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IN2P3-CNRS, F-91406 Orsay Cedex, France

2Center for Mathematical Sciences, University of Aizu,

Aizu-Wakamatsu, 965-8580 Fukushima, Japan

3Department of Physics, Tohoku University, Sendai, 980-8578, Japan

(Dated: March 23, 2008)

We perform Hartree-Fock-Bogoliubov (HFB) calculations for semi-magic Calcium,

Nickel, Tin and Lead isotopes and N=20, 28, 50 and 82 isotones using density-

dependent pairing interactions recently derived from a microscopic nucleon-nucleon

interaction. These interactions have an isovector component so that the pairing gaps

in symmetric and neutron matter are reproduced. Our calculations well account for

the experimental data for the neutron number dependence of binding energy, two

neutrons separation energy, and odd-even mass staggering of these isotopes. This

result suggests that by introducing the isovector term in the pairing interaction, one

can construct a global effective pairing interaction which is applicable to nuclei in a

wide range of the nuclear chart. It is also shown with the local density approxima-

tion (LDA) that the pairing field deduced from the pairing gaps in infinite matter

reproduces qualitatively well the pairing field for finite nuclei obtained with the HFB

method.

PACS numbers: 21.30.Fe, 21.60.-n
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I. INTRODUCTION

The origin of the pairing correlations in finite nuclei has been under debate since the for-

mulation of the BCS theory [1] and its application to atomic nuclei [2, 3]. For many-electron

systems, the phonon coupling is essential in order to get an attractive pairing interaction

between electrons. In a marked contrast, the nuclear interaction is already attractive in the
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1S0 channel even without the phonon coupling. Nevertheless, it has been shown that the

phonon coupling in uniform matter (often referred to as a medium polarization effect) as well

as in finite nuclei may lead to an important contribution to the nuclear interaction in the

particle-particle channel. In fact, several many-body methods have been developed recently

for uniform matter in order to include these effects in the calculation of the pairing gap.

These include a group renormalization method [4], Monte-Carlo calculations [5, 6, 7] and

extensions of the Brueckner theory [8, 9]. Most of those calculations have been performed

for pure neutron matter, because of the large interest in the application to neutron star

physics. For instance, the pairing gap is important to understand the cooling of neutron

stars, as it modifies the specific heat as well as some neutrino emission processes. These

calculations, except for the one presented in Ref. [5], predict a reduction of the pairing gap

in neutron matter.

It has been known that the pairing correlations play an important role in finite nuclear

systems. The relation between finite nuclei and uniform matter, however, is not straight

forward (see Ref. [10] for a complete review). In neutron stars, the number of protons is

much smaller than that of neutrons. No finite nuclei have such extreme proton-to-neutron

ratio. Also, the density ranges from very low densities up to several times nuclear matter

saturation density in neutron stars, while it is close to the saturation density in finite nuclei.

Despite these differences, one might view finite nuclei as a point in the phase diagram, and

extrapolate nuclear models to infinite matter under the extreme conditions realized in stars.

Hence, there are mainly two different approaches for a calculation of pairing correlations in

finite nuclei. The first approach is based on phenomenological pairing interactions whose

parameters are determined using some selected data and the pairing interaction is usually not

uniquely determined for the whole nuclear chart (see Refs. [11, 12] and references therein),

while the second approach starts from a bare nucleon-nucleon interaction and eventually

includes the effect of phonon coupling [13, 14, 15]. A calculation with the latter approach

has recently been carried out, based on the nuclear field model. The results of this approach

have suggested that the medium polarization effects significantly contribute to the pairing

interaction in finite nuclei and in fact increase the pairing gap.

This result is apparently contradict with the results in infinite neutron matter, where

the phonon coupling tends to reduce the pairing correlations. In order to understand the

apparent contradiction, an extended Brueckner calculation including the medium polariza-
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tion effects has been performed in Ref. [9] both for symmetric and neutron matter. This

calculation has shown that the medium polarization effects act differently in neutron mat-

ter and in symmetric matter. That is, the medium polarization effects do not reduce the

pairing gap in symmetric matter, contrary to that in neutron matter. Instead, in symmetric

matter, the neutron pairing gap is much enlarged at low density compared to that of the

bare calculation without the polarization effect. This enhancement takes place especially

for neutron Fermi momenta kFn < 0.7 fm−1. This provides at least a part of the reason why

the medium polarization effects increase largely the pairing correlation in finite nuclei but

decrease it in neutron matter.

In Ref. [16], we have proposed effective density-dependent pairing interactions which

reproduce both the neutron-neutron (nn) scattering length at zero density and the neutron

pairing gap in uniform matter. In order to simultaneously describe the density dependence of

the neutron pairing gap for both symmetric and neutron matter, it was necessary to include

an isospin dependence in the effective pairing interaction. Depending on whether the medium

polarization effects on the pairing gap given in Ref. [9] are taken into account or not, we have

invented two different density dependences in the pairing interaction. The comparison of

predictions of these interactions for finite nuclei with observed nuclear properties should shed

light on the links between the origin of pairing in finite nuclei and that in uniform matter.

This is the main motivation of this work, and, in this paper, we apply these interactions to

semi-magic nuclei, such as Ca, Ni, Sn and Pb isotopic chains. We also investigate isotone

chains such as N=20, 28, 50, and 82.

The paper is organized as follows. In Sec. II we briefly remind the main steps for the

theoretical HFB approach and the procedure we have taken in Ref. [16] to construct the

density-dependent contact pairing interactions. Results and predictions for the semi-magic

Ca, Ni, Sn and Pb isotopes and N=20, 28, 50 and 82 isotones up to the expected drip lines

are presented in Sec. III. In Sec. IV, a local density approximation is discussed in order to

better understand the link with the uniform matter. Finally, the analysis of the results and

the conclusions are given in Sec. V.
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II. HARTREE-FOCK-BOGOLIUBOV APPROACH WITH CONTACT DENSITY

DEPENDENT INTERACTIONS

The self-consistent Hartree-Fock-Bogoliubov (HFB) approach in coordinate representa-

tion has been presented in detail in Ref. [17]. For the sake of completeness, here we sketch

briefly the main part of the model.

A. HFB equations with spherical symmetry

Assuming spherical symmetry and zero range effective nuclear interactions, the radial

HFB equations have the form (τ=n, p):





hτ (r) − λτ ∆τ (r)

∆τ (r) −hτ (r) + λτ









Uτ,i(r)

Vτ,i(r)



 = Eτ,i





Uτ,i(r)

Vτ,i(r)



 , (1)

where Eτ,i is the quasiparticle energy, λτ is the chemical potential, hτ (r) is the mean field

Hamiltonian, and ∆τ (r) is the pairing field. The HFB approach consists of solving Eq. (1)

as a set of integrodifferential equations with respect to the amplitudes, Uτ,i(r) and Vτ,i(r),

as functions of the position coordinate r. In the calculations presented here the mean field

Hamiltonian hτ (r) is calculated with the SLy4 Skyrme force [18], and depends on the particle

density,

ρτ (r) =
1

4π

∑

i

(2ji + 1)V∗

τ,i(r)Vτ,i(r) , (2)

as well as on the kinetic and the spin-orbit densities. In Eq. (2), the summation is done over

the complete space, including bound and continuum states. For the pairing field, we use a

density-dependent contact force as will be given in Eq. (5) in the next subsection. With this

force the pairing field is local and is given by:

∆τ (r) =
v0gτ [ρ, β]

2
ρ̃τ (r) , (3)

where the total density is ρ = ρn+ρp, the asymmetry parameter is defined as β = (ρn−ρp)/ρ,

and the pairing density ρ̃τ (r) is

ρ̃τ (r) = −
1

4π

∑

i

(2ji + 1)U∗

τ,i(r)Vτ,i(r) . (4)

Because of the nature of the contact interaction, the pairing density ρ̃τ is divergent, unless

a cutoff energy is introduced in the sum i of Eq. (4).
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The continuum states are modelized in this paper as discrete states provided by the

finite-box boundary conditions (Rbox = 25 fm). It has been proven that this approximation

in the canonical basis provides an accurate description of the densities and the pairing

densities [19, 20].

B. The density-dependent pairing interactions

In Ref. [16], we have taken a contact interaction vττ acting on the singlet 1S channel,

〈k|vττ |k
′〉 =

1 − Pσ

2
v0 gτ [ρ, β] θ(k, k′) , (5)

where the cutoff function θ(k, k′) is introduced to remove the ultraviolet divergence in the

particle-particle channel. A simple regularization could be done by introducing a cutoff

momentum kc. That is, θ(k, k′) = 1 if k, k′ < kc and 0 otherwise. In finite systems, a cutoff

energy ec is usually introduced instead of a cutoff momentum kc. A detailed discussion on the

different prescriptions for the cutoff energies in uniform matter are presented in Appendix A

of Ref. [16]. For a sake of completeness of this paper, we report briefly the prescription 3

of Ref. [16] which is defined consistently with the HFB model. The cutoff is defined with

respect to the quasi-particle energy
√

(ǫn(k) − νn)2 + ∆2
n < Ec. This leads to the following

definition of the cutoff momenta:

k±

c =
[

2m∗

(

νn ±
√

E2
c − ∆2

n

)]1/2

/~ (6)

(if Ec > ∆n). If k−

c becomes imaginary for very small νn, we set k−

c = 0. The parameters of

the pairing interactions have been obtained within this prescription.

In Eq. (5), the interaction strength v0 is determined from the low-energy neutron-neutron

scattering phase-shift [16, 21, 22, 23], that fixes the relation between v0 and the cutoff

energy ec, while the density-dependent term gτ [ρ, β] is deduced from the realistic nucleon-

nucleon interaction calculations of the pairing gaps in symmetric and neutron matter. The

isospin symmetry breaking of the bare nucleon nucleon interaction is neglected. The density-

dependent term accounts for the medium effects and satisfies the boundary condition gτ → 1

for ρ → 0. In Ref. [16], we have introduced an isovector dependence in the density-dependent

term gτ [ρ, β] as gτ = g1
τ + g2. In the neutron pairing channel, the term g1

n is given as

g1
n[ρ, β] = 1 − fs(β)ηs

(

ρ

ρ0

)αs

− fn(β)ηn

(

ρ

ρ0

)αn

, (7)
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interaction Ec ηs αs ηn αn η2

IS+IV Bare 40 MeV 0.664 0.522 1.01 0.525 0.0

IS+IV Induced 40 MeV 1.80 0.27 1.61 0.122 0.8

IS Bare 40 MeV 0.664 0.522 0.664 0.522 0.0

TABLE I: Parameters for the density-dependent functions, g1 and g2 defined in Eqs. (7) and (8).

These parameters are obtained from the fit to the pairing gaps in symmetric and neutron matter

obtained by the microscopic nucleon-nucleon interaction. See the text for details.

where ρ0=0.16 fm−3 is the saturation density of symmetric nuclear matter, and the term g2

is added only to the interaction IS+IV Induced and is given by

g2[ρ] = η2

[

(

1 + e
kF−1.15

0.05

)−1

−
(

1 + e
kF−0.1

0.08

)−1
]

. (8)

Notice the slight modifications of the parameters in Eq. 8 compare to [16]. In the proton

pairing channel, the isospin symmetry of the matrix element (5) gives rise to the relation

g1
p[ρ, β] = g1

n[ρ,−β] . (9)

The goal of the functional form in Eqs. (7) and (8) is to reproduce the theoretical calculation

of the pairing gap in both symmetric and neutron matter and also to be used for prediction

of the pairing gap in asymmetric matter. In finite nuclei, the densities ρn and ρp acquire an

explicit dependence on the coordinate r, which defines the density ρ(r) and the asymmetry

parameter β(r). In Eq. (7), the interpolation functions fs(β) and fn(β) should satisfy the

following conditions, fs(0) = fn(1) = 1 and fs(1) = fn(0) = 0. It should however be noticed

that the interpolation functions fs(β) and fn(β) cannot be deduced from the adjustment of

the pairing gap in symmetric and neutron matter. In this paper, we choose fs(β) = 1− fn(β)

and fn(β) = β.

We adjust the parameters of the contact pairing interaction so that the position and

the absolute value of the maxima of the pairing gaps of the nucleon-nucleon interaction in

symmetric and neutron matter are reproduced. For the bare pairing gap, the maximum

is located at kFn = 0.87 fm−1 with ∆n=3.1 MeV for both symmetric and neutron matter,
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while for the screened pairing gap, the maximum is at kFn = 0.60 fm−1 with ∆n=2.70 MeV

for symmetric matter and kFn = 0.83 fm−1 and ∆n=1.76 MeV for neutron matter. We

call the interaction fitted to the bare pairing gap the IS+IV Bare interaction, while that

to the screened gap the IS+IV Induced interaction. In order to estimate the importance of

the isovector term of the interaction, we have also parameterized a pure isoscalar interac-

tion, IS Bare, so as to reproduce the bare pairing gap in symmetric matter. The obtained

parameters are given in Table I. The best agreement with the results of the microscopic

nucleon-nucleon interaction in Ref. [9] is obtained with a cutoff energy Ec = 40 MeV [16].

III. RESULTS FOR FINITE NUCLEI

It is a rather difficult task to extract the pairing gaps from the experimental data to

compare with the theoretical results (see for instance Ref. [25] and references therein). In

the following, we thus compare the predictions of the pairing interactions with different

experimental data [26]: the masses per particle B(N, Z)/A, two neutrons separation energies

defined as S2n = B(N, Z) − B(N − 2, Z), and the odd-even mass staggering (OES) defined

as

∆(3)(N, Z) ≡ −
πN

2

[

B(N − 1, Z) − 2B(N, Z)

+B(N + 1, Z)
]

, (10)

where πN = (−)N is the number parity. For even nuclei, the OES is known to be sensible

not only to the pairing gap, but also to shell effects and deformations [25, 27]. Therefore,

the comparison of a theoretical pairing gap with OES should be done with caution. At a

shell closure, the OES (10) does not go to zero as expected, but it increases substantially

(see Fig. 1). This large gap is an artifact due to the shell effect, which is totally independent

of the pairing gap itself. In the following, we shall thus remove all the nuclei at the shell

closures from the comparison to experimental OES.

The effects of the isospin asymmetry on the pairing gap has been suggested for a long

time. In Ref. [28], the mass number dependence of the pairing gap has been extracted from

the experimental OES for nuclei outside the shell closures within the range 50 < Z < 82 and

82 < N < 126. Two phenomenological fits have been suggested. The first one, which we call

isoscalar, is only dependent on the mass number A, and reads ∆IS
n = 13.3/A1/2 MeV. On
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the other hand, the second one, which we call isovector, has a quadratic dependence on the

neutron-proton asymmetry, and is expressed as ∆IS+IV
n = [7.2−44(1−2Z/A)2]/A1/3 MeV. We

represent in Fig. 1 the experimental OES ∆
(3)
n in Eq. (10) together with the phenomenological

fits, ∆IS
n and ∆IS+IV

n . From comparisons between the fits and the experimental OES in Fig. 1,

it is difficult to extract the quadratic dependence of the pairing gap. Namely, the fits ∆IS
n

and ∆IS+IV
n reproduce the experimental OES equally well in general, despite an appreciable

difference in the predictions in very heavy isotopes. The fitting functions are supposed to

describe the smooth behavior of the pairing gaps with A and Z, but are not able to describe

the fine structure of the pairing gap in a single nuclei. For instance, the drop of the pairing

gap at a shell closure is totally absent.

The experimental binding energies per particle B/A is compared with our results for

the two pairing interactions, IS+IV Bare and IS+IV Induced, in Fig. 2. The results can

be classified into two groups: the first group is the one of the light isotopes (Ca and Ni)

for which the HF calculation is already close to the experimental masses, while the second

group is the one of the heavier isotopes (Sn and Pb) for which HF calculations underestimate

the binding energies (see the solid line). When the pairing is switched on, the interaction

IS+IV Induced reproduces the experimental masses in the first group of isotopes within the
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FIG. 1: (Color online) The experimental odd-even mass staggering ∆
(3)
n given by Eq. (10) for the

semi-magic Ca, Ni, Sn and Pb isotopes. It is compared with the phenomenological fits ∆IS
n =

13.3/A1/2 MeV and ∆IS+IV
n = [7.2 − 44(1 − 2Z/A)2]/A1/3 MeV proposed in Ref. [28].
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FIG. 2: (Color online) Comparison of the HFB calculations with the experimental binding en-

ergies, B/A. The solid line shows the results without pairing interaction (HF), while the dot-

ted, short dashed, and long dashed lines are obtained with the pairing interactions IS+IV Bare,

IS+IV Induced and IS Bare, respectively. For each isotopic chain, we also plot the difference

δ(B/A) = B(th.)/A − B(exp.)/A between the theoretical and the exprimental values for the bind-

ing energy. All units are given in MeV. See the text for more details.

same accuracy of HF, while the interaction IS+IV Bare overestimates the masses for this

group. In contrast, the second group of isotopes behaves in an opposite way: the pairing

interaction IS+IV Bare leads to masses which are much closer to the experimental ones

as compared to the IS+IV Induced interaction, or to the HF calculation. The interaction

IS Bare will be discussed latter on. When one compares the difference between the theoretical

and the experimental binding energies δ(B/A), it is observed that the pairing interaction

IS+IV Bare flattens this difference as a function of neutron number, even for the first group

of light isotopes. These results suggest that the different behavior between the first and

the second groups, rather than a pairing effect, originates from an effect of the mean field

Skyrme interaction (SLy4), which has been parameterized so as to reproduce better the
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FIG. 3: (Color online) Comparison between HFB and experiments for the two-neutron separation

energies S2n. The value δ(S2n) is defined as δ(S2n) = S2n(th.)−S2n(exp.). See the caption of Fig. 2

and the text for details.

binding energies of intermediate and heavy nuclei rather than those of the light ones.

The effect of the pairing correlations can be clearly seen in the two neutrons separation

energy S2n, which is sensible to the relative difference in binding energies, and somehow

reduces the effect of the mean field interaction. The results of HFB calculations for S2n

are shown in Fig. 3 in comparison with experimental data. We now see that the pairing

interaction IS+IV Bare works better than HF or the IS+IV Induced interaction for all the

four selected isotopic chains. The dependence of S2n on the neutron number N is much

improved using the interaction IS+IV Bare than IS+IV Induced, even for the group of light

isotopes. It should be reminded that no tuning for each isotopes has been done for any of

these pairing interactions.

Let us next compare the experimental OES with the mean pairing gap calculated from
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FIG. 4: (Color online) Comparison of the HFB pairing gaps ∆n calculated with Eq. (11) with the

OES given by ∆(3). The value δ(∆n) is defined as δ(∆n) = ∆n(th.)−∆n(exp.). See the caption of

Fig. 2 and the text for details.

the pairing field ∆n(r) as,

∆n ≡
1

N

∫

d3rρn(r)∆n(r) , (11)

where N =
∫

d3rρn(r) is the number of neutrons. In the next section, we will discuss also

another formula for the mean pairing gap. The results are shown in Fig. 4. We remind the

reader that this comparison should be taken with caution and we have removed from the

comparison the OES calculated at the neutron shell closure. It is observed that the pairing

gaps obtained with the interaction IS+IV Induced are systematically too small along the

isotopic chains. This is the reason why the results with the interaction IS+IV Induced are

close to the HF calculations in Figs. 2 and 3. Contrary, the results with the interaction

IS+IV Bare are in good agreement with the experimental OES, including the isotopic trend

for all the four isotopic chain.
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FIG. 5: (Color online) Comparison of the HFB pairing gaps ∆p calculated with Eq. (11) with the

OES given by ∆(3). The value δ(∆p) is defined as δ(∆p) = ∆p(th.)−∆p(exp.). See the caption of

Fig. 2 and the text for details.

The proton-proton pairing interaction should also be analyzed in order to design a global

pairing interaction applicable in the whole nuclear chart, It should however be noticed that

in our calculations the Coulomb interaction has not been included in the pairing channel.

The effect of the Coulomb interaction on proton pairing gap has however been estimated

for instance in Ref. [29] and is expected to decrease the pairing gap by 100 to 200 keV. A

pertubative estimate of the Coulomb effect on the proton pairing gap has been evaluated and

is expected to be of order of 0.5-1MeV on the pairing gain energy [30]. This is consistent

with the estimation of Ref. [29] for the pairing gap. Neglecting the Coulomb effect, our

calculation is therefore a semi-quantitative estimate of the proton pairing gap, which could

still be interesting in order to analyze its isotonic dependence. In Fig. 5 we explore the

proton pairing gap in some isotonic chains such as e.g. N=20, 28, 50 and 82. The figure
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shows significant improvement in proton-rich isotones by IS+IV Bare pairing compared

with IS Bare only. As already observed in the neutron channel, the IS+IV Induced pairing

interaction is not strong enough to lead to reasonable proton pairing gaps.

In order to understand the differences between the interactions IS+IV Bare and IS+IV In-

duced, we plot in Fig. 6 the pairing gaps in symmetric, asymmetric (asymmetry parameter

β = 0.4) and neutron matter obtained with these interactions. From this figure, it is clear

that the pairing gap for symmetric matter obtained with the interaction IS+IV Induced

is much smaller than that with the interaction IS+IV Bare for kFn > 0.7 fm−1, causing

the weak pairing effects in the finite nuclei. The medium polarization effects estimated in

Ref. [9] shift the density at the peak position of the pairing gap by a factor of ∼3 from

that of the bare gap, i.e., kFn ∼ 0.87 fm−1 (ρn ∼ 0.22 × 10−3 fm−3) to kFn ∼ 0.60 fm−1

(ρn ∼ 0.73×10−4 fm−3). This change may cause an enhancement of the pairing correlations

in very low density regime and cause BCS-BEC crossover phenomena [16]. However, the

comparison with the experimental OES shown in Fig. 4 clearly indicates that this medium

polarization effect estimated in infinite matter gives rise to too weak pairing correlations in

finite nuclei.

Let us now discuss the role of the isovector term. Since the pairing interaction IS+IV Bare

is in good agreement with the experimental data as shown in Figs. 2, 3 and 4, we focus on

this pairing interaction. To this end, we construct an isoscalar pairing interaction, IS Bare,

which is fitted to the bare gap as for the interaction IS+IV Bare, but using only the gap

in the symmetric nuclear matter. The parameters for the interaction IS Bare is listed in

Table I (notice ηs = ηn and αs = αn). The pairing gap in uniform matter obtained with this

isoscalar interaction is shown in Fig. 6 by the dashed line. While in symmetric matter, the

interactions IS+IV Bare and IS Bare lead to identical pairing gaps to each other, the isoscalar

interaction IS Bare produces a much larger pairing gap than the IS+IV Bare interaction,

as the asymmetry increases. Moreover, the parameters ηs and ηn in Table I show that the

IS+IV Bare interaction is of mixed surface and volume type in symmetric matter (ηs=0.664)

as suggested in Ref. [31], and of pure surface type in neutron matter (ηn = 1.01), while the

IS Bare pairing interaction is of mixed type independently of the asymmetry. This difference

should manifest itself in the results of finite nuclei. The binding energy, the two neutrons

separation energy, and the average pairing gap obtained with the interaction IS Bare are

shown by the dashed line in Figs. 2, 3 and 4, respectively. It is clearly seen that while these
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FIG. 6: (Color online) Pairing gaps in uniform matter obtained from the solution of the BCS

equations with the pairing interactions IS+IV Bare, IS+IV Induced, IS Bare and the isoscalar

interaction of Ref. [11] with αs = 1/2 and ηs = 1. Notice that the results of IS+IV Bare is identical

to those of IS Bare in symmetric matter. See the text for more details.

interactions produce similar results for N = Z nuclei, the isotopic behavior is somewhat

different. From Fig.4, it is seen that both the interactions IS+IV Bare and IS Bare produce

arches of the paring gap in between the neutron magic numbers, but the arches induced by

the isoscalar pairing interaction IS Bare are much larger in amplitude than the one produced

by the interaction IS+IV Bare. The difference between the calculated and the experimental

pairing gap, δ(∆n), estimated with the interaction IS+IV Bare is indeed flatter than that

with the interaction IS Bare. This behavior suggests clearly the importance of the isovector

component of the pairing interactions as it has already been shown for uniform matter in

Fig. 6. We believe that this will bring an important improvement in the description of

pairing in nuclei. Further information of the isovector pairing interaction might be obtained

from experimental study of binding energies of very exotic nuclei and excitation spectra of

various isotopes.

It was pointed out that lower power of the density dependence αs < 1/2 with ηs = 1

in the isoscalar pairing interaction gives rise to anomalous behavior in the particle and
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pairing densities in neutron rich nucleus 150Sn [11]. In Fig. 7, the asymptotic behaviour

of the particle and pairing densities obtained for the set of interactions in Ref. [11] are

compared with these obtained for the IS+IV Bare interaction in this neutron rich nucleus.

We represent the densities only for the IS+IV Bare interaction because in the asymptotic

tail, the IS+IV Bare, IS+IV Induced and IS Bare are almost undistinguishable. It is shown

that despite the fact that the value of the power of the density dependence is around 1/2

for the IS+IV Bare and IS Bare interactions, and less for the IS+IV Induced interaction,

no anomalous behavior in the densities is observed, contrary to the interactions studied in

Ref. [11]. We have represented the pairing gaps in symmetric, asymmetric and neutron

matter for the isoscalar interaction with αs = 1/2 and ηs = 1 in Fig. 6 (see the dot-dashed

line). This interaction induces large values of the pairing gaps at low density from symmetric

to neutron matter. We have indeed found that the interactions with power of the density

dependence αs=1/2, 1/3 and 1/6 in Ref. [11] have a peak in the pairing gap of absolute value

of about 6 MeV at kFn ∼ 0.7 fm−1 (ρn ∼ 10−2 fm−3) in symmetric nuclear matter. The

pairing gaps are even increasing when going from symmetric to neutron matter, as we already

pointed out as a typical behavior for isoscalar pairing interactions. Hence, the anomalous

behavior described in Ref. [11] might be related to an anomalous value of the pairing gap

at very low density rather than to the value of the power of the density dependence of the

pairing interaction, as it was claimed. In Ref. [11], the pure surface interactions with ηs = 1

have been adjusted to the value of the pairing gap ∆n = 1.25 MeV in 120Sn. From our study,

one could conclude that these pure surface interactions do not reproduce the pairing gaps in

uniform matter obtained from the bare microscopic nucleon nucleon interaction. In order to

reproduce them, it is indeed necessary to take the parameter ηs as adjustable and generate

mixed surface and volume pairing interactions, as it has been done in Refs. [16, 23, 31].

The interaction IS+IV Bare can be parameterized in a form

g3
n[ρn, ρp] = 1 − η1

(

ρn

ρ0

)α1

− η2

(

ρp

ρ0

)α2

, (12)

g3
p[ρn, ρp] = 1 − η1

(

ρp

ρ0

)α1

− η2

(

ρn

ρ0

)α2

, (13)

with the parameters η1 = 1.01, α1 = 0.525, η2 = −0.058, α2 = 0.559, and the cutoff energy

Ec = 40 MeV. The bare pairing gap could be reproduced by setting gτ = g3
τ in Eq. (5). In the

neutron pairing channel, the very weak dependence on the proton density is shown from the

value of the parameter η2 which is close to zero. With the density-dependent terms (12) and
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FIG. 7: (Color online) Comparision of particle and pairing densities for the nucleus 150Sn obtained

with several sets of interaction in Ref. [11] and with the IS+IV Bare interaction. See the text for

more details.

(13), we can obtain similar results in finite nuclei to the ones obtained with the interaction

IS+IV Bare with the terms (7) and (9).

Let us discuss the qualitative relation between the density-dependent term g1
τ and g3

τ

in the case of the IS+IV Bare interaction. Neglecting η2 and expressing the variables as

ρn = (1 + β)ρ/2 and ρp = (1 − β)ρ/2 in Eqs. (12) and (13), we obtain to the first order

in β that g3
τ ≈ g1

τ if the following relations are respected: ηs = η1/2α1 , αs = α1, ηn =

ηs(1 + α1), and αn = α1. These relations provide a link between the parameters of the

density-dependent terms g1
τ and g3

τ . Moreover, the parameterization (12) is consistent with

the isospin dependence fs(β) = 1 − fn(β) and fn(β) = β which is adopted in the present

study.
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IV. LINKS BETWEEN PAIRING IN UNIFORM MATTER AND IN NUCLEI

To understand the link between pairing in uniform matter and in nuclei, let us discuss in

this section a local density approximation (LDA) for the pairing field ∆n(r), defined as

∆LDA
n (r) ≡ ∆unif

n (kFn(r), xp(r)) , (14)

where ∆unif
n (kFn, xp) is the pairing gap in uniform matter calculated for a given Fermi mo-

mentum kFn and proton fraction xp. The LDA consists in replacing these variables by the

local ones defined in finite nuclei. The local Fermi momentum kFn(r) and the local proton

fraction xp(r) are thus defined as,

kFn(r) =
(

3π2ρn(r)
)1/3

, (15)

xp(r) = ρp(r)/ (ρn(r) + ρp(r)) . (16)

The neutron and proton densities, ρn(r) and ρp(r), are given by the HFB calculation in

finite nuclei. We represent kFn(r) and xp(r) for two mid-shell nuclei, 110Sn and 150Sn in

Fig. 8. At the surface of the nuclei, the proton fraction is decreasing faster in 150Sn than

in 110Sn and the local Fermi momentum kFn(r) is slightly larger in 150Sn than in 110Sn.

Then, if pairing correlations are important at the surface, the pairing fields ∆LDA
n (r) in

the LDA should depend on the isospin properties of the pairing interaction. For these

nuclei, the pairing fields in the LDA are shown in Fig. 9 for each of the pairing interactions

IS+IV Bare, IS+IV Induced and IS Bare. To this end, we have calculated the solution

of the BCS equations in asymmetric matter [16] and used it as the pairing gap in the
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FIG. 8: (Color online) The neutron Fermi momentum and the proton fraction, obtained with the

HFB densities, for two mid-shell Sn nuclei, 110Sn (the solid line) and 150Sn (the dashed line).
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(the dashed line) with that of the HFB calculations (the solid line) for the 110Sn and 150Sn nuclei.

The pairing fields obtained with the different pairing interactions, IS+IV Bare, IS+IV Induced and

IS Bare, are plotted separately.

uniform matter ∆unif
n (kFn, xp), that is the same as the ones represented in Fig. 6. For a

comparison, the pairing fields ∆n(r) obtained with the HFB calculations are also plotted

in Fig. 9. It is clear from the figure that the pairing interactions IS+IV Bare and IS Bare

have a mixed character of surface and volume types, while the pairing field obtained with

the interaction IS+IV Induced is strongly surface peaked. It is surprising that the LDA

provides not only qualitative but also quantitative description of the pairing field in finite

nuclei. Nevertheless, finite size effects which are neglected in the LDA are not negligible,

and the LDA overestimates the pairing field by about 10-20% for the pairing interactions of

the mixed volume and surface type correlations, like the IS+IV Bare and IS Bare ones, and

by 50% for the pure surface type pairing correlations, like the IS+IV Induced interaction.

From the pairing field, one could deduce the mean pairing gap according to Eq. (11). We

show in Table II those mean pairing gaps obtained for 150Sn for the set of pairing interactions

IS+IV Bare, IS+IV Induced, and IS Bare. In addition, we also calculate the pairing gap
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nuclei pairing HFB LDA

interactions ∆n ∆̃n ∆LDA
n ∆̃LDA

n

(MeV) (MeV) (MeV) (MeV)

110Sn IS+IV Bare 2.04 2.07 2.33 2.32

IS+IV Induced 0.39 0.57 0.68 1.19

IS Bare 2.32 2.32 2.60 2.53

150Sn IS+IV Bare 1.72 1.71 2.16 2.04

IS+IV Induced 0.61 0.77 0.76 1.06

IS Bare 2.67 2.53 3.13 2.79

TABLE II: The mean pairing gap ∆n and ∆̃n for 110Sn and 150Sn calculated with Eqs. (11)

and (17), respectively. These are obtained by using either either the HFB pairing field ∆n(r) or

the LDA pairing filed ∆LDA
n (r) for the three density-dependent pairing interactions, IS+IV Bare,

IS+IV Induced and IS Bare.

with another expression,

∆̃n ≡
1

Ñ

∫

d3rρ̃n(r)∆n(r) , (17)

where Ñ ≡
∫

d3rρ̃n(r) is the average number of neutrons participating to the pairing field.

As expected, the average pairing gap is overestimated in the LDA approximation. For the

interaction IS+IV Induced, the LDA even predicts a pairing gap smaller than the “ex-

perimental” one. It should also be remarked from the Table II that the average pairing

gaps ∆n and ∆̃n are very similar for the surface and volume mixed-type pairing interac-

tions IS+IV Bare and IS Bare, while there are important differences for the surface peaked

interaction IS+IV Induced.

Notice that these LDA results are model dependent in a sense that they rely on a model

for the neutron and proton density profile. However, except for this aspect, the local density
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approximation is qualitatively justified and the variation of the densities due to the pairing

correlations are small. Presumably, one can consider that the LDA provides a reliable tool

for a qualitative understanding of the pairing correlation in finite nuclei.

V. CONCLUSIONS

We have performed HFB calculations for semi-magic Ca, Ni, Sn, and Pb isotopes and

N=20, 28, 50 and 82 isotones using the density-dependent pairing interactions [16] deduced

from microscopic nucleon-nucleon interaction [9]. Three interactions have been employed,

namely, isospin dependent interactions adjusted to the pairing gaps both in symmetric and

neutron matter obtained from the bare nucleon interaction (IS+IV Bare), or to those mod-

ified by medium polarization effects (IS+IV Induced), and an isoscalar interaction adjusted

only in symmetric matter (IS Bare). We have compared the results of these pairing inter-

actions with the experimental data for binding energies, two neutrons separation energies,

and odd-even mass staggering (OES).

We have found that the two pairing interactions IS+IV Bare and IS+IV Induced lead

to different results in finite nuclei. The comparison with the experimental OES suggests

that the experimental data favor the interaction IS+IV Bare, which reproduces the bare

pairing gap in both symmetric and neutron matter. These results indicate that the medium

polarization effects estimated in infinite matter provides weaker pairing correlations than

observed in finite nuclei. The discrepancies concerning the role of the phonon coupling

between the calculations presented in Ref. [13, 14, 15] for finite nuclei and the calculations

for uniform matter in Ref. [9], therefore, still remain an open question.

An interesting result shown in this paper is that the pairing interaction IS+IV Bare leads

to good agreements with the experimental masses for light, intermediate and heavy nuclei

without any tuning in different isotopes. This suggests that an inclusion of the isovector

term in the effective pairing interaction helps in designing a global interaction applicable in

the whole nuclear chart, taking advantage of the simplicity of the contact pairing interaction.

It should however be noticed that in the proton pairing channel, the Coulomb interaction

has not yet been included in our calculations. This should be done in futur investigations.

We have shown that the anomalous behavior of particle and pairing densities obtained

in Ref. [11] for isosclar pairing interactions of surface type with the power of the density
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dependence αs < 1/2 is related to the large pairing gaps generated by these interactions at

low density. The volume and surface mixed-type interaction adopted in the present study

does not show this anomaly despite that the parameter αs is close to 1/2.

Finally, we have discussed the local density approximation (LDA) for the pairing field,

and have shown that it leads to a nice qualitative description of the pairing correlations in

finite nuclei. The comparison of the pairing field obtained from the HFB calculation with

the one extracted using the LDA suggests that there is a possibility to map from the pairing

in uniform matter to that in finite nuclei.
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