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Abstract

Several feedback loops are required in the Beam De-
livery System (BDS) of the International Linear Collider
(ILC) to preserve the luminosity in the presence of dy-
namic imperfections. Realistic simulations have been car-
ried out to study the performance of the beam-beam de-
flection based fast feedback system, for both �

�
�
� and

�
�

�
� modes of operation. The beam-beam effects in the

�
�

�
� collisions make both the luminosity and the deflec-

tions more sensitive to offsets at the interaction point (IP)
than in the case of the �

�
�
� collisions. This reduces the

performance of the feedback system in comparison to the
standard ���� collisions, and may require a different beam
parameter optimization.

BEAM-BEAM DEFLECTION BASED
FEEDBACK SYSTEM

Misalignments in the lattice magnets produced by
ground motion induce perturbations to the beam trajectory
with respect to the ideal trajectory which can increase the
transverse beam sizes at the IP and introduce offsets be-
tween the beams at the collision point.

Several feedback loops are foreseen in the BDS of the
ILC to mitigate these effects and to avoid the resulting
degradation of the luminosity [1]. To correct the position
and the angle of the beams at the IP, fast feedback sys-
tems are applied bunch-to-bunch, while slower feedback
systems are required to maintain aligned the lattice mag-
nets and to correct the beam trajectories. The main signal
used to maintain the beams aligned within half a nanome-
tre at the IP is the transverse kick that the misaligned beams
experience during the collision [2].

Beam-beam effects for ���� and �
�

�
� collisions

In the case of ���� collisions, a bunch passing close to
the axis through the electromagnetic field created by the
opposite beam is strongly focused, which leads to a en-
hancement of the luminosity. For ���� collisions, on the
other hand, repulsion occurs, which enhances the effective
transverse sizes at the IP, reducing the peak luminosity to
values only typically about 20% of those for ���� . In ad-
dition, in ���� collisions the luminosity is much more sen-
sitive to residual offsets at the IP and the deflection curve as
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a function of the IP offsets is much steeper than for ����

(see Fig. 1), which can impact the feedback performance.
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Figure 1: Vertical deflection angle versus vertical half
beam-beam offset, for ���� and ���� collisions simulated
with GUINEA-PIG [3], using ideal Gaussian beam distri-
butions with ILC nominal parameters at 500 GeV in the
center-of-mass [4].

SIMPLIFIED IP POSITION FEEDBACK
SIMULATION

A study of the impact of this steeper deflection curve on
the performance of the beam-beam deflection based feed-
back system compared to �

�
�
� collisions was carried out

in [5]. In this simplified simulation, offsets of the order of
hundreds of nanometres were introduced between the trains
(which are delivered with a frequency of 5 Hz), as well as a
bunch-to-bunch jitter of the order of a fraction of the beam
size. The collision was simulated with GUINEA-PIG [3],
and the obtained out-going angle was used to predict the
offset of the beam. The correction was carried out bunch-
to-bunch. The results indicated that the correction of the
position is slower for ���� collisions due to the steeper de-
flection curve, but the correction can be done fast enough
to recover the average luminosity over a train. On the other
hand, the luminosity loss as function of the bunch-to-bunch
jitter for the �

�

�
� collisions was a factor 2 greater com-

pared to �
�
�
�, due to greater sensitivity to the offsets at

the IP. Thus, a different beam parameter optimization, re-
ducing the disruption parameter, was suggested for the case
of ���� collisions.

In order to verify that the assumptions on the ground mo-
tion amplitudes considered in the simplified simulation of
the feedback system are acceptable, a more realistic sim-



ulation has been carried out, including dynamic imperfec-
tions in the BDS magnets, and is presented here.

GROUNDMOTION EFFECT

An important source of magnet displacements is ground
motion, which is transmitted to the lattice elements by their
support structures. Several ground motion models have
been built, based on the results of measurements in dif-
ferent sites, with different levels of noise. These models
include ATL diffusive motion, slow systematic motion, nat-
ural micro-seismic motion, and fast cultural noise [6].

For the feedback simulation, the elements of both BDS
lines have been misaligned applying the intermediate noisy
level model B [6]. The time interval used to sample the
ground motion was 0.2 s, corresponding to the frequency at
which trains are delivered. This simulation has been done
with the tracking code PLACET [7].

To check the misalignments produced by this model
along the lattice as function of time, the r.m.s. displace-
ments for 50 seeds of the generator were calculated. Fig. 2
shows the difference of the vertical misalignments pro-
duced at each element in the electron line with respect to
the same element in the positron one, for successive time
intervals.
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Figure 2: Difference in misalignment of each BDS element
in the �

� line with respect to the same element in the �
�

one. Ground motion model B was applied at successive
time intervals. The results are the ������ of 50 seeds.

Due to the fact that there is a certain spatial coherence
in the ground vibration, the sum of the misalignments is
bigger than the difference between corresponding elements
of the �

� and �
� lines. The simulation of the beam-based

IP position feedback system, is only sensitive to the dif-
ference between the beams at the IP. Other deviations of
the trajectory with respect to the ideal one, should be cor-
rected upstream, with a slower feedback which maintains
the magnets correctly positioned along the beam lines, or
through appropriately placed magnetic correctors. Such
corrections, while not essential to keep the beam in col-
lision at the IP, are needed to maintain the optical quality
of the beam spot, and hence the luminosity.

BEAM-BASED IP POSITION FEEDBACK
SIMULATION

For the simulation of the IP position feedback system, af-
ter tracking the beams through the BDS lattices misaligned
by the ground motion with the code PLACET [7], the
beam-beam collision is simulated with the code GUINEA-
PIG [3] to obtain the outgoing angle that will serve to com-
pute the correction. The beam position of the next bunch is
corrected with a kicker located upstream of the IP close to
the final doublet (FD). The operation is repeated bunch-to-
bunch.

Fig. 3 illustrates the feedback response for ground mo-
tion applied during successive time intervals, for ���� col-
lisions. The average luminosity performance as a function
of time is obtained with 50 seeds. The larger a ground mo-
tion is applied, the more important are the misalignments
in the lattice, and the smaller is the final luminosity which
can be recovered with the beam-beam deflection based IP
position feedback. Although 70 or 80� of the luminosity
can be recovered after 1 s, the deterioration of the beam
sizes due to the optical effects caused by upstream mis-
alignments makes it impossible to recover more than �30
or 40% of the luminosity after e.g. 300 s. Other feedback
loops are thus required.
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Figure 3: Beam-based IP postition feedback simulation for
the �

�
�
� collision with ground motion model B applied

for successive time intervals along the BDS. The average
relative luminosity is calculated over 50 seeds.

FEEDBACK SIMULATION INCLUDING IP
ANGLE CORRECTION

An IP angle correction has been included in the simu-
lation in order to correct the position of the beams along
the Final Focus System (FFS), and thus mitigate the beam
size increase produced by passing off-axis through the sex-
tupoles, in order to check if the nominal luminosity can be
recovered after the correction of the beam offsets at the IP.

The angle at the IP is corrected with a kicker located
at the entrance of the FFS, at n� phase-advance from the
IP. The angle is corrected by zeroing the signal in a BPM
located at a phase �/2 downstream from the kicker [1].



Figs. 4 and 5 illustrate the feedback responses for ground
motion applied during successive time intervals, for ����

and �
�

�
� collisions respectively, including the IP position

and angle correction.
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Figure 4: Beam-based IP position and IP angle feed-
back simulation for the �

�
�
� collision with ground mo-

tion model B applied for successive time intervals along the
BDS. The average relative luminosity is calculated over 50
seeds.
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Figure 5: Beam-based IP position and IP angle feed-
back simulation for the �

�

�
� collision with ground mo-

tion model B applied for successive time intervals along the
BDS. The average relative luminosity is calculated over 50
seeds.

The results indicate that about 20�more luminosity can
be achieved by correcting the IP angle compared to the case
where only the IP position was considered (see Figs. 3 and
4). But, on the other hand, the luminosity cannot be recov-
ered entirely, due to optical effects along the FFS, which
increase the beam size at the IP. The correlation between
the vertical beam size at the IP and the luminosity is shown
in Fig. 6. The luminosity loss is directly related to the in-
creased beam size. No significant residual offset between
the beams remains at the IP after the application of the feed-
back procedure and there is no correlation with luminosity.

The correction for the �
�

�
� collisions is slower com-

pared with the �
�
�
� ones (see Figs. 4 and 5) as the slope

relating the outgoing angle with the IP offsets for the ����

case is �8 times the one for ���� , which is needed to
avoid noise amplification. This is a consequence of the
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Figure 6: Luminosity versus the combined vertical beam
size of both �

� and �
� beams at the IP. Feedback simula-

tion carried out for ���� collisions under the effect of the
missalignments produced by the ground motion after 1 s.

steeper deflection curve for the ���� collisions.

CONCLUSIONS

The results of the IP position and angle feedback simu-
lation including dynamic imperfections in the BDS lattice
show that about 10� of the luminosity cannot be recov-
ered even after just a few seconds, due to optical effects
that increase the beam size at the IP. A luminosity feed-
back system or other loops to correct the beam alignment
within the FFS would be required, or else acting directly
on the optical parameters, through focusing adjustements.

The feedback correction for the �
�

�
� collisions has to

be performed more slowly than for ���� due to the steeper
deflection curve, but the effect when averaging over a train
is not large.
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