈O′〉2 ≤ 1 . (3.12)

Proof: set x =
√

〈O〉2 + 〈O′〉2, 〈O〉 = ax, 〈O′〉 = bx. Then a2+b2 = 1 and 〈aO+bO′〉 = x.
From O2 = O′2 = 1 and OO′ + O′O = 0 one gets (aO + bO′)2 = 1 which means that
aO + bO′ has eigenvalues ±1. Its expectation value x has to be within these eigenvalues,
therefore x2 ≤ 1.

Note that a disk can occur even if the observables commute, for instance if, due to some
symmetry, O2 has the same expectation value as another operator O′

2
which anticommutes

with O1 and O3. Examples of this situation are indicated by crossed circles of Table 1.

4 Various domains for triples of observables

The empirical and anticommutation methods generalise straightforwardly to triple of ob-
servables. Figure 1 shows the boundary of the domains that we have identified for the
observables of the reaction (1.2): the unit sphere, a pyramid, an upside-down tent, a cone,
a cylinder, the intersection of two orthogonal cylinders or a double cone which is slightly
smaller than this intersection, a combination of the disk, square and triangle projections
delimiting a volume similar to a “coffee filter”, the intersection of three orthogonal cylin-
ders (larger than the unit sphere!), a tetrahedron, the intersection of two cylinders and
two planes, an octahedron, or figures deduced by mirror symmetry.

Can the domain of a triple be the whole cube? Suppose now that for instance 3
observables O1, O2, and O3, each of which has +1 and −1 as extreme eigenvalues, are
commuting and that no symmetry relates a pair of them to a non-commuting pair. Does
it means that their joint positivity domain D{O1,O2,O3} is the whole cube? A partial
negative answer is the following: If the reaction depend on N independent amplitudes,
D{O1,O2,O3} can reach at most N corners of the cube [4]. The domains shown in Figure
1 are those of the reaction (1.2), which has N = 6 and indeed none of them reaches more
than 6 corners, this number being obtained for the domain (i). More generally, if N < 8,
all triple observables are restricted in domains smaller than the cube.

5 Outlook

We have seen that the positivity restricts the pairs or triples of observables to subdomains
of the square or the cube, some of which having non-trivial shapes. Here we have presented
only two methods for determining these domains. Other methods use the Cauchy-Schwarz



Figure 1: Some allowed domains encountered in simulating randomly three observables:
the unit sphere (a), the intersection of three orthogonal cylinders of unit radius (b), the
intersection of two cylinders (c), or a slightly smaller double cone (d), a cylinder (e), a
cone (f), a pyramid (g), a tetrahedron (h), an octahedron (i), a “coffee filter” (j), an
inverted tent (k), and the intersection of two cylinders and a dihedral (l). For clarity, part
of the limiting surface is sometimes removed. Some figures transformed by parity with
respect to the centre of the cube or by interchange of the axes are also obtained.



inequality or the positivity of the subdeterminants of R whose diagonal elements are on
the diagonal of R. For exclusive reactions, R is of rank one, therefore all diagonal 2 × 2
subdeterminants vanish. This links the observables by a large number of quadratic iden-
tities, from which inequalities can be obtained straightforwardly. We must tell, however,
that inequalities expressing the positivity of R define joint domains for many observables
and it is sometimes a straightforward but lengthy task to obtain the projected domain
for two or three observables.

We thank M. Elchikh and O.V. Teryaev for help, useful discussions and comments.
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