Theoretical and experimental $\alpha$ decay half-lives of the heaviest odd-Z elements and general predictions
Résumé
Theoretical decay half-lives of the heaviest odd-Z nuclei are calculated using the experimental Q value. The barriers in the quasimolecular shape path are determined within a Generalized Liquid Drop Model (GLDM) and the WKB approximation is used. The results are compared with calculations using the Density-Dependent M3Y (DDM3Y) effective interaction and the Viola-Seaborg-Sobiczewski (VSS) formulas. The calculations provide consistent estimates for the half-lives of the decay chains of these superheavy elements. The experimental data stand between the GLDM calculations and VSS ones in the most time. Predictions are provided for the decay half-lives of other superheavy nuclei within the GLDM and VSS approaches using the recent extrapolated Q of Audi, Wapstra, and Thibault [Nucl. Phys. A729, 337 (2003)], which may be used for future experimental assignment and identification.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...