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Abstract. We discuss the possible influence of fundamental QCD properties such
as spontaneous chiral symmetry breaking and nucleon substructure on nuclear
matter properties. We propose a chiral version of the relativistic σ − ω model in
which the attractive background scalar field is associated with the chiral invariant
field governing the radial fluctuations of the quark condensate. Nuclear matter
stability is ensured once the scalar response of the nucleon depending on the
quark confinement mechanism is properly incorporated. The needed parameters
are estimated from lattice results and a satisfactory description of bulk properties
follows, the only really free parameter being the ωNN coupling constant. Pion
loops can be also incorporated to obtain in a consistent way the finite density
chiral susceptibilities. A good description of the asymmetry energy is obtained
once the full rho meson exchange and Fock terms are included.

1 Introduction

A fundamental question of present day theoretical nuclear physics is the relationship between
non perturbative QCD and the very rich structure of the nuclear many-body problem. A first
trial beyond the standard non relativistic treatment based on effective forces (Skyrme or Gogny
forces) is the relativistic mean field approach initiated by Walecka [1]. The next step should be
to incorporate in this framework the effect associated with the most prominent properties of
low energy QCD, i.e., the spontaneous breaking of chiral symmetry and the effect of hadron
substructure and color confinement. In a bottom-to-top attitude this certainly constitutes a
necessary basis to study matter under extreme density and temperature conditions.

2 Chiral symmetry and confinement

Basics on chiral symmetry. The SU(2)L ⊗ SU(2)R chiral symmetry of the QCD Lagrangian
is certainly a crucial key for the understanding of many phenomena in low energy hadron
physics. This symmetry originates from the fact that the QCD Lagrangian is almost invariant
under the separate flavor SU(2) transformations of left-handed qL = (uL, dL) and right-handed
qR = (uR, dR) light quark fields u and d. The explicit violation of chiral symmetry is governed
by the quark mass mq = (mu +md)/2 ≤ 10 MeV which is much smaller than typical hadron
masses of order 1 GeV, indicating that the symmetry is excellent. It is however well established
that the QCD vacuum does not possess the symmetry of the Lagrangian i.e., chiral symmetry
is spontaneously broken (SCSB) as it is evidenced by a set of remarkable properties. The first
one is the building-up of a chiral quark condensate : 〈q̄q〉 = 〈ūu + d̄d〉/2 which mixes, in the
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broken vacuum, left-handed and right-handed quarks (〈q̄q〉 = 〈q̄LqR + q̄RqL〉/2). Another order
parameter at the hadronic scale is the pion decay constant fπ = 94 MeV which is related to
the quark condensate by the Gell-Mann-Oakes-Renner (GOR) relation : −2mq〈q̄q〉vac = m2

πf
2
π

valid to leading order in the current quark mass. It leads to a large negative value 〈q̄q〉vac ≃
-(240 MeV)3 indicating a strong dynamical breaking of chiral symmetry. The second feature is
the appearance of soft Goldstone bosons to be identified with the almost massless pions. Finally
the chiral asymmetry of the vacuum associated with the condensation of quark-antiquark pairs
is directly visible at the level of the the hadronic spectrum : there is no degeneracy between
possible chiral partners such as ρ(770) − a1(1260) or π(140) − σ(400 − 1200).

An illustration: the Nambu-Jona-Lasinio (NJL) model. Although chiral symmetry breaking and
restoration can be studied on the lattice, the underlying physical mechanisms at the QCD level
are not yet fully understood. It is thus useful to study this problem with models such as the very
popular NJL model. In such a model the very complicated highly non perturbative multi-gluons
exchanges between quarks are simulated by a very simple chiral invariant contact interaction
with strength parameter G1. In its simplest form the Lagrangian is :

LNJL = iψ̄γµ∂µψ − mψ̄ψ +
G1

2

[

(ψ̄ψ)2 +
(

iψ̄γ5τψ
)2
]

. (1)

where ψ = (ψu, ψd) is an isodoublet of quark fields. The model also incorporates the fact that
only low momentum quarks strongly interact in QCD. This is achieved by including a cutoff Λ
of the order of 1 GeV in the momentum expansion of the quark fields. It is very easy to show
that if the strength G1 is sufficiently large, the ground state wave function is of BCS type ,

|φ(M)〉 = C exp
(

−
∑

s, p<Λ γps b
†
ps d

†
−p−s

)

|φ0〉, and made of interacting quark-antiquark pairs

(created by the b† and d† operators acting on the bare perturbative vacuum |φ0〉), hence building
up a quark condensate. As well-known such a BCS ground state is the vacuum of quasi-particles,
the constituant quarks, with mass MQ solution of a gap equation :

MQ = m − 2G1 〈〈q̄q〉〉 = m + 4NcG1

∫

p<Λ

dp

(2π)3
MQ

Ep

, Ep =
√

M2
Q + p2. (2)

It is thus clear that the existence of such a constituant mass of the order of 350 MeV is intimately
related to the quark condensate 〈〈q̄q〉〉 = 〈〈ψ̄uψu + ψ̄dψd〉〉/2 which plays the role of an order
parameter associated with the broken vacuum.

The mesons can be obtained using standard RPA exactly as in nuclear physics, as collective
quark-antiquark excitations. This concerns in first place the pion (generated in the ψ̄γ5τψ
channel) which appears as a Goldstone boson and its chiral partner the scalar-isoscalar sigma
meson (ψ̄ψ channel) which comes out with a mass mσ ≃ 2MQ. This model insisting on chiral
symmetry, once taken in a more sophisticated form, yields a rather good phenomenology, espe-
cially in the meson sector, but has an important weakness since it does not incorporate color
confinement [2].

Interplay between chiral symmetry and confinement. When hadronic matter is heated and com-
pressed, initially confined quarks and gluons start to percolate between the hadrons to be
finally liberated. This picture is supported by lattice simulations showing that strongly in-
teracting matter exhibits a sudden change in thermodynamic quantities (constituting a true
phase transition or a rapid cross-over) within a narrow temperature window around Tc = 170
MeV. This transition is accompanied by a sharp dropping of the chiral condensate indicating
chiral symmetry restoration. However why these two transitions seem to occur simultaneously
is still a major open question. This not fully understood duality between chiral symmetry and
confinement is also present at the level of the nucleon structure and consequently in nuclear
physics. Some of the pictures or models for nucleon structure put the emphasis on color confine-
ment. This is particularly true for the MIT bag model where quarks with current quark mass,
mq ≃ 5 − 10 MeV, move freely in a cavity (bubble of perturbative vaccuum) generated by the
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Fig. 1. Left panel: Mexican hat effective potential. Right panel: Chiral circle corresponding to the bottom
of the mexican hat potential

confinement dynamics. A totally different view is provided by the constituant quark picture
where the nucleon is made of three ”big” quarks (i.e., of the NJL type) getting their mass
from the chiral condensate of the non perturbative QCD vacuum. A plausible hybrid picture
mixing both aspects seems to be supported by lattice calculations [3]. The nucleon looks like a
Y shaped color string with three constituant quarks attached at the end-points of the Y . The
introduction of a coupling between quarks and mesons allows to build the pion cloud which
plays an extremely important role to account for the mass and the chiral properties of the
nucleon (such as the sigma term or chiral susceptibilities defined below). Finally possible con-
figurations where a string develops between one quark and one diquark in the color antitriplet
channel, might also be present in the nucleon.

3 Chiral effective theory: nucleon structure and nuclear physics

How to build an effective chiral theory? NJL model as an example. For applications in hadronic
or nuclear physics, one usually tries to formulate low energy QCD directly in terms of physical
degrees of freedom, namely the hadrons. Mathematically one has to integrate out quarks and
gluons in favor of hadrons. This is of course a formidable task that we will illustrate with the
example of the NJL model. The appropriate technics is the path integral formalism where the
partition function (vacuum persistence amplitude) is expressed as a functionnal integral over
the quark fields: Z =

∫

Dψ̄Dψ exp
(

i d4xLNJL

)

. The idea is to make a change of variable

in the functionnal integral σ = g ψ̄ψ , π = g iψ̄γ5τψ (g is a coupling constant to be fixed)
and to integrate out the quarks in the Dirac sea. One thus obtains a very complicated highly
non local effective Lagrangian (the fermion determinant) depending on the mesonic fields,
σ, π, .... An approximative form can be obtained using a derivative or a loop expansion. To one
loop, one gets: Leff = (1/2) (∂µσ∂µσ + ∂µπ · ∂µπ) − U(σ, π). The effective potential U(σ, π)
has the typical mexican hat shape associated with a broken (chiral) symmetry (see fig. 1).
The degenerate vacuum corresponds to the chiral circle, i.e., the bottom of the mexican hat
(fig.1). The pseudoscalar field (pion) represents the phase fluctuation of the condensate and it is
massless since it does not cost energy to move on the bottom. The massive scalar mode (sigma)
has a mass related to the curvature of the potential and represents the amplitude fluctuation
of the condensate. The vacuum point with isospin zero is the point where π = 0 and where σ
has an expectation value identified with the pion decay constant fπ.

Effective chiral theory and the background scalar field in nuclear matter. More generally we
take the point of view that the effective theory has to be formulated first in term of the fields
associated with the fluctuations of the condensate parametrized in a matrix form W = σ+iτ ·π.
The sigma and the pion are promoted to the rank of effective degrees of freedom. An alternative
and very convenient formulation of the resulting sigma model is obtained by going from cartesian
to polar coordinates (right panel of fig.1), i.e., going from a linear to a non linear representation,
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according to :

W = σ + iτ · π = S U = (fπ + s) exp

(

iτ · φ

fπ

)

. (3)

The new pion field φ corresponds to an orthoradial soft mode which is automatically massless
(in the absence of explicit CSB) since it is associated with rotations on the chiral circle without
cost of energy. The new sigma meson field S, which is a chiral invariant, describes a radial mode
associated with the fluctuations of the “chiral radius” fπ. It can be associated with the ordinary
sigma meson which gets a very large width from its strong decay into two pions. Since it has
derivative couplings, it decouples from low energy pions whose dynamics is described by chiral
perturbation theory. With increasing density, its fluctuations s = S−fπ are associated with the
shrinking of the chiral circle and it governs the evolution of the nucleon mass. In a recent paper
[4] we have proposed to identify this chiral invariant s field with the sigma meson of nuclear
physics and relativistic theories of the Walecka type, or, said differently, with the background
attractive scalar field at the origin of the nuclear binding. This also gives a plausible solution
to the long-termed problem of the chiral status of Walecka theories.

Tests of the effective theory with a chiral invariant scalar field. Once the appropriate couplings
of the chiral fields to the baryons are introduced one can build an effective lagrangian to
describe nuclear matter. Vector mesons (ω and ρ) must be also included to get the needed
short range repulsion and asymmetry properties. At the Hartree level, the pion and the rho do
not contribute for symmetric nuclear matter whose energy density written as a function of the
order parameter s̄ = 〈s〉 is :

E0

V
= ε0 =

∫

4 d3p

(2π)3
Θ(pF − p)E∗

p(s̄) + V (s̄) +
g2

ω

2m2
ω

ρ2. (4)

E∗
p(s̄) =

√

p2 + M∗2
N (s̄) is the energy of an effective nucleon with the effective mass M∗

N(s̄) =
MN + gS s̄. gS is the scalar coupling constant of the model; in the pure linear sigma model it is
gS = MN/fπ. The effective potential U(σ, π) when reexpressed in term of the new representation
has the form :

V (s) =
1

2
m2

σ

(

s2 +
1

2

s3

fπ

+ ...

)

.

s̄ is obtained by minimization of the energy density and is given at low density by : s̄ ≈
−(gS/m

2
σ) ρS . Its negative value is at the origin of the binding but the presence of the s3 term

(tadpole) has very important consequences. This tadpole is at the origin of the chiral dropping
of the sigma mass ∆m∗

σ ≃ −(3 gS/2fπ)ρS (a ≃ 30% effect at ρ0), and generates an attractive
three-body force which makes nuclear matter collapse and destroys the Walecka saturation
mechanism. Hence the chiral theory does not pass the nuclear matter stability test.

This failure, which is in fact a long-standing problem [5,6], is maybe not so surprising since
the theory, as it is, also fails to describe some nucleon structure aspects as discussed below.
The nucleon mass, as well as other intrinsic properties of the nucleon (sigma term, chiral
susceptibilities), are QCD quantities which are in principle obtainable from lattice simulations.
The problem is that lattice calculations of this kind are not feasible for quark masses smaller
than 50 MeV, or equivalently pion mass smaller than 400 MeV, using the GOR relation. Hence
one needs a technics to extrapolate the lattice data to the physical region. The difficulty of the
extrapolation is linked to the non analytical behaviour of the nucleon mass as a function of mq

(or equivalently m2
π) which comes from the pion cloud contribution. The idea of Thomas et al

[7] was to separate the pion cloud self-energy, Σπ(mπ, Λ), from the rest of the nucleon mass
and to calculate it in a chiral model with one adjustable cutoff parameter Λ. They expanded
the remaining part in terms of m2

π as follows :

MN(m2
π) = a0 + a2m

2
π + a4m

4
π + Σπ(mπ, Λ) . (5)

The best fit value of the parameter a4 shows little sensitivity to the shape of the form factor,
with a value a4 ≃ −0.5 GeV−3 while a2 ≃ 1.5 GeV−1 (see ref. [7]). The small value of a4 reflects
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the fact that the non pionic contribution to the nucleon mass is almost linear in m2
π (i.e., in

mq). Taking successive derivatives of MN with respect to m2
π (i.e., to mq), it is possible to

obtain some fundamental chiral properties of the nucleon, namely the pion-nucleon sigma term
and the scalar susceptibility of the nucleon. The non pionic pieces of these quantities are given
by :

σnon−pion
N = mq

∂Mnon−pion
N

∂mq

≃ m2
π

∂M

∂m2
π

= a2m
2
π + 2 a4m

4
π ≃ 29 MeV . (6)

χnon−pion
NS =

∂
(

σnon−pion
N /2mq

)

∂mq

≃ 2
〈q̄q〉2vac

f4
π

∂

∂m2
π

(

σnon−pion
N

m2
π

)

=
〈q̄q〉2vac

f4
π

4 a4 . (7)

In the above equations the first equalities correspond to the definitions, the second equalities
make use of the GOR relation and the last ones come from the lattice QCD analysis. With

typical cutoff used in this analysis, Λ ≃ 1 GeV, which yields σ
(π)
N ≃ 20 MeV, the total value of

the sigma term is σN ≃ 50 MeV, a quite satisfactory result in view of the most recent analysis.
It is interesting to compare what comes out from the lattice approach with our chiral effective
model. At this stage the only non pionic contribution to the nucleon mass comes from the scalar
field, or more microscopically the nucleon mass entirely comes from the chiral condensate since
the nucleon is just made of three constituant quarks with mass MQ = g〈S〉vac = gfπ ≃ 350
MeV. Hence the results for the non pionic sigma term and scalar susceptibility are identical to
those of the linear sigma model :

σ
(σ)
N = fπ gS

m2
π

m2
σ

, χ
(σ)
NS = −2

〈q̄q〉
2
vac

f3
π

3 gS

m4
σ

(8)

The identification of σnon−pion
N with σ

(σ)
N of our model fixes the sigma mass to a value mσ = 800

MeV, close to the one ≃ 750 MeV that we have used in a previous article [8]. As it is the ratio
gS/m

2
σ which is thus determined this value of mσ is associated with the coupling constant of

the linear sigma model gS = MN/fπ = 10. Lowering gS reduces mσ. Similarly, the comparison

of χ
(σ)
NS with the lattice expression provides a model value for a4. The numerical result is

a
(σ)
4 = −3.4 GeV−3 while the value found in the expansion is only −0.5 GeV−3.

Nucleon structure effects and confinement mechanism. The net conclusion of the above discus-
sion is that the model as such fails to pass the QCD test. In fact this is to be expected and even
gratifying because it also fails the nuclear physics test. We will see that these two important
failures may have a common origin. Indeed an important effect is missing, namely the scalar
response of the nucleon, κNS = ∂2MN/∂s

2, to the scalar nuclear field, which is the basis of
the quark-meson coupling model, (QMC), introduced in ref. [9]. The physical reason is very
easy to understand: the nucleons are quite large composite systems of quarks and gluons and
they should respond to the nuclear environment, i.e., to the background nuclear scalar fields.
This response originates from the quark wave function modification in the nuclear field and
will oviously depend on the confinement mechanism. This confinement effect is expected to
generate a positive scalar response κNS , i.e., it opposes an increase of the scalar field, a feature
confirmed by the lattice analysis (see below). This polarization of the nucleon is accounted for
by the phenomenological introduction of the scalar nucleon response, κNS , in the nucleon mass
evolution as follows :

MN(s) = MN + gS s +
1

2
κNS s

2. (9)

This constitutes the only change in the expression of the energy density (eq. 4) but this has
numerous consequences. The effective scalar coupling constant drops with increasing density
but the sigma mass gets stabilized :

g∗S(s̄) =
∂M∗

N

∂s̄
=
MN

fπ

+ κNS s̄, m∗2
σ =

∂2ε

∂s̄2
≃ m2

σ − (
3 gS

fπ

− κNS) ρS . (10)
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Fig. 2. On the left panel the binding energy of nuclear matter with gω = 8.0, mσ = 850 MeV and
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of the Fock terms. The decreasing dotted line (always negative) represents the correlation energy. The
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of the pseudoscalar one). Dashed curve: pseudoscalar susceptibility. Full curve: scalar susceptibility.
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to the scalar susceptibility.
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Fig. 3. Results of the RHF calculation with VDM parameters for the rho meson. Left panel: binding
energy of symmetric nuclear matter. Right panel: density dependence of the asymmetry energy param-
eter.

The non-pionic contribution to the nucleon susceptibility is modified, as well :

χ
(σ)
NS = −2

〈q̄q〉2vac

f2
π

(

1

m∗2
σ

−
1

m2
σ

)

1

ρ
= −2

〈q̄q〉2vac

f2
π

1

m4
σ

(

3 gS

fπ

− κNS

)

. (11)

We see that the effect of confinement (κNS) is to compensate the pure scalar term. Again
comparing with the lattice expression one gets a model value for the a4 parameter :

a4 = −
a2
2

2M
(3 − 2C). (12)
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where C is the dimensionless parameter C =
(

f2
π/2M

)

κNS. Numerically a4 = −0.5GeV −3

gives C = +1.25, implying a large cancellation. As discussed below we will see that such a sig-
nificant scalar response will generate other repulsive forces which restore the saturation mech-
anism. At this point it is important to come again to the underlying physical picture implying
that the nucleon mass originates both from the coupling to condensate and from confinement.
In the original formulation of the quark coupling model, nuclear matter is represented as a
collection of (MIT) bags seen as bubbles of perturbative vacuum in which quarks are confined.
Thus in such a picture the mesons do not move and do not couple to quarks as in the true non
perturbative QCD vacuum. Consequently the bag picture is at best an effective realisation of
confinement which must not to be taken too literally. Indeed, QCD lattice simulations strongly
suggest that a more realistic picture is closer to a Y shaped color string (confinement aspect)
attached to quarks. Outside this relatively thin string one has the ordinary non perturbative
QCD vacuum possesing a chiral condensate from which the quarks get their constituant mass.

4 Results for nuclear matter and discussion

Stability and chiral properties of nuclear matter. In our first work devoted to the stability of
nuclear matter [8] we limited ourselves to the Hartree approximation (eq. 4). The free sigma
mass and the C parameter characterizing the nucleonic scalar response were taken as adjustable
parameters. The fact that the best fit came with values very close to what we deduced afterwards
from lattice is certainly satisfactory. One problem was the too large incompressibility K but
is is nevertheless possible to improve our model description by adding an extra s3 term in the
expression of the effective nucleon mass in such a way that the nucleonic response vanishes at
full chiral restoration (s̄ = −fπ). In this case the set of parameters : gω = 6.8, mσ = 750 MeV
and C = 1, leads to correct saturation properties, with an incompressibility value K = 270
MeV. Another remarkable finding, according to the previous discussion, was the stability of the
sigma mass which dropped by only 100 MeV at 2.5ρ0. Ignoring the repusive tadpole associated
with the nucleonic response would have given an almost vanishing sigma mass at this density.

The next step [10] has been to introduce pion loops which are necessary if we wish to address
the question of the chiral properties of nuclear matter (namely the in-medium quark condensate
and chiral susceptibilities) in a way which is consistent with nuclear matter stability since pion
loops affect the energy. They do not enter at the Hartree mean field level but contribute through
the Fock term and through the correlation energy. This energy can be calculated within a RPA
ring approximation according to :

Eloop = E − E0 ≡ V εloop = 3V

∫ +∞

−∞

i dω

2π)

∫

dq

(2π)3

∫ 1

0

dλ

λ
([

VL(ω,q)ΠL(ω,q;λ)
]

+ 2
[

VT (ω,q)ΠT (ω,q;λ)
])

. (13)

ΠL(ω,q) is the full (RPA) longitudinal spin-isospin polarization propagator in the pionic chan-
nel. This calculation actually includes iterated pion exchange and also the part of the NN
potential from the two-pion exchange with ∆ excitation. VL(ω,q) is nothing but the (non
static) pion exchange potential corrected by short-range components via the Landau-Migdal
parameters, g′NN , g

′
N∆, g

′
∆∆. We have taken their values from a systematic survey of the data

on spin-isospin physics by Ichimura et al. [11] : g′NN = 0.7, g′N∆ = 0.3, g′∆∆ = 0.5. Beside
pion exchange we have also introduced the transverse channel (VT ), dominated by ρ exchange
together with the short-range component. All the other needed ingredients are taken from the
pion-nucleon and pion-nucleus phenomenolgy. The scalar coupling constant is the one of the
sigma model gS = MN/fπ = 10 and for the sigma mass we have followed the lattice indica-
tions, allowing a small readjustment around the lattice value, which is mσ = 800MeV . We
have found a better fit with mσ = 850MeV which corresponds to σnon−pion = 26MeV . The
omega mass is known and the ωNN coupling constant is the only really free parameter. For the
nucleon scalar response we have followed the indications of the lattice data but not strictly in
view of the uncertainties attached to the higher derivatives. The value which fits the saturation
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properties is found to be C ≃ 1, not far from the lattice value C = 1.25. With these inputs
we have obtained a satisfactory description of the nuclear binding. The binding energy per
particle is shown in fig. 2, with its different components. Taking the successive derivatives of
the equation of state (the grand potential ω = ε − µρ) with respect to m2

π, it is possible to
obtain the pseudo-scalar susceptibility (directly related to the quark condensate) and the scalar
susceptibilities of nuclear matter [12]. Since they are associated with chiral partners (pion and
sigma), they should be identical at chiral restoration. The numerical calculation [10] on the
right panel of fig. 2 indeed displays a convergence effect.

Relativistic Hartree-Fock (RHF). The description of asymmetric nuclear matter certainly ne-
cessitates the full rho exchange already at the Hartree level through its time component. We
thus include it using the following interacting lagrangian :

Lρ = −gρ ρaµ Ψγ̄
µτaΨ − gρ

κρ

2MN

∂νρaµ Ψσ̄
µντaΨ +

1

2
m2

ρ ρaµρ
µ
a −

1

4
Gµν

a Gaµν (14)

One specific comment is in order for the tensor coupling of vector mesons. The pure vector
dominance picture (VDM) implies the identification of κρ with the anomalous part of the
isovector magnetic moment of the nucleon, i.e., κρ = 3.7. However pion-nucleon scattering
data suggest κρ = 6.6 (strong rho scenario). At the Hartree level we still have our previous
picture. Symmetric and asymmetric nuclear matter are seen as an assembly of nucleons, i.e.,
of Y shaped color strings with massive constituant quarks at the end getting their mass from
the chiral condensate. This nucleons move in self-consistent scalar (s̄) and vector background
fields (ω0, ρ0

3). However to get a quantitative description, all the Fock terms, including not
only pion and rho exchange but also sigma and omega exchange, are needed. These exchange
terms are mediated by the propagation of the fluctuations of the previous meson fields. In
particular it is possible to show that the scalar fluctuation, i.e., the fluctuation of the chiral
condensate, propagates with an in-medium modified sigma mass m∗2

σ = V ′′(s̄) + κNS ρS . The
results of preliminary RHF calculation [13] with rho coupling given by pure VDM (gρ = 2.65,
Kρ = 3.7) are shown on fig. 3 and reproduce the saturation properties. gω = 6.35 is not very
far from the quark model value gω = 3 gρ and C = 1.75 is larger than the lattice value. The
resulting incompressibility K = 242 MeV and asymmetry energy parameter aS = 30.2 MeV
are obviously satisfactory. It is also possible to reproduce saturation properties in the strong
rho scenario (Kρ = 6.6) but the asymmetry energy becomes too large : aS = 45 MeV. These
results are certainly very encouraging but the ultimate test of this chiral theory will be the
reproduction of finite nuclei (in particular the spin-orbit splitting) and the consequences for
neutron star properties.
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