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Abstract

A unified approach to (symmetric informationally complete)positive operator valued

measures and mutually unbiased bases is developed in this article. The approach is based

on the use of operator equivalents expanded in the enveloping algebra of SU(2). Emphasis

is put on similarities and differences between SIC-POVMs and MUBs.
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1 INTRODUCTION

The importance of finite-dimensional spaces for quantum mechanics is well recognized

(see for instance Refs. [1, 2]). In particular, such spaces play a major role in quantum

information theory, especially for quantum cryptography and quantum state tomography

[3-21]. Along this vein, a symmetric informationally complete (SIC) positive operator

valued measure (POVM) is a set of operators acting on a finite Hilbert space [3-11] and

mutually unbiased bases (MUBs) are specific bases for such a space [12-21].

The introduction of a POVM goes back to the seventies [3-5]. The most general

quantum measurement is represented by a POVM. A SIC-POVM (see the definition in

Sec. 2) is a POVM for which the statistics of the measurement allows the reconstruction of

the quantum state. The notion of MUBs (see the definition in Sec. 3), implicit or explicit

in the seminal works of Refs. [12-15], has been the object of numerous mathematical

and physical investigations during the last two decades in connection with the so-called

complementary observables.

The aim of this note, is to develop a unified approach to SIC-POVMs and MUBs. Our

approach is based on the Wigner-Racah algebra of the chainSU(2) ⊃ U(1) recently used

for a study of entanglement of rotationally invariant spin systems [22] and for an angular

momentum study of MUBs [20, 21].

Most of the notations in this work are standard. Let us simplymention thatI denotes

the identity opertor, the bar indicates complex conjugation, x = [a](1)[b] means thatx

takes the valuesa to b by increments of 1 unit,δa,b stands for the Kronecker symbol for

a andb, and∆(a, b, c) is 1 or 0 according to asa, b andc satisfy or not the triangular

inequality.

2 SIC-POVMs

A discrete SIC-POVM is a set{Px : x = [1](1)[d2]} of d2 nonnegative operatorsPx

acting on the Hilbert spaceCd, endowed with an inner product denoted as〈 | 〉, such that
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the trace relation

Tr (PxPy) =
1

d + 1
, x 6= y (1)

and the decomposition of the identity

1

d

d2

∑

x=1

Px = I (2)

be satisfied. Therefore, by putting

Px = |Φx〉〈Φx| (3)

with |φx〉 ∈ Cd, to findd2 operatorsPx is equivalent to findd2 vectors|φx〉 in Cd with the

property

|〈Φx|Φy〉|2 =
1

d + 1
(dδx,y + 1) (4)

The cornerstone of our approach is to identifyCd with a subspaceε(j) of constant

angular momentumj = (d − 1)/2. Such a subspace is spanned by the set{|j, m〉 :

m = [−j](1)[j]}, where|j, m〉 is an eigenvector of the square and thez-component of a

generalized angular momentum operator. Letu
(k) be the Racah unit tensor [23] of order

k (with k = [0](1)[2j]) defined by its2k + 1 componentsu(k)
q (whereq = [−k](1)[k])

through

u(k)
q =

j
∑

m=−j

j
∑

m′=−j

(−1)j−m

(

j k j
−m q m′

)

|j, m〉〈j, m′| (5)

where (· · ·) denotes a 3–jm Wigner symbol. For fixedj, the(2j+1)2 operatorsu(k)
q (with

k = [0](1)[2j] andq = [−k](1)[k]) form a basis of the Hilbert spaceCN of dimension

N = (2j + 1)2 and consisting of operators acting onε(j) ∼ C
d, the inner product inCN

being the Hilbert-Schmidt product. The formulas (involving unit tensors, 3–jm and 6–j

symbols) relevant for this work are given in Appendix (see also Refs. [23-25]).
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Each operatorPx can be developed as a linear combination of the operatorsu
(k)
q .

Therefore, we can write

Px =

2j
∑

k=0

k
∑

q=−k

ckq(x)u(k)
q (6)

where the unknown expansion coefficientsckq(x) are a priori complex numbers. The

determination of the operatorsPx is thus equivalent to the determination of the coefficients

ckq(x). The latter coefficients satisfy some properties which can be summed up by the

following results.

Result 1. The coefficientsckq(x) of the development (6) are formally given by

ckq(x) = (2k + 1)〈Φx|u(k)
q |Φx〉 (7)

for q = [−k](1)[k], k = [0](1)[2j] andx = [1](1)[(2j + 1)2].

Proof: Multiply each member of Eq. (6) by the adjoint ofu
(ℓ)
p and use Eq. (39) of

Appendix.

By defining the vector

v(x) = (v1(x), v2(x), · · · , vN(x)), N = (2j + 1)2 (8)

via

vi(x) =
1√

2k + 1
ckq(x), i = k2 + k + q + 1 (9)

the search for the set{Px : x = [1](1)[N ]} is equivalent to the search for the set{vx :

x = [1](1)[N ]} in a second Hilbert spaceCN , with an inner product of the typev · w =
∑N

i=1 vi wi.

Result 2. The first componentv1(x) of v(x) does not depend onx since

c00(x) =
1√

2j + 1
(10)

for x = [1](1)[(2j + 1)2].

Proof: Take the trace of Eq. (6) and use Eq. (41) of Appendix.

4



Result 3. The componentsvi(x) of v(x) satisfy the complex conjugation property

described by

ckq(x) = (−1)qck−q(x) (11)

for q = [−k](1)[k], k = [0](1)[2j] andx = [1](1)[(2j + 1)2].

Proof: Use the Hermitean property ofPx and Eq. (36) of Appendix.

Result 4. The vectorsv(x) satisfy the relation

v(x) · v(y) =
1

2(j + 1)
[(2j + 1)δx,y + 1] (12)

for x, y = [1](1)[(2j + 1)2]. In detail, Eq. (12) reads

2j
∑

k=0

1

2k + 1

k
∑

q=−k

ckq(x)ckq(y) =
1

2(j + 1)
[(2j + 1)δx,y + 1] (13)

where the sum overq is rotationally invariant.

Proof: It is sufficient to develop〈φx|Py|φx〉.

Result 5. The coefficientsckq(x) are solutions of the nonlinear system given by

1

2K + 1
cKQ(x) = (−1)2j−Q

2j
∑

k=0

2j
∑

ℓ=0

k
∑

q=−k

ℓ
∑

p=−ℓ

(

k ℓ K
−q −p Q

)

× W

(

k ℓ K
j j j

)

ckq(x)cℓp(x) (14)

for Q = [−K](1)[K], K = [0](1)[2j] andx = [1](1)[(2j + 1)2].

Proof: ConsiderP 2
x = Px and use the coupling relation (44) of Appendix involving a

3–jm Wigner symbol and aW Racah coefficient (or 6–j Wigner symbol).

As a corollary of Result 5, by takingK = 0 and using Eqs. (40) and (43) of Appendix,

we get‖v(x)‖2 = v(x) ·v(x) = 1, a result that also follows as a particular case of Eq. (13)

of Result 4.

Result 6. All coefficientsckq(x) are connected through the sum rule

(2j+1)2
∑

x=1

2j
∑

k=0

k
∑

q=−k

ckq(x)

(

j k j
−m q m′

)

= (−1)j−m(2j + 1)δm,m′ (15)
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which turns out to be useful for global checking purposes.

Proof: Take thejm–jm′ matrix element of the resolution of the identity in terms of

the operatorsPx/(2j + 1).

3 MUBs

A complete set of MUBs in the Hilbert spaceCd is a set ofd(d + 1) vectors|aα〉 ∈ Cd

such that

|〈aα|bβ〉|2 = δα,βδa,b +
1

d
(1 − δa,b) (16)

wherea = [0](1)[d] andα = [0](1)[d − 1]. The indices of typea refer to the bases and,

for fixeda, the indexα refers to one of thed vectors of the basis corresponding toa. We

know that such a complete set exists ifd is a prime or the power of a prime (e.g., see

Refs. [13-19]).

The approach developed in Sec. 2 for SIC-POVMs can be appliedto MUBs too. Let

us suppose that it is possible to findd + 1 setsSa (with a = [0](1)[d]) of vectors inCd,

each setSa = {|aα〉 : α = [0](1)[d − 1]} containingd vectors|aα〉 such that Eq. (16) be

satisfied. This amounts to findd(d + 1) operators

Πaα = |aα〉〈aα| (17)

satisfying

1

d + 1

d
∑

a=0

d−1
∑

α=0

Πaα = I (18)

and

Tr (ΠaαΠbβ) = δα,βδa,b +
1

d
(1 − δa,b) (19)

where the trace is taken onCd. As in Sec. 2, we assume that the Hilbert spaceCd is

realized by a subspaceε(j) of constant angular momentumj = (d − 1)/2. Then, each
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operatorΠaα can be developed on the basis of the(2j + 1)2 operatorsu(k)
q as

Πaα =

2j
∑

k=0

k
∑

q=−k

dkq(aα)u(k)
q (20)

to be compared with Eq. (6). Fora andα fixed, the complex coefficientsdkq(aα) define a

vector

w(aα) = (w1(aα), w2(aα), · · · , wN(aα)) , N = (2j + 1)2 (21)

in the Hilbert spaceCN . The componentswi(aα) are given by

wi(aα) =
1√

2k + 1
dkq(aα), i = k2 + k + q + 1 (22)

Results 1 to 6 can be transcribed in terms ofdkq(aα) or w(aα). This leads to Results 7 to

12 given below without proof.

Result 7. We have the formal expression

dkq(aα) = (2k + 1)〈aα|u(k)
q |aα〉 (23)

for q = [−k](1)[k], k = [0](1)[2j], a = [0](1)[2j + 1] andα = [0](1)[2j].

Result 8. We have the formula

d00(aα) =
1√

2j + 1
(24)

for a = [0](1)[2j + 1] andα = [0](1)[2j].

Result 9. We have the complex conjugation property

dkq(aα) = (−1)qdk−q(aα) (25)

for q = [−k](1)[k], k = [0](1)[2j], a = [0](1)[2j + 1] andα = [0](1)[2j].

Result 10. We have the scalar product formula

w(aα) · w(bβ) = δα,βδa,b +
1

2j + 1
(1 − δa,b) (26)

for a, b = [0](1)[2j + 1] andα, β = [0](1)[2j].
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Result 11. We have the tensor product formula

1

2K + 1
dKQ(aα) = (−1)2j−Q

2j
∑

k=0

2j
∑

ℓ=0

k
∑

q=−k

ℓ
∑

p=−ℓ

(

k ℓ K
−q −p Q

)

× W

(

k ℓ K
j j j

)

dkq(aα)dℓp(aα) (27)

for Q = [−K](1)[K], K = [0](1)[2j], a = [0](1)[2j + 1] andα = [0](1)[2j].

Result 12. We have the sum rule

2j+1
∑

a=0

2j
∑

α=0

2j
∑

k=0

k
∑

q=−k

dkq(aα)

(

j k j
−m q m′

)

= (−1)j−m(2j + 1)δm,m′ (28)

which involves all coefficientsdkq(aα).

4 CONCLUSIONS

Although the structure of the relations describing Results1 to 6, on one hand, and Results

7 to 12, on the other hand, is very similar, there are deep differences between the two sets

of results. The similarities are reminiscent of the fact that both MUBs and SIC-POVMs

can be linked to finite affine planes [10, 17, 18] and to complexprojective 2–designs

[6, 8, 16, 19]. On the other side, there are two arguments in favor of the differences

between Results 4 and 10. First, the problem of constructingSIC-POVMs in dimension

d is not equivalent to the existence of an affine plane of orderd [10]. Second, there is a

consensus around the conjecture according to which there exists a complete set of MUBs

in dimensiond if and only if there exists an affine plane of orderd [17].

In dimensiond, to find d2 operatorsPx of a SIC-POVM acting on the Hilbert space

Cd amounts to findd2 vectorsv(x) in the Hilbert spaceCN with N = d2 satisfying

‖vx‖ = 1, v(x) · v(y) =
1

d + 1
for x 6= y (29)

(the norm‖v(x)‖ of each vectorv(x) is 1 and the angleωxy of any pair of vectorsv(x)

andv(y) is ωxy = cos−1[1/(d + 1)] for x 6= y).
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In a similar way, to findd+1 MUBs of Cd is equivalent to findd+1 sets ofd vectors,

i.e., d(d + 1) vectors in all,w(aα) in CN with N = d2 satisfying

w(aα) · w(aβ) = δα,β, w(aα) · w(bβ) =
1

d
for a 6= b (30)

(each setSa consists ofd orthonormalized vectors and the angleωaαbβ of any vector

w(aα) of a setSa with any vectorw(bβ) of a setSb is ωaαbβ = cos−1(1/d) for a 6= b).

According to a well accepted conjecture [6, 8], SIC-POVMs should exist in any di-

mension. The present study shows that in order to prove this conjecture it is sufficient to

prove that Eq. (29) admit solutions for any value ofd.

The situation is different for MUBs. In dimensiond, it is known that there existd + 1

sets ofd vectors of type|aα〉 in Cd satisfying Eq. (16) whend is a prime or the power of

a prime. This shows that Eq. (30) can be solved ford prime or power of a prime. Ford

prime, it is possible to find an explicit solution of Eq. (16).In fact, we have [20, 21]

|aα〉 =
1√

2j + 1

j
∑

m=−j

ω(j+m)(j−m+1)a/2+(j+m)α|j, m〉,

ω = exp

(

i
2π

2j + 1

)

, j =
1

2
(d − 1) (31)

for a = [0](1)[2j] andα = [0](1)[2j] while

|aα〉 = |j, m〉 (32)

for a = 2j + 1 andα = j + m = [0](1)[2j]. Then, Eq. (23) yields

dkq(aα) =
2k + 1

2j + 1

j
∑

m=−j

j
∑

m′=−j

ωθ(m,m′)(−1)j−m

(

j k j
−m 0 m′

)

,

θ(m, m′) = (m − m′)

[

1

2
(1 − m − m′)a + α

]

(33)

for a = [0](1)[2j] andα = [0](1)[2j] while

dkq(aα) = δq,0(2k + 1)(−1)j−m

(

j k j
−m 0 m

)

(34)
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for a = 2j + 1 andα = j + m = [0](1)[2j]. It can be shown that Eqs. (33) and (34) are

in agreement with Results 7 to 12. We thus have a solution of the equations for Results

7 to 12 whend is prime. As an open problem, it would be worthwhile to find an explicit

solution for the coefficientsdkq(aα) whend = 2j + 1 is any positive power of a prime.

Finally, note that to prove (or disprove) the conjecture according to which a complete set

of MUBs in dimensiond exists only ifd is a prime or the power of a prime is equivalent

to prove (or disprove) that Eq. (30) has a solution only ifd is a prime or the power of a

prime.

APPENDIX: WIGNER-RACAH ALGEBRA OF SU(2) ⊃
U(1)

We limit ourselves to those basic formulas for the Wigner-Racah algebra of the chain

SU(2) ⊃ U(1) which are necessary for the derivation of Results 1 to 12. Thesummations

in this appendix have to be extended to the allowed values forthe involved magnetic and

angular momentum quantum numbers.

The definition (5) of the componentsu(k)
q of the Racah unit tensoru(k) yields

〈j, m|u(k)
q |j, m′〉 = (−1)j−m

(

j k j
−m q m′

)

(35)

from which we easily obtain the Hermitean conjugation property

u(k)
q

†
= (−1)qu

(k)
−q (36)

The 3–jm Wigner symbol in Eq. (35) satisfy the orthogonality relations

∑

mm′

(

j j′ k
m m′ q

) (

j j′ ℓ
m m′ p

)

=
1

2k + 1
δk,ℓδq,p∆(j, j′, k) (37)

and

∑

kq

(2k + 1)

(

j j′ k
m m′ q

) (

j j′ k
M M ′ q

)

= δm,Mδm′,M ′ (38)
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The trace relation on the spaceε(j)

Tr
(

u(k)
q

†
u(ℓ)

p

)

=
1

2k + 1
δk,ℓδq,p∆(j, j, k) (39)

easily follows by combining Eqs. (35) and (37). Furthermore, by introducing

(

j j′ 0
m −m′ 0

)

= δj,j′δm,m′(−1)j−m 1√
2j + 1

(40)

in Eq. (37), we obtain the sum rule

∑

m

(−1)j−m

(

j k j
−m q m

)

=
√

2j + 1δk,0δq,0∆(j, k, j) (41)

known in spectroscopy as the barycenter theorem.

There are several relations involving 3–jm symbols andW coefficients. In particular,

we have

∑

mm′M

(−1)j−M

(

j k j
−m q M

) (

j ℓ j
−M p m′

)

×
(

j K j
−m Q m′

)

= (−1)2j−Q

(

k ℓ K
−q −p Q

)

W

(

k ℓ K
j j j

)

(42)

Note that the introduction of

W

(

k ℓ 0
j j J

)

= δk,ℓ(−1)j+k+J 1
√

(2k + 1)(2j + 1)
(43)

in Eq. (42) gives back Eq. (37). Equation (42) is central in the derivation of the coupling

relation

u(k)
q u(ℓ)

p =
∑

KQ

(−1)2j−Q(2K + 1)

(

k ℓ K
−q −p Q

)

W

(

k ℓ K
j j j

)

u
(K)
Q (44)

Equation (44) makes it possible to calculate the commutator[u
(k)
q , u

(ℓ)
p ] which shows that

the set{u(k)
q : k = [0](1)[2j], q = [−k](1)[k]} can be used to span the Lie algebra of the

unitary group U(2j + 1). The latter result is at the root of the expansions (6) and (20).
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