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Abstract

We establish the interrelation between the QCD scalar response of the nuclear

medium and its response to a scalar probe coupled to nucleons, such as the scalar

meson responsible for the nuclear binding. The relation that we derive applies at

the nucleonic as well as at the nuclear levels. Non trivial consequences follow. In

particular it opens the possibility of relating medium effects in the scalar meson

exchange or three-body forces of nuclear physics to QCD lattice studies of the

nucleon mass.

Pacs: 24.85.+p 11.30.Rd 12.40.Yx 13.75.Cs 21.30.-x

1 Introduction

The spectrum of scalar-isoscalar excitations is quite different in the vacuum and in the
nuclear medium. In the second case it includes low lying nuclear excitations and also
two quasi-pion states, i.e., pions dressed by particle hole-excitations. All these lie at
lower energies than the vacuum scalar excitations which start at 2 mπ. We have shown in
previous works [1, 2, 3] that this produces a large increase of the magnitude of the scalar
QCD susceptibility over its vacuum value. We have expressed the origin of this increase
as arising from the mixing of the nuclear response to a scalar probe coupled to nucleonic
scalar density fluctuations into the QCD scalar response.

It is natural to investigate also the reciprocal problem of the influence of the QCD
scalar response to a probe which couples to the quark density fluctuations on the ordinary
nuclear scalar response of nuclear physics, which is the object of the present work. We
will study this influence not only for what concerns the nuclear excitations but also for a
single nucleon for which only nucleonic excitations are involved. If this influence indeed
exists, does it lead to non-trivial observable consequences ? We will show that this is
the case, with one main application. It is the possibility to infer medium effects in the
propagation of the scalar meson which binds the nucleus from QCD results, such as the
lattice ones on the evolution of the nucleon mass with the pion mass.

Our article is organized as follows. In section 2 we illustrate the mixing notion of the
nuclear response into the QCD one, and vice-versa in the framework of a nuclear chiral
model with a scalar and vector meson exchange. We show that this mutual influence
also exists at the nucleonic level. In section 3 we discuss the influence of the quark
structure of the nucleon on the scalar response of nuclear physics in a framework which
also incorporates confinement effects.
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2 Mutual influence of the scalar QCD response and

nuclear physics response

2.1 Study in a nuclear chiral model

We first remind how the usual nuclear physics response to a scalar field enters in the QCD
susceptibility. For this, following ref. [1], we start from the expression of the modification
of the quark condensate in the nuclear medium, ∆〈q̄q〉(ρ) = 〈q̄q〉(ρ) − 〈q̄q〉vac. We first
use, as in ref. [1], its expression for a collection of independent nucleons :

∆〈q̄q〉(ρ) = QS ρS, (1)

where ρS is the nucleon scalar density. We have introduced the scalar charge of the
nucleon, QS = σN/2 mq, which represents the scalar number of quarks of the nucleon.
The susceptibility of the nuclear medium, χA

S , is the derivative of the quark scalar density
with respect to the quark mass. We define it in such a way that it represents a purely
nuclear contribution with the vacuum susceptibility substracted off :

χA
S =

(

∂∆〈q̄q(ρ)

∂mq

)

µ

=

(

∂(QS ρS)

∂mq

)

µ

. (2)

Here the derivatives are taken at constant chemical potential. This expression contains
two terms. One arises from the derivative of QS, which by definition is the free nucleon
QCD scalar susceptibility, χN

S = ∂QS/∂mq. The second one involves the derivative of
the nucleon density ρS. This last contribution is itself built of two pieces, one involves
antinucleon excitations and is small [1]. The other one involves, as shown in ref. [1],
the nuclear response Π0 = −2MNpF/π2. In this case it is the free Fermi gas one since
no interactions between nucleons have been introduced. The result of this derivation is
summarized in the following equation:

χA
S = ρS χS

N + 2 Q2

S Π0 . (3)

It says that the nuclear susceptibility is, as expected, the sum of a term arising from the
individual nucleon response, i.e., from the nucleonic excitations, and of a term linked to
the nuclear excitations. This decomposition survives the introduction of the interactions
between the nucleons, as will be shown next. The previous result has been generalized
in ref. [2] to an assembly of nucleons interacting through a scalar and a vector meson
exchanges, working at the mean field level as in relativistic mean field theories. The
original point with respect to standard relativistic theories is that, following our suggestion
of ref. [4], the nuclear scalar field is identified with a scalar field of the linear sigma model.
Rather than the sigma field, chiral parner of the pion, this is a chiral invariant, denoted S,
associated with the chiral circle radius. Nevertheless the nuclear scalar field influences the
condensate. Ignoring pion loops the distinction between the two scalar fields, the chiral
invariant nuclear one and the non chiral invariant sigma one, wil be ignored.

In ref. [2], the condensate was obtained as the derivative of the grand potential with
respect to the quark mass (Feynman-Hellmann theorem) and the susceptibility as the
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derivative of the condensate, both being taken at constant chemical potential. The result
for the susceptibility, as given in ref. [2], reads :

χS =

(

∂〈q̄q〉

∂mq

)

µ

≃ −2
〈q̄q〉2vac

f 2
π

(

∂S̄

∂c

)

µ

. (4)

S̄ ≡ fπ + s̄ is the expectation value of the chiral invariant scalar field and c = fπ m2

π is
the symmetry breaking parameter of the model used in [2]. The quantity

(

∂S̄/∂c
)

µ
was

shown in ref. [2] to be related to the in-medium sigma propagator :

(

∂S̄

∂c

)

µ

= −D∗

σ(0) =
1

m∗2
σ

−
g2

S

m∗2
σ

ΠS(0)
1

m∗2
σ

(5)

where ΠS(0) is the full RPA scalar polarization propagator and m∗

σ is the in-medium
sigma mass, obtained from the second derivative of the energy density with respect to the
order parameter :

m∗2

σ =
∂2ε

∂s̄2
= V ′′(s̄) +

∂ (gS)

∂s̄
ρS = m2

σ

(

1 +
3s̄

fπ

+
3

2

(

s̄

fπ

)2
)

(6)

where the potential V responsible for the spontaneous symmetry breaking is the standard
quartic one of the linear sigma model, V = (m2

σ/2) (s2 + s3/fπ + s4/(4f 2

π)). At this stage
the nucleons are sructureless and hence we ignore the medium renormalization of gS, i.e.

we take gS to be independent of s. The mean scalar field s̄ being negative, the term
linear in s̄ lowers the sigma mass by an appreciable amount (≃ 30 % at ρ0). This is the
chiral dropping associated with chiral restoration [5] and arising from the 3σ interaction
as depicted in fig 1.

Since we are interested only in the medium effects the vacuum value of the quantity
(

∂S̄/∂c
)

µ
= 1/mσ

2 has to be subtracted off in eq. (5) and the purely nuclear suceptibility,

χA
S , writes :

χA
S = 2

〈q̄q〉2vac

f 2
π

[

3 s̄/fπ + 3

2
(s̄/fπ)2

m∗2
σ

+
g2

S

m∗2
σ

ΠS(0)
1

m∗2
σ

]

. (7)

We see that χA
S receives two types of contributions, the second denoted as (χA

S )nuclear being
proportionnal to the full RPA scalar response ΠS (the response to the scalar nuclear field
is g2

S ΠS). The corresponding proportionality factor r between this second contribution
and g2

S ΠS writes, to leading order, i.e., neglecting the medium modification of the sigma
mass :

r =
(χA

S )nuclear

g2

S ΠS(0)
= 2

〈q̄q〉2vac

f 2
π m4

σ

≃ 2
(Qs

S)2

g2

S

(8)

where we have introduced the nucleon scalar charge Qs
S from the scalar field, defined below.

In the sigma model the free nucleon sigma commutator is the sum of two contributions,
one arising from the pion cloud, which depends on the mean value of the squared pion field,
i.e., on the scalar number of pions in the nucleonic cloud. In the mean field approximation

3



where pion loops are ignored this term does not appear. The other one, Qs
S, arises from

the scalar meson [6, 7, 8]. It is linear in the σ field :

Qs
S =

σs
N

2mq

= −
〈q̄q〉vac

fπ

∫

d3r 〈N |σ(~r)|N〉 = −
〈q̄q〉vac

fπ

gS

m2
σ

(9)

which establishes relation (8) if we ignore the in-medium modification of Qs
S, i.e., the

difference beween m∗

σ and mσ.
We now turn to the first part of χA

S which depends on the mean scalar field s̄. We will
show that it provides an information on the nucleon susceptibility. For this we investigate
the low density limit of eq. (7). In this case, s̄ reduces to s̄ = −gS ρS/m2

σ, and we can
ignore the term in s̄2 as well as the difference beween m∗

σ and mσ. In this limit the first
term in the expression (7) of χA

S is linear in the density. In the decomposition of eq. (3)
for χA

S , it obviously belongs to the individual nucleon contribution, ρS χN
S , to the nuclear

susceptibility. Writing the linear term explicitly in eq. (7) we deduce the free nucleon
scalar susceptibility from the scalar field, (χN

S )s :

(χN
S )s = −2

〈q̄q〉2vac

f 3
π

3 gS

m4
σ

, (10)

which is negative. The existence of a contribution to the nucleon susceptibility from the
scalar field as given by the expression 10 is a new information provided by this study with
interacting nucleons. We have obtained it from the low density expression of χA

S . Another
way to derive it is from the derivative with respect to the quark mass of the scalar charge
Qs

S of eq. (9) :

(χN
S )s =

∂Qs
S

∂mq

=
∂

∂mq

(

−
〈q̄q〉vac

fπ

gS

m2
σ

)

. (11)

Using the fact that, in the model, 〈q̄q〉vac/fπ does not depend on mq, only the derivative
of the sigma mass with respect to mq enters which, according to the Feynman-Hellmann
theorem, is linked to the sigma commutator, σσ, of the σ. In the linear sigma model the
derivative with respect to the quark mass is replaced by the derivative with respect to the
symmetry breaking parameter, c = fπ m2

π, keeping the other original parameters of the
model, λ and v, constant. The result is :

σσ = mq

∂mσ

∂mq

=
3

2

m2

π

mσ

. (12)

When inserted in eq. (11), it leads for (χN
S )s to the expression of eq. (10).

We have seen that the nuclear part of the susceptibility is related to the nuclear
response to the scalar field by the relation 8. Similarly we will show the nucleonic piece
of the susceptibility, (χN

S )s, is related to the scattering amplitude of the scalar meson on
the nucleon. Indeed, in the expression(6) of m∗2

σ there is a term linear in density which is
obtained from the low density expression : 3 s̄m∗2

σ ≃ −(3 gS/fπ) ρS. This term represents
an optical potential for the scalar meson propagation. The corresponding σN scattering
amplitude, TσN , which can also be evaluated directly from the graph of fig. 1, is equal
to :

TσN = −3 gS/fπ. (13)
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Figure 1: Contribution to the sigma-nucleon scattering amplitude responsible for the
lowering of the sigma mass in the medium.

We are now in a situation to relate the nucleon scalar susceptibility (eq. (10)) to the
sigma-nucleon amplitude of eq. (13), with the result :

r′ =
(χN

S )s

TσN

=
2 (Qs

S)2

g2

S

. (14)

We observe that the proportionality factor between TσN and (χN
S )s which is 2 (Qs

S)2/g2

S, is
identical to the one which involves the purely nuclear excitations. The quantity gS which
appears in the present factor is due to the σNN coupling constant. Adding now the
two effects from the nucleonic and nuclear excitations the total QCD scalar susceptibility
of the nuclear medium (vacuum value substracted) can therefore be related to the total
response, TA, to the nuclear scalar field through :

χA
S =

2 (Qs
S)2

g2

S

TA (15)

where the two members include both the individual nucleon contribution and the one
arising from the nuclear excitations,with :

TA = ρS TσN + g2

S ΠS. (16)

The last term on the r.h.s. represents the influence of the Born part of the σN amplitude
(in-medium corrected in particular for the Pauli effect) while the first piece arises from
the non-Born part linked to nucleonic excitations.

3 Connection with lattice data

Since we have introduced QCD quantities such as the QCD scalar response, it is now
interesting to connect our results to lattice simulations of the evolution of the nucleon
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mass with the pion mass, equivalently the quark mass. At present they do not cover
the physical region but only the region beyond mπ ≃ 400 MeV and in order to reach the
physical nucleon mass an extraplolation has to be performed. The pion cloud contribution
to the nucleon self.energy has a non-analytic behavior in the quark mass, preventing a
polynomial expansion in this quantity. For that reason Thomas et al [9] have separated
out this contribution. This is done in a model dependent way with different cut-off forms
for the pion loops (gaussian, dipole, monopole) with an adjustable parameter Λ. They
expand the remaining part in terms of m2

π as follows:

MN(m2

π) = a0 + a2 m2

π + a4 m4

π + Σπ(mπ, Λ). (17)

The best fit value of the parameter a4 which fixes the susceptibility shows little sensitivity
to the shape of the form factor, with a value a4 ≃ − 0.5 GeV −3, while a2 ≃ 1.5 GeV −1

(in a previous work [10] smaller values of a2 and a4 were given : a2 ≃ 1 GeV −1 and
a4 ≃ − 0.23 GeV −3). From the expansion of eq. (17) we can therefore infer the non-
pionic pieces of the sigma commutator and of the susceptibility :

σnon−pion
N = m2

π

∂M

∂m2
π

= a2 m2

π + 2 a4 m4

π ≃ 29 MeV . (18)

It is largely dominated by the a2 term. The corresponding value for a2 ≃ 1 GeV −1 is
σnon−pion

N = 20 MeV . In turn the nucleon susceptibility is :

χN,non−pion
S = 2

〈q̄q〉2vac

f 4
π

∂

∂m2
π

(

σnon−pion
N

m2
π

)

=
〈q̄q〉2vac

f 4
π

4 a4 ≃ −5.4 GeV −1 (19)

The non-pionic susceptibility is found with a negative sign, as expected from the scalar
meson term. In ref. [9] however, the negative sign is interpreted differently. It is attributed
to possible deviations from the Gellman-Oakes-Renner (GOR) relation which links quark
and pion masses. Here instead we assume the validity of the GOR relation.

It is then interesting to test if the empirical values from the lattice are compatible
with our previous linear sigma model results. We thus tentatively make the following
identifications :

Qs
S = −

〈q̄q〉vac

fπ

gS

m2
σ

=
σnon−pion

N

(2 mq)
≃ −

〈q̄q〉vac

fπ

a2 = −2.4, (20)

with 2 mq = 12 MeV (taking a2 ≃ 1 GeV −1 one would get Qs
S = 1.66). It is interesting

to translate this number into the value of the mean scalar field in the nuclear medium
which, to leading order in density, is :

−s̄ =
gs ρS

m2
σ

=
Qs

S fπ ρS

〈q̄q〉vac

=
σnon−pion

N

(2 mq)

fπ ρS

〈q̄q〉vac

=
a2 + a4 m2

π

fπ

ρS . (21)

At normal density the value is |s̄(ρ0)| ≃ 21 MeV , compatible with nuclear phenomenology.
The second identification concerns the susceptibility. Identifying the value of the linear
sigma model with the lattice one, we should have :

(χN
S )non−pion = −

2 (Qs
S)2

g2

S

3 gS

fπ

=
〈q̄q〉2vac

f 4
π

4 a4 (22)
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which, using the relation (20) between a2 and Qs
S leads to :

−a4 =
3

2

(σnon−pion
N )2

gS fπ mπ
4

≃
3

2

a2

2

gSfπ

=
3

gSfπ

a2

2
= 3.5 GeV −3, (23)

much larger than the lattice value, −a4 = 0.5 GeV−3. For a2 ≃ 1 GeV −1 one gets −a4 ≃
1.2 GeV −3, also larger than the corresponding lattice value (0.23 GeV −3). Thus the linear
σ model leads to a too large absolute value of the nucleon scalar susceptibility. We remind
at this stage that it also fails in another respect, concerning the saturation properties of
nuclear matter. The 3σ coupling present in this model, which lowers the sigma mass in
the medium, prevents saturation to occur and produces the collapse [11]. Said differently
the sigma nucleon scattering amplitude, TσN , of the model is too attractive. In fact what
we have shown in this work is that the two problems are linked since we have found
that TσN and (χN

S )s are related. These two failures are coherent. Some mechanism must
be at work to introduce in both a suppression effect. In a previous work [2] we have
invoked the quark meson coupling model (QMC) [12, 13] and confinement as a source
of cancellation. Indeed, for three valence quarks confined in a bag of radius R, Guichon
[14] derived (χN

S )bag ≃ + 0.25 R ≃ 1 GeV −1, (for R = 0.8 fm). Contrary to the other
components which are negative (of paramagnetic nature), it has a positive sign (of the
diamagnetic type, linked to quark-antiquark excitations). In ref ([2]) we have introduced
phenomenologically in the nucleon mass evolution of the linear sigma model a parameter,
κNS which embodies the scalar response of the nucleon from confinement:

M∗

N = MN + gS s̄ +
1

2
κNS s̄2 (24)

It allows a proper description of the saturation properties on nuclear matter.It is then
natural to extend the linear sigma model description so as to incorporate effects arising
from confinement.

4 Illustration in a hybrid model of the nucleon

We now want to generalize our previous results so as to incorporate the confinement
aspect. In the following we will introduce a model of the nucleon proposed in ref. [15]
which is intermediate between the two extreme pictures : the bag one and the Nambu-
Jona-Lasinio (NJL) one which generates a linear sigma model. We will study both the
scalar susceptibility of the nucleon and the scattering amplitude of the scalar field on
the nucleon and their relation. In this framework we retain two concepts that were
contained in our previous approach in the linear sigma model : (i) the nuclear scalar field
is identified with the chiral field associated with the quark condensate and (ii) part of the
nucleon mass originates from this condensate. This model consists in the following. Three
constituant quarks moving in a non-perturbative vacuum are kept together by a central
force which mimicks confinement and the effect of the color string tension. The mass M
of the constituants quarks originates from the chiral condensate as in the NJL model.
The nucleon mass is not 3M but, because of the confining force, becomes 3E(M) where
the M dependence is fixed by the type of force. For illustration we take for simplicity a
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harmonic force of the form: ((K/4)(1+γ0) r2, which leads to analytical results. With this
particular potential the nucleon mass is :

MN = 3 E = 3

(

M +
3

2

√

K

E + M

)

. (25)

It is increased as compared to the value, 3M , for three independent constituant quarks.
Although oversimplified the model gives an intuitive picture of the role played by confine-
ment. Since we assume that the nuclear scalar field is related to the quark condensate,
the presence of the mean scalar field in the medium which modifies the condensate with
respect to its vacuum value also affects the mass M. The derivative, ∂M/∂s̄, has a non-
vanishing value, given by the NJL model,

∂M

∂s̄
= gq =

M

fπ

. (26)

The nucleon scalar charge, QS, writes :

QS =
3

2

∂E

∂mq

=
3

2

∂E

∂M

∂M

∂mq

(27)

with :
∂E

∂M
= cS =

E + 3M

3E + M
. (28)

As E > M , cS < 1, the nucleon scalar charge is reduced as compared to a collection
of three independent quarks. The nucleon scalar susceptibility, χN

S , given by the next
derivative, is composed of two terms arising respectively from the derivative of cS and
from that of ∂M/∂mq :

χN
S =

∂QS

∂mq

=
3

2

[

∂cS

∂M

(

∂M

∂mq

)2

+ cS

∂2M

∂2m2
q

]

with:
∂cS

∂M
=

24 (E2 − M2)

(3E + M)3
. (29)

Notice that this last derivative is positive since E > M and that it vanishes in the
absence of confining force, when E = M . Therefore the first part of the expression of
χN

S represents the part of the susceptibility originating in confinement and, as in QMC,
it is positive. We find in the susceptibility written in eq. (29) the double aspect of the
mass, part arising from the constituant quark mass, i.e., from the condensate and part
from confinement. The expression (29) can descibe the two extreme situations. In the
MIT bag model the confined quarks are the current ones, M = mq, the second term of
the susceptibility disappears, only the confinement part enters. In the NJL model instead
where the constituant quarks are unconfined, E = M, cS = 1 and only the second term
survives.
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For what concerns the coupling constant, gS , of the nucleon to the scalar field, it is
given by the derivative of the nucleon mass with respect to the mean scalar field s̄:

gS = 3
∂E

∂s̄
= 3

∂E

∂M

∂M

∂s̄
= 3 cS gq. (30)

The nucleon response to the scalar field originating in confinement, κNS, follows from the
eq. (24) as the second derivative of the nucleon mass with respect to the scalar field :

κNS = 3
∂2E

∂s̄2
= 3

∂cS

∂M

(

∂M

∂s̄

)2

. (31)

The ratio, rm, between the part of the nucleon scalar susceptibility due to confinement
and κNS is

rm =
1

2

( ∂M
∂mq

)2

(∂M
∂s

)2
=

2 Q2

S

g2

S

, (32)

the same ratio, r, as was previously found in the linear sigma model.
While the quantity κNS represents the effect of the nucleon internal quark structure,

there is another component of the σN amplitude, which is the tadpole term , TσN , an effect
of the mexican hat chiral potential. For each constituant quark the tadpole amplitude is
tσN = −3 gq/fπ. As the scalar number of constituant quarks is 3 cS, the tadpole amplitude
for the nucleon writes TσN

tadpole = −3 gS/fπ, the same expression as in the linear sigma
model. This quantity should be compared to the other component of the susceptibility,
3

2
cS

∂2M
∂2m2

q

. We define r′m as the corresponding ratio through :

3

2
cS

∂2M

∂m2
q

= r′m

(

−
3 gS

fπ

)

. (33)

In the semi-bosonized version of the NJL model we have :

∂M

∂mq

= −2
gq 〈q̄q〉vac

fπ m2
σ

(34)

and
∂2M

∂m2
q

= −
2 gq 〈q̄q〉vac

2

f 3
π m4

σ

(35)

in such a way that the ratio r′m becomes :

r′m =
2 〈q̄q〉2vac

f 2
π m4

σ

=
2 Q2

S

g2

S

≡ rm. (36)

Since the same ratio applies to the two parts, r′m ≡ rm, it can be factorized when we add
the two pieces of the susceptibility so as to obtain the relation

χN
S = rm κNS + r′m

(

−
3 gS

fπ

)

=
2 Q2

S

g2

S

T total
N (37)
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which thus also holds in the presence of confinement. Adding the nuclear excitations
contribution (term in ΠS) on both sides of the above equation once multiplied by the
density we recover the relation (7) between the nuclear values χA

S and TA.
Numerically we have chosen a value of the ratio E/M ≃ 2.1, which leads to a reason-

able value for gA and gives cS ≃ 0.7. It results in a value of the dimensionless parameter
C = (fπ/2gS) κNS ≃ 0.1, while the value needed to account for the saturation properties
is C ≃ 1 [16]. In fact the nuclear phenomenology requires a strong suppression of the tad-
pole term in the σN amplitude (total cancellation occurs for C = 1.5). On the other hand
the lattice results also require a nearly total cancellation of the nucleon scalar susceptibil-
ity from the scalar meson by the effect of confinement. For us the two cancellations have
a unique origin and description since the total susceptibility and the total σNamplitude
are related. The condition for a total cancellation between the two components of χN

S , as
approximately required by the phenomenology, writes

∂cS

∂M
−

cS

2gqfπ

= 0, (38)

which should approximately hold for the physical value of M, but is not fulfilled with our
particular form of cS where the second part dominates. Even if our particular model fails
to account for the numerical value of C it has the merit to confirm the validity of the
relation between the QCD response and the one to the nuclear scalar field in a situation
where confinement enters. The relation (37) is indeed general and does not depend on
the particular form of E(M).

5 Applications to nuclear physics

We can now turn to the quantitative applications of the relation (37) between T total
N and

the scalar susceptibility. The last quantity is known from the lattice expansion. On the
other hand the scalar charge which enters the relation (37) is also determined by this
expansion. Therefore the only model dependent quantity to determine the amplitude,
T total

N , from the lattice expansion is gS but this is only a moderate uncertainty. The
important point is that the resulting value of T total

N is small.
The resulting medium effects in the propagation of the nuclear scalar field can be

written, using the eq. (37) and (19), as :

−D−1

s = m2

σ +
g2

S

2 Q2

S

χN
S ρS ≈ m2

σ + g2

S

2 a4

a2

2

ρS; (39)

Numerically, at normal nuclear density, and for a value of the coupling constant gS = 10,
the second term on the rhs of the second equation takes the value 0.06 GeV 2 (a similar
value is found for the other set of parameters a2 and a4). For a sigma mass of mσ =
0.75 GeV , this represents at ρ0 only a 6% decrease of the mass, much less that the chiral
dropping alone and in much better agreement with the nuclear phenomenology [2, 16].

At this stage, conceptual questions naturally arise. As the lattice parameter a4 is
very small one may conclude that QCD effects related to the nucleon quark substructure
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and chiral symmetry are simply not visible in nuclear physics as they annihilate each
other. This conclusion is however erroneous. They strongly show up at the level of the
three-body forces, playing an important role in the saturation mechanism, as explained
below. For that purpose we introduce a new scalar field u = s + (κNS/2gS) s2 in such
a way that the expression of the in-medium nucleon effective mass reduces to a simpler
form according to :

M∗

N(ū) = MN + gS s̄ +
1

2
κNS s̄2 ≡ MN + gS ū. (40)

Expressed in term of the u field, the chiral mexican hat potential takes the form :

V chiral = V =
m2

σ

2

(

s2 +
s3

fπ

+
s4

4 f 2
π

)

=
m2

σ

2

(

u2 +
u3

fπ

(1 − 2C) +
u4

4
(1 − 8C + 20C2)

)

.

(41)
In the formulation with the u field the three body forces are contained in the u3 term :

V three−body =
m2

σ

2

ū3

fπ

(1 − 2C). (42)

We remind the definition of C = (κNSfπ)/(2gS). As ū < 0, this force is repulsive for
C > 1/2, which is actually the case. Without confinement, i.e., C = 0, the chiral potential
alone leads to attractive 3-body forces. The important point is that the balance between
the effects of the chiral potential and of confinement are not the same in the propagation
of the scalar field and in the three body forces. In the first case the amplitude T total

N

which governs the sigma self-energy is T total
N = 3 gS/fπ + κNS = (3gS/fπ) (1 − 2C/3),

while in the three body forces the combination is 1 − 2C. With C of the order unity,
a strong cancellation occurs in T total

N while there is an overcompensation in the three
body potential which becomes repulsive. The existence of repulsive three body forces in
relativistic theories is strongly supported by the nuclear phenomenology [17, 18]. Using
the eq. (19),(20) and (37), we can express C in terms of the lattice parameters :

C =
3

2
−

gS fπ

a2

2

a4 ≃ 1.3, (43)

which leads to

V three−body = −
m2

σ

2

ū3

fπ

(

gS fπ

a2

2

a4 + 2

)

(44)

Notice that since a4 is small the term 2 dominates the parenthesis on the r.h.s. The
equation of motion gives ū ≃ −gS ρS/m2

σ.
Numerically, for the phenomenological value C = 1, the contribution of the three-body

forces to the energy per nucleon is :

(

E

A

)three−body

=
V three−body

ρ
20

(

ρ

ρ0

)2

,

MeV. (45)

With the lattice value. C = 1.3, the result is ≃ 50% larger.
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In the QMC approach of ref. [12, 13], the chiral aspect is not considered and hence
the higher order terms in the mexican hat potential are absent. The three-body potential
originates only from confinement through the nucleon scalar response :

V three−body =
m2

σ

2

ū3

fπ

(− 2CQMC). (46)

Comparing the expressions (42) and (46), one sees that, numerically, our phenomenolog-
ical value C ≃ 1 is equivalent to CQMC = 0.5, which is close to the actual value of the
QMC model.

6 Conclusion

In summary we have studied in this work the interplay between the two nuclear responses
to probes which couple either to nucleon or to quark scalar density fluctuations. We
have found that the two responses are reflected in each other. The scaling coefficient
involves the nucleon scalar charge. Both responses incorporate the individual nucleon
contributions to the nuclear response in such a way that our result holds not only at
the level of the nuclear excitations but also for the nucleonic ones. The response of a
nucleon to the nuclear scalar field is linked to its QCD scalar susceptibility. We have first
established this results in the linear sigma model, adopting the view that the scalar field
is the chiral invariant scalar field of this model, in which case it is linked to the quark
condensate.

However the linear sigma model has serious shortcomings, first in nuclear physics where
it makes nuclear matter collapse instead of saturate. In QCD as well it fails to account for
the value of the nucleon scalar susceptibility, for which it predicts too large a magnitude
as compared to the lattice result. In our views the two problems are not distinct but
they are automatically linked and we have attributed them to the absence of confinement
in the description. In a second step we have improved our approach to incorporate this
effect. For the nucleon we have adopted a hybrid image of three constituant quarks sitting
in a non perturbative vacuum and kept together by a confining potential. The nucleon
mass thus originates in part from the quark condensate and in part from confinement.
We have retained the concept that the nuclear scalar field has a relation to the scalar
field associated with the chiral quark condensate. In this situation the presence of the
nuclear scalar mean field affects the condensate and hence the constituant quark mass.
We have shown that, in this model, the relation between the scalar meson self-energy and
the nucleon QCD scalar susceptibility remains the same as in the linear sigma model.

The existence of relations between nuclear physics parameters (such as the opticel
potential for the propagation of thr scalar field, the three-body potential) and those of
QCD opens the possibility of a description of the properties of nuclear matter using as
inputs the parameters of the lattice expansion of QCD. We have adopted this approach in
ref.([16]) and it has been successful. With parameters close to those provided by the lattice
expansion we have been able to reproduce the saturation properties of nuclear matter.
This coherence, which it is not a priori acquired, suggests the validity of such an approach.
It supports the idea that a part of the nucleon mass originates in the quark condensate and
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that the nuclear scalar field plays a role in the restoration of chiral symmetry in nuclei. We
have found, both in the lattice expansion results and in the nuclear phenomenology, the
need for a strong cancellation of the chiral effects by confinement in the sigma propagation.
It follows that the sigma mass remains stable in the medium. Confinement nevertheless
shows up very neatly in the three body potential where it dominates the attractive chiral
effects, giving rise to repulsive three-body forces.
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