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Abstract
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1 INTRODUCTION

The importance of finite-dimensional spaces for quantumhaueics is well recognized
(see for instance Refs. [1, 2]). In particular, such spad¢ag @ major role in quantum
information theory, especially for quantum cryptographg guantum state tomography
[3-21]. Along this vein, a symmetric informationally conepe (SIC) positive operator
valued measure (POVM) is a set of operators acting on a finlteeH space [3-11] and
mutually unbiased bases (MUBS) are specific bases for susace $12-21].

The introduction of a POVM goes back to the seventies [3-5he Thost general
guantum measurement is represented by a POVM. A SIC-POVM t{sedefinition in
Sec. 2) is a POVM for which the statistics of the measuremwsathe reconstruction of
the quantum state. The notion of MUBSs (see the definition m Sg implicit or explicit
in the seminal works of Refs. [12-15], has been the objectupheérous mathematical
and physical investigations during the last two decade®imection with the so-called
complementary observables.

The aim of this note, is to develop a unified approach to SIGAA®and MUBs. Our
approach is based on the Wigner-Racah algebra of the 8kdR) > U(1) recently used
for a study of entanglement of rotationally invariant sppstems [22] and for an angular
momentum study of MUBs [20, 21].

Most of the notations in this work are standard. Let us sinmpgntion thafl denotes
the identity opertor, the bar indicates complex conjugatio = [a](1)[b] means that:
takes the values to b by increments of 1 unitj,; stands for the Kronecker symbol for
a andb, andA(a, b, c) is 1 or 0 according to as, b andc satisfy or not the triangular

inequality.

2 SIC-POVMs

A discrete SIC-POVM is a setP, : x = [1](1)[d?*]} of d> nonnegative operatorB,

acting on the Hilbert spadé?, endowed with an inner product denoted 43, such that
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the trace relation
Tr(PPy) = ——, =#yY (1)

and the decomposition of the identity

d2
1
y Zl P, =1 (2
be satisfied. Therefore, by putting
P, = ‘q):v><q):v‘ 3)

with |¢,) € C4, to findd* operatorsP, is equivalent to findi? vectors|¢, ) in C¢ with the

property

(@0} = s (d8y + 1) @

The cornerstone of our approach is to identif§ with a subspace(j) of constant
angular momentunj = (d — 1)/2. Such a subspace is spanned by the{$gtm) :
m = [—j](1)[j]}, where|j, m) is an eigenvector of the square and theomponent of a
generalized angular momentum operator. &ét be the Racah unit tensor [23] of order
k (with & = [0](1)[24)) defined by it2k + 1 components.” (whereq = [—k](1)[k))
through

j j : .
= 30 S (L h Y mG ©

m=—j m'=—j

where (- -) denotes a 37 Wigner symbol. For fixed, the(2j +1)? operatormff) (with
k = [0](1)[2] andg = [—k](1)[k]) form a basis of the Hilbert spad®" of dimension
N = (25 + 1)? and consisting of operators acting afy) ~ C¢, the inner product it
being the Hilbert-Schmidt product. The formulas (involyianit tensors, 3#n and 6+

symbols) relevant for this work are given in Appendix (sesodkefs. [23-25]).



Each operator, can be developed as a linear combination of the operadf;ﬁ}s

Therefore, we can write
27 k
Po=2_ 2 enala)ey (6)
k=0 q=—k
where the unknown expansion coefficientg(z) area priori complex numbers. The
determination of the operatof3 is thus equivalent to the determination of the coefficients
ckq(z). The latter coefficients satisfy some properties which carsummed up by the

following results.

Result 1 The coefficients,,(z) of the developmenf](6) are formally given by
crg(@) = (2k + 1)(@, |ug”| @) (7

for ¢ = [—k](1)[k], & = [0](1)[2j] and= = [1](1)[(2] + 1)*].
Proof: Multiply each member of Eq[](6) by the adjointaf’ and use Eq.[(39) of
Appendix.

By defining the vector

U(:E) = (Ul(x)va(x)v"'avN(x))v N = (2j+1)2 (8)
via
1 , :
vi(z) = \/ﬁckq(x)a i=k"+k+q+1 9)

the search for the sétP, : + = [1|(1)[/V]} is equivalent to the search for the det, :
x = [1](1)[N]} in a second Hilbert spad@”, with an inner product of the type- w =
Zﬁil Vi W;.

Result 2 The first component, (x) of v(z) does not depend ansince

1

coo(z) = \/ﬁ (10)

for x = [1](1)[(27 + 1)?].
Proof: Take the trace of Ed](6) and use Eq} (41) of Appendix.
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Result 3 The components;(z) of v(z) satisfy the complex conjugation property

described by

Crq(®) = (=1)%cr—q(2) (11)

for ¢ = [—K](1)[k], & = [0](1)[2/] andz = [1](1)[(2j + 1)?].
Proof: Use the Hermitean property Bf and Eq. [3p) of Appendix.

Result 4 The vectors(x) satisfy the relation

v(x) - vly) = [(2) +1)0a2y + 1] (12)

2(5+1)
for z,y = [1](1)[(27 + 1)?]. In detail, Eq. [IR) reads

27 k

2 g1 2 Saonl) = gy (B4 Dy 1 13)

where the sum overis rotationally invariant.
Proof: It is sufficient to develofyp, | P,|¢.).

Result 5 The coefficients,,(z) are solutions of the nonlinear system given by

2K1+ pere(®) = (=D QZZ Z Z ( —p g)

k=0 (=0 q=—k p=—¢

—(k ¢ K
W(j j j)qu(x)Cgp($) (14)

for @ = [-KJ(D[K], K = [0](1)[2)] andx = [1](1)[(2) + 1)?].

Proof: Conside? = P, and use the coupling relatiofn [44) of Appendix involving a

3—im Wigner symbol and & Racah coefficient (or -Wigner symbol).

As a corollary of Result 5, by taking” = 0 and using Eqs[(40) anfl {43) of Appendix,

we get||v(z)]|? = v(x)-v(z) = 1, aresult that also follows as a particular case of Eg. (13)

of Result 4.

Result 6. All coefficients, (z) are connected through the sum rule

(25+1)% 25 )
k j B Jemo

z=1 k=0qg=—k



which turns out to be useful for global checking purposes.
Proof: Take theim—jm’ matrix element of the resolution of the identity in terms of

the operator®, /(25 + 1).

3 MUBs

A complete set of MUBs in the Hilbert spa¢¥ is a set ofd(d + 1) vectors|aa) € C?

such that

1
[(act|bB)|* = 6a,500,5 + 3(1 — 6ap) (16)

wherea = [0](1)[d] anda = [0](1)[d — 1]. The indices of type refer to the bases and,
for fixed a, the indexx refers to one of thée vectors of the basis correspondingitoWe
know that such a complete set existglifs a prime or the power of a prime.g, see
Refs. [13-19]).

The approach developed in Sec. 2 for SIC-POVMs can be apiai®dtUBs too. Let
us suppose that it is possible to fidd- 1 setsS, (with a = [0](1)[d]) of vectors inC?,
each sef5, = {|ac) : a = [0](1)[d — 1]} containingd vectors|a«) such that Eq.[(36) be

satisfied. This amounts to fintid + 1) operators

My = |aa)(ac| 17)
satisfying
T
— My =1 18
> M (18)
a=0 a=0
and
1
Tr (HaaHbﬁ) = a,,@éa,b + E(l - 5a,b) (19)

where the trace is taken diY. As in Sec. 2, we assume that the Hilbert sp@teis

realized by a subspae¢;) of constant angular momentujn= (d — 1)/2. Then, each



operatorl,, can be developed on the basis of (B¢ + 1)? operatormék) as

2j

k
Moo =Y Y diglac)uf’ (20)

k=0 q=—k
to be compared with Eq[](6). Farand« fixed, the complex coefficients,, (a«) define a

vector
w(aa) = (wy(aa), wy(aa), -, wy(aa)), N =(2j+ 1) (21)

in the Hilbert spac€”. The components;(a«) are given by

1
; =—-d . =k +k+qg+1 22
w;(ac) T kqlacr), i q (22)

Results 1 to 6 can be transcribed in termggfaa) or w(aa). This leads to Results 7 to
12 given below without proof.

Result 7. We have the formal expression
diq(ac) = (2k + 1){ac|ul?|ac) (23)

for ¢ = [—k](1)[k], k = [0](1)[25], @ = [0}(1)[2j + 1] anda = [0](1)[25].
Result 8 We have the formula

1

doo(aa) = ,7217 1 (24)
for a = [0](1)[27 + 1] anda = [0](1)[27].
Result 9 We have the complex conjugation property
dig(aa) = (—=1)%dy_,(ac) (25)
for ¢ = [~k)(D)[K], & = [0)(1)[24], a = [0](1)[2) + 1] andar = [0](1)[24].
Result 10 We have the scalar product formula
1
w(aa) - w(b3) = 8o 0ap + m“ — 0ap) (26)

fora,b = [0](1)[2j + 1] anda, 8 = [0](1)[2].
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Result 11 We have the tensor product formula

1 . 2% 2% k¢ ror K
ok g poxelea) = (=1) QZZZZ(—q —p Q)

k=0 ¢=0 q=—k p=—¢

X W(l; f [j()qu(aa)dgp(aa) (27)

for @ = [-K](1)[K], K = [0](1)[2], a = [0](1)[2j + 1] anda = [0](1)[25].
Result 12 We have the sum rule

2j+1 2§ 25

DD diglaa) (_J;n ’; Tfl) = (=1)77"™(25 + 1)y (28)

a=0 a=0 k=0 qg=—k

which involves all coefficients,, (a«).

4 CONCLUSIONS

Although the structure of the relations describing Resutts6, on one hand, and Results
7 to 12, on the other hand, is very similar, there are deepréifices between the two sets
of results. The similarities are reminiscent of the fact thath MUBs and SIC-POVMs
can be linked to finite affine planes [10, 17, 18] and to compmjective 2—designs
[6, 8, 16, 19]. On the other side, there are two arguments\orfaf the differences
between Results 4 and 10. First, the problem of constru&IGgPOVMs in dimension
d is not equivalent to the existence of an affine plane of oddé@0]. Second, there is a
consensus around the conjecture according to which thestsaxcomplete set of MUBs
in dimensiond if and only if there exists an affine plane of ordéfl7].

In dimensiond, to find d? operatorsP, of a SIC-POVM acting on the Hilbert space

C¢ amounts to findi? vectorsv(x) in the Hilbert spac€” with N = ¢? satisfying

ol =1, o(e) - oly) = s fora £y (29)

(the norm||v(z)|| of each vectow(x) is 1 and the angle,, of any pair of vectors(z)

andv(y) iswy, = cos '[1/(d + 1)] for z # y).



In a similar way, to findi 4+ 1 MUBs of C? is equivalent to find + 1 sets ofd vectors,

i.e, d(d+ 1) vectors in allw(aa) in CN with N = d? satisfying
w(aa) - w(af) = dop,  w(aa) - w(bf) = é fora # b (30)

(each setS, consists ofd orthonormalized vectors and the anglg,,s of any vector
w(ax) of a setS, with any vectonu(b3) of a setSy is waaps = cos™(1/d) for a # b).

According to a well accepted conjecture [6, 8], SIC-POVMseLdt exist in any di-
mension. The present study shows that in order to prove gmgcture it is sufficient to
prove that Eq.[(29) admit solutions for any valuedof

The situation is different for MUBSs. In dimensiahit is known that there exist+ 1
sets ofd vectors of typdaa) in C? satisfying Eq.[(16) whed is a prime or the power of
a prime. This shows that Ed. {30) can be solved#@rime or power of a prime. Fat
prime, it is possible to find an explicit solution of EQ.](16).fact, we have [20, 21]

1 & o |
— E (F+m)(G-m+1)a/2+([G+m)a| ;
2 1
w em(aﬂl),J S(d=1) (3D)

for a = [0](1)[27] anda = [0](1)[2;] while
lac) = |j,m) (32)

fora =25 +1anda = j +m = [0](1)[27]. Then, Eq.[(23) yields

J J

B 2k +1 0(m,m’) j—m J kg
O(m,m’) = (m—m) B(l —m—m)a+ a} (33)

for a = [0](1)[27] anda = [0](1)[2;] while

o) =dyof2k 4 - (20T (3



fora =25+ 1anda = j +m = [0](1)[2/]. It can be shown that Eq4. {33) arjd](34) are
in agreement with Results 7 to 12. We thus have a solutioneoétjuations for Results
7 to 12 whend is prime. As an open problem, it would be worthwhile to find aplieit
solution for the coefficientdy,(aa) whend = 25 + 1 is any positive power of a prime.
Finally, note that to prove (or disprove) the conjecturecading to which a complete set
of MUBs in dimensiond exists only ifd is a prime or the power of a prime is equivalent
to prove (or disprove) that Eq[_(30) has a solution only i§ a prime or the power of a

prime.

APPENDIX: WIGNER-RACAH ALGEBRA OF SU(2) D
u(l)

We limit ourselves to those basic formulas for the Wignecdtaalgebra of the chain
SU(2) D U(1) which are necessary for the derivation of Results 1 to 12.sTinemations
in this appendix have to be extended to the allowed valueth&®mvolved magnetic and
angular momentum gquantum numbers.

The definition [) of the components” of the Racah unit tensar® yields

<j,m|ug’f>u,m'>=<—1>M(j k j) (35)

-m q m

from which we easily obtain the Hermitean conjugation prope

= (—1)7u®) (36)

—q

The 3—<m Wigner symbol in Eq.[(35) satisfy the orthogonality relato

i gk goJ ey 1 -
Z(m m/ CJ) <m m/ p>_2k+15k,£5q,pA(jajak) (37)

mm/

and

joJ ok ioJ kY
Seren (70 5 (i i §) = St (39)



The trace relation on the spagg)

t 1 o
Tr (ugk) u](f)) = DY 15k,€5q,pA(j7jv k) (39)

easily follows by combining Eqs[ (B5) and [37). Furthermdneintroducing

.j .j/ 0 S _1\i—m 1
<m 2 0)_5j7],5m,m,( 1) NeTED (40)

in Eqg. (3T), we obtain the sum rule

ik : o
> (=1) (_jm ; 731):\/23+15k,05q,0A(J7k7]) (41)

known in spectroscopy as the barycenter theorem.
There are several relations involving;ar symbols andV coefficients. In particular,

we have

S ER T [EE)

mm/' M

i K G\, veof k0 K\ (k ¢ K
X(—m Q m')‘( D (—q —p Q)W<j j j) (42)

Note that the introduction of

(k€ 0\ s o qyitkes !
W(J’ j J)_(S’“’é( D J@ET1)(2j +1) 43)

in Eq. (42) gives back Eq[ (B7). Equatidn](42) is central mndlerivation of the coupling
relation

ulFu?) _KZQ(—U?J Q2K +1) (_ ooV ) w (44)
Equation [[44) makes it possible to calculate the commutagé?r, uz(f)] which shows that
the set{u{” : k = [0](1)[2],¢ = [~k](1)[k]} can be used to span the Lie algebra of the

unitary group Ug; + 1). The latter result is at the root of the expansighs (6) &Gl (2
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