
HAL Id: in2p3-00168300
https://in2p3.hal.science/in2p3-00168300v1

Submitted on 27 Aug 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Physics-level job configuration
W. Liebig, D. Rousseau, P. Calafiura, W. Lavirijsen, P. Loch, A. Salzburger

To cite this version:
W. Liebig, D. Rousseau, P. Calafiura, W. Lavirijsen, P. Loch, et al.. Physics-level job configuration.
XV International Conference on Computing in High Energy and Nuclear Physics (CHEP-06), Feb
2006, Mumbai, India. pp.446-449. �in2p3-00168300�

https://in2p3.hal.science/in2p3-00168300v1
https://hal.archives-ouvertes.fr

Physics-level Job Configuration

W. Liebig, CERN, Geneva, Switzerland; D. Rousseau, LAL, Orsay, France;
P. Calafiura, W. Lavrijsen,∗ LBNL, Berkeley, USA;

P. Loch, University of Arizona, Tucson, USA; A. Salzburger,University of Innsbruck, Austria

Abstract

The offline and high-level trigger software for the At-
las experiment has now fully migrated to a scheme which
allows large tasks to be broken down into many function-
ally independent components. These components can fo-
cus, for example, on conditions or physics data access, on
purely mathematical or combinatorial algorithms or on pro-
viding detector-specific geometry and calibration informa-
tion. In addition to other advantages, the software com-
ponents can be heavily re-used at different levels (sub-
detector tasks, event reconstruction, physics analysis) and
on different running conditions (LHC data, trigger regions,
cosmics data) with only little adaptations. A default setting
therefore has to be provided for each component allowing
these adaptations to be made. End-user jobs contain many
of these small components, most of which the end-user is
totally unaware. There is therefore a big semantic discrep-
ancy between how the end-user thinks about a specific job’s
configuration and how the configuration is packaged with
the individual components making up the job. This paper
presents a partly automated system which allows compo-
nent developers and aggregators to build a configuration
ranging over all the above levels, such that e.g. component
developers can use a low-level configuration, sub-detector
coordinates work with functional sequences and the end
user can think in physics processes. This system of python-
based job configurations is flexible but easy to keep inter-
nally consistent and avoids possible clashes when a com-
ponent is re-used in a different context. The paper also
presents a working system used to configure the new Atlas
track reconstruction software.

ATLAS SOFTWARE CONFIGURATION

The offline and high-level trigger software for the Atlas
experiment use theATHENA/GAUDI component architec-
ture [1], which has allowed for the development of a large
selection of functionally independent components. There
are three main kinds of components as far as the frame-
work is concerned:Algorithms, which implement a partic-
ular strategy to process event data, for example “find all jets
in the calorimeter.”Services, which provide facilities to Al-
gorithms in performing their tasks, for example “write this
object to file.” AndAlgTools, which are close in purpose to
Services, but can be made private to a specific Algorithm.
Functionally, however, there are as many kinds of compo-
nents as there are tasks to perform.

∗WLavrijsen@lbl.gov

All users of the framework, from physicists to compo-
nent developers, utilize a python [2] user interface to as-
semble anATHENA job by choosing from hundreds of com-
ponents, defining their intercomponent relations, and set-
ting their attributes (referred to aspropertiesin GAUDI).
Properties are a run-time construct, are developer-defined,
and are generally not guaranteed by the interfaces that a
component implements.

Athena Job Configuration

Components typically come with two kinds of configu-
ration: the defaults as set in the source code of the compo-
nent and compiled into it; and predefined, self-consistent
job optionsfragments, written in python, that are bundled
in a package with the component. Note that it isn’t always
possible to set proper defaults in the compiled code, with-
out knowledge of the context in which the component is
going to be used. In those cases, usage of the component
is always done through selection of a context-specific job
options fragment, and it is up to the user to find and load
the right one.

Usually, such python fragments consist of settings that
are collected into a proxy, to be applied to the component
at the time of its initialization. For example:

ktJets = Algorithm("JetAlgorithm/KtJets")

ktJets.OutputLevel = VERBOSE

ktJets.AlgTools += ["JetKtFinder/KtFinder"]

ktJets.KtFinder.BeamType = "PP"

Note that this fragment contains both simple property set-
tings as well the setup of an intercomponent relation be-
tweenKtJets and its private toolKtFinder.

The usage of python as the job configuration language
has many advantages: its rich, standardized, and well-
documented syntax allows for simple, expressive frag-
ments like the one above, and component developers can
exploit python’s logical constructs to deal with settings
given a job context. In effect, this allows the combination
of several configuration fragments into one file.

There are, however, three immediate problems: since
the properties are defined for a component that is not yet
loaded, they can not be verified for syntax or value errors;
the names of the components are hardwired in this frag-
ment, making it impossible to be re-used by derived classes
or in jobs involving multiple instances of the algorithm; and
the component-centric model leaves it up in the air how to
either find the right fragment to load, or how to provide the

proper logic settings for a combined fragment, when con-
structing a complex job.1

User-centric Job Configuration

It is less than two years before data-taking, and the Atlas
software system is now used more by physicists building
their analysis codes in anticipation of collisions, than by
developers constructing new algorithms. The software has
to make a transition from a system that mainly served de-
velopers, to one that serves both developers and end-users
well. This is particularly evident in the job configuration.

The organization of job configuration in file fragments
has followed the package structure of the components.
While this makes sense from the developer point of view,
it has the wrong granularity for an end-user of the com-
ponent: localizing the right fragment for the job, if one
exists, in the code repository can be rather challenging.
More complex tasks that involve mixing, matching, and/or
including in the right order, fragments originating from
different contexts (e.g. detector commissioning and recon-
struction of simulated data) do seldom work out, because
the original fragment authors did not foresee the resulting
combinatorics.

The end result is that the user has to do a lot of guess-
ing as to what will work, and why, as well as what tweaks
are necessary and how to apply those. The goal of an im-
proved configuration from the point of view of the end-user,
is to take that guesswork out of the equation. Doing so is a
straightforward three step process:

1. Provide smarter, low-level building blocks that areau-
tomaticallygenerated for all components, and while
they fulfill the role of proxies, they should contain the
component defaults as compiled in, and carry suffi-
cient information to verify property settings.

2. Provide structuring support to standardize the setup of
intercomponent relations, to ensure that they can be
modified or even undone, and to remove custom logic
constructs from job options fragments.

3. Build higher level structures, following the direction
of the physics and developer communities, that corre-
spond to elements in the same terms as the end-user
likes to think (e.g. physics processes).

These steps can be summarized as: automate, reduce en-
tropy, and improve the user interface.

CONFIGURABLES

A Configurable classis a python class that corresponds
one-to-one to aGAUDI component class and carries the
complete information of property names, types, documen-
tation, and default values. AConfigurable instanceis an

1A typical Atlas reconstruction job uses hundreds of components, con-
figured in more than 10K lines of python distributed over hundreds of file
fragments.

instance of a Configurable class, and corresponds with a
GAUDI component instance thatmay exist at some point
in the execution of theATHENA job. It has access to the
component property information from its class, and in ad-
dition keeps the actual values as set in the configuration.2 A
schematic example, based on the “HelloWorld” Algorithm,
is provided in Fig.1.

A Configurable is identified by a name, which is the class
name by default. This immediately solves the multiple in-
stance problem mentioned above: the defaults are now as-
sociated at the class level, rather than with any particularin-
stance, and will be set for all instances that are selected for
the job. Thus, instead of loading a fragment that explicitly
uses a name in theAlgorithm declaration, the user loads a
module with a class and decides herself on the name, when
instantiating the class.

Configurable classes are generated automatically by
querying each component for its properties, their default
values (which automatically yields the types), and the op-
tional3 documentation string. Note that if the defaults as
set in the generated code are not complete, the developer
can implement a derived class from the generated class and
override the conventionalsetUserDefaults() member
function, to take care of any left-over details, or to pack-
age the same component with different defaults for differ-
ent uses. This is particularly useful for AlgTools.

The availability of the name and type information of all
properties, allowsATHENA to check as early as during con-
figuration for attribute and type errors in the python frag-
ments. The alternative is to wait until much later in the pro-
gram, when the libraries are loaded and the matching C++
component is created and initialized. The major problem
with the latter approach is that in a given job, the compo-
nent may never be loaded during development/testing, and
hence its configuration would never be checked.

In addition, the availability of the documentation and the
history of values set, allows for new debugging tools: it is
now possible to browse, build, validate, and store a config-
uration without having to startATHENA.

Finally, since the Configurable is really the proverbial
extra intermediate layer that buys flexibility, it is also pos-
sible for developers to customize access and tracking for
their specific components. For example, the default prop-
erty descriptors can be replaced by ones that flag uninten-
tional overwrites, or provide verification of certain seman-
tical aspects of property settings: property boundaries and
constraints, validity of a file identifier, etc.

Property Repository

The python modules containing Configurable classes are
automatically generated during the build process of an At-
las software release. They can be collected and the ensem-

2The actual “value” is actually a history list of changes as applied to
the Configurable instance.

3Often, the use of a property is obvious and doesn’t require any addi-
tional documentation: e.g. a property such as “minPt” for a track recon-
struction algorithm is clear enough.

Figure 1: Schematic example of a Configurable: an instance ofa generated Configurable class, labeled with name “My-
Hello”, corresponds to an instance of theGAUDI component “HelloWorld/MyHello.” It carries all the information that is
available about the component from its class (name, type, default, and documentation of each of its properties) as well as
the actual values from settings in the job configuration.

ble of these modules defines theProperty Repository. The
repository can also be used by a variety of job configura-
tion tools (editors, browsers, documentation generators)to
extract the property settings of any given component. The
high level trigger community is interested in using this to
fill a database, allowing easy and effective logging of job
configurations used in the various trigger menus.

Structuring Job Configuration

Configurable instances can be chained as Compos-
ites [3]: they can contain a sequence of other Config-
urables, etc. The typical use case is an Algorithm using
a number of AlgTools: the AlgTools, and therefore their
configuration, do not have full meaning until the Algorithm
requests their instantiation in a certain context. For exam-
ple, particle propagation codes are different, for different
magnetic fields. The field in the Atlas inner detector can
be approximated with a solenoid, or a field map can be
used. Based on the event structure and required precision,
a tracking algorithm can favor one propagator tool over an-
other, and the properties of that tool, such as minimum step
size and particle cut-off energy.

Taking advantage of subclassing and sequences, the job
configuration fragment given above can now be rewritten:

class KtJets(JetAlgorithmConfig):

def __init__(self, name, finder=None):

JetAlgorithmConfig.__init__(self, name)

if not finder:

self += JetKtFinderConfig("KtFinder")

else:

self.KtFinder = finder

def setUserDefaults(self, ktJets):

ktJets.OutputLevel = VERBOSE

ktJets.KtFinder.BeamType = "PP"

which is then subsequently used by the end-user (or in any
another fragment) like so:

topSeq = AlgSequence("myJob")

topSeq += KtJets("KtJets")

Notice howJetAlgorithm andJetKtFinder tool are
now instances of the auto-generated concrete Configurable
classes, rather than generic Algorithm and AlgTool han-
dles. Notice also how theJetAlgorithmConfigurable in-
stance now manages directly a sequence of “private” tools,
nicely packaged in a class written by the component de-
veloper. Finally, notice that the sequences can be modi-
fied even after the fact: the user can remove/add complete
sequences at a granularity that makes sense from the job
configuration perspective. For example, removingKtJets

from the top sequence will also immediately discard the
settings for the finder tool.

Thus, sequences of Configurables are the foundation for
task-oriented rather than component-oriented job configu-
ration: they immediately provide a higher level structure
that hides details in an easy to find location. Furthermore,
they also help to handle a job configuration issue known
as “key propagation,” which is particularly hard to nail in
the increasingly complex reconstruction jobs: most every
Algorithm result in ATHENA is identified using a unique
“well-known” name.4 These well-known names are usu-
ally set as string properties of an Algorithm or an Al-
gTool, which allows control at the job configuration stage,
as to which of several possible strategies to produce, say,
a jet collection should be used. For all its flexibility, this
string-based implementation of the Strategy pattern [3] cre-
ates long-range couplings between properties of several
ATHENA components. These names can now be associated
with sequences, or the selection of certain sequences, and

4Plus a numeric type identifier.

these can propagate the names to their children, preventing
ordering problems and settings in multiple locations, while
allowing value checking.

Physics-level Job Configuration

What constitutes an appropriate sequence granularity de-
pends on the user: it is different for a subdetector developer,
than for a reconstruction coordinator, than for a member of
the heavy Higgs analysis group. But the ingredients are
always the same, and since different sequences can peace-
fully coexistent (sequence instantiations do not cause their
configuration to be used: only those selected by adding
them to a top sequence are considered), it is now possible to
write sequences for each developer-user relation, including
the three mentioned above.

To support these developer-user relations, any properties
that are set directly to the Configurable instance, e.g.:

topSeq.KtJets.OutputLevel = ERROR

will always, regardless of ordering,5 take precedence over
those that are set insetUserDefaults(), which in turn
will always take precedence over the generated defaults.
This way, a user can start experimenting with different set-
tings, and once satisfied that a block of settings deserves its
own fragment, collect them all in a new derived class.

All the tools are now in place, the physics level job con-
figuration is now steered by their consumers: the develop-
ers and physicists doing the actual work. Two, more or less
independent, implementations are underway: in the Atlas
tracker software, which makes heavy use of AlgTool selec-
tion based on, among others, the subdetector that it is used
in; and in the full reconstruction, which makes heavy use of
Algorithm selection, based on the physics in the provided
events. The initial prototypes are very promising, do con-
siderably cut down turnaround time for users, and will be
used in the next major Atlas software release.

ACKNOWLEDGEMENTS

We gratefully acknowledge the contribution of all mem-
bers of the Atlas Users and Usability Task Forces. Special
thanks to Pere Mato from CERN who initiated the auto-
generation of concrete Configurable classes starting from
the information inATHENA/GAUDI component libraries.

REFERENCES

[1] C. Leggett, et al., “The Athena Control Framework in Produc-
tion, New Developments and Lessons Learned” CHEP’04,
Conference Proceedings, Interlaken, Switzerland, Sep. 2004

[2] http://www.python.org.

[3] E. Gamma, et al., “Design Patterns, Elements of Reusable
Object-Oriented Software”, Addison-Wesley, Jan. 1995

5User settings among themselves do follow normal flow ordering.

