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Measurement of the CKM-angle γ at BABAR
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We present the results of the measurements employed by theBABAR Collaboration, to
determine the value of the Cabibbo-Kobayashi-Maskawa (CKM)CP-violating phaseγ (≡
arg

[−VudV
∗
ub/VcdV

∗
cb

]
). These measurements are based on the studies performed with the charged

B-decaysB−→ D̃0K−, B−→ D̃∗0K−, andB−→ D̃0K∗−, whereD̃0 indicates either aD0 or aD0

meson. A sample of about 230 millionBB pairs collected by theBABAR detector [1], at the PEP-II
asymmetric-energye+e− collider at SLAC, is used.
Three methods are exploited [2, 3, 4], where theD̃0 decays either to aCP-eigenstate (GLW), or to
a Cabibbo-suppressed flavor decay ("wrong sign",ADS), or to theK0

Sπ−π+ final state, for which a
Dalitz analysis has to be performed (GGSZ). To extractγ, those 3 methods are all based on the fact
that aB− meson can decay into a color-allowedD(∗)0K−/K∗− (color-suppressedD(∗)0K−/K∗−)
final state viab→ cus(b→ ucs) transitions. The amplitudeA (“Vcb”) of theb→ custransition is
proportional toλ 3 and the amplitudeA(“Vub”) of theb→ ucs transition toλ 3

√
η̄2 + ρ̄2ei(δB−γ).

The second amplitude therefore carries both theEW γ CP-phase and the relative strong phase
of those 2 transitions. As the total measured amplitude forB− → D̃0K−, B− → D̃∗0K−, and
B−→ D̃0K∗− decays is the sum of the 2 amplitudesA (“Vcb”) andA (“Vub”), the 2 amplitudes
interfere when theD0 andD0 decay into the same final state. This interference can lead to different
B+ andB− decay rates (directCP-violation).
The various methods are "theoretically clean" because the main contributions to the ampli-
tudes come from tree-level transitions. In addition to the CKM parameters and to the strong
phase,A (“Vub”) is significantly reduced with respect toA (“Vcb”) by the color suppression phe-
nomenon. One usually defines the parameterrB≡|A (“Vub”)/A (“Vcb”) | that determines the size
of the directCPasymmetry. It is the critical parameter for these analyzes. Its value is predicted [5]
to lie in the range0.1−0.3. The smallerrB is, the smaller is the experimental sensitivity toγ.

A combination of the various constraints obtained with these methods is performed. It is based

on a frequentist approach [6] where the world average of theGLWandADSmethods is combined

with the result of theBABAR Dalitz analysis [7]. It constrains the angleγ to have a value equal

to [51+23
−18]

◦ and consistent with the overall indirect prediction obtained for the standard model

CKM triangle fit: [57+7
−13]

◦. The BABAR Dalitz analysis alone measuresγ = [67± 28(stat.)±
13(syst.)±11(Dalitz model)]◦. Incidentally, It should be emphasized that these somewhat precise

measurements were considered as unreachable at B-factories a few years ago.
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1. Introduction to the various physical quantities

The 2 parameters "rB" and "δB" depend on the studied decay:B− → D̃0K− (δB andrB) or
B−→ D̃∗0K− (δ ∗B andr∗B) or B−→ D̃0K∗− (δsB andrsB). The CKM-angleγ, and the parameters
"rB", and "δB" can be measured experimentally through the 2 observable quantities (Asymmetry
and Ratio of Branching Ratios):

A ≡ Γ(B−→ D̃(∗)0K(∗)−)−Γ(B+ → D̃(∗)0K(∗)+)
Γ(B−→ D̃(∗)0K(∗)−)+Γ(B+ → D̃(∗)0K(∗)+)

, (1.1)

R≡ Γ(B−→ D̃(∗)0K(∗)−)+Γ(B+ → D̃(∗)0K(∗)+)
Γ(B−→ D(∗)0K(∗)−)+Γ(B+ → D̄(∗)0K(∗)+)

. (1.2)

Both BABAR [8] and Belle [9] Collaborations have produced results for these three methods
at the time of spring 2005. We essentially present here new results for the decayB− → D̃0K∗−

(K∗(892)− decays whereK∗−→ K0
S π−). The analyzes are described in details in [10, 11, 7] .

2. TheGLWanalysis [2, 8, 10]

TheD̃0 is reconstructed in variousCP-eigenstates decay channels:K+K−, π+π− (CP+ eigen-
states); andK0

S π0, K0
S φ , K0

S ω (CP− eigenstates). TheRCP is normalized to the branching ra-
tios as obtained from 3 flavor state decays:D0 → K−π+, K−π+π0, and K−π+π+π−. One
has 4 observable quantities, for 3 unknown (γ, rB, andδB): RCP± = 1±2rBcosδ cosγ + r2

B and
ACP± = ± 2rB sinδ sinγ

RCP± . Only 3 are independent, as:RCP−ACP− = −RCP+ACP+. In principle with
infinite statistics this method is very clean to determineγ (with 8 fold-ambiguities). But the small
CP-asymmetry (smallrB ' 0.1−0.3) and the small secondary branching ratios to produce theD0

CP-eigenstates, make this method difficult with the present B-factories dataset.
For theB−→ D̃0K∗− decay [10], we measure:ACP+ =−0.08±0.19±0.08, RCP+ =−0.26±

0.40± 0.12, ACP− = 1.96± 0.40± 0.11, andRCP− = 0.65± 0.26± 0.08, where the first uncer-
tainty is statistical and the second systematic. The (peaking)-background is estimated from the
mES and mD0 side-bands. TheCP+ pollution for CP− eigenstate from decaysK0

S [K+K−]non φ

andK0
S [π+π−π0]non ω is estimated using data. Finally, we take into account in the systematic un-

certainties the possible strong phases as generated by probableKπ S-waves in theK∗−→ K0
S π−

decays. FromRCP± we also derivers2
B = 0.30± 0.25. When one defines the so-calledCarte-

sian coordinates: xs± ≡ rsB cos(δs± γ), we find: xs+ = 0.32±0.18 (stat.)±0.07 (syst.), xs− =
0.33±0.16 (stat.)±0.06 (syst.). At the present time, the measured values ofACP (RCP) are not
precise enough to differ significantly from 0 (1) so that a strong constraint onγ can be obtained
from theGLWmethod alone.

3. TheADSanalysis [3, 8, 11]

The D0 meson as generated from theb→ cus transition is required to decay to the doubly
Cabibbo-suppressedK+π− mode ("wrong sign"), while theD0 meson, from the interferingb→
ucs transition, decays to Cabibbo-favored final stateK+π−. The overall branching ratio for a
final stateB−→ [K+π−]D̃0K(∗)− is expected to be small (∼ 10−6), but the 2 interfering diagrams
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are now of the same order of magnitude. The challenge in this method is therefore to detectB
candidate in this final state with 2-opposite charge kaons. The total amplitude is complicated by
an additional unknown relative strong phaseδD in theD0-D0 → [K+π−] system, while the ratio of
their respective amplituderD is precisely measured at the level of 6 % [12]. It can be written as
A([K+π−]D̃0K(∗)−) ∝ rBei(δB−γ) + rDe−iδD . Using theB−→ [K−π+]K(∗)− modes as normalisation
for RADS, one can write the equations for the 2 experimental observable quantities:RADS = r2

B +
r2
D + 2rBrD cos(δB +δD)cos(γ) and AADS = 2 rBrD sin(δB+δD)sin(γ)

RADS
. WhereRADS is clearly highly

sensitive tor2
B.

For theB−→ D̃0K− andB−→ D̃∗0K− channels [8], no significantADSsignal has been mea-
sured yet. At 90 % of confidence level, we set the upper limitsrB < 0.23 and r∗2

B < (0.16)2,
respectively for the 2 decay modes. For theB−→ D̃0K∗− decay [11], we have also not seen any
significantADSsignal, we measureRADS= 0.046±0.031±0.008, AADS= −0.22±0.61±0.17,
where the first uncertainty is statistical and the second systematic. As part of the systematic uncer-
tainties, we consider effect of the possible strong phases as generated by probableKπ S-waves in
theK∗−→ K0

S π− decays. It is the dominant contribution.
Using a frequentist approach [6], and combining both theGLW and ADS methods for the

B−→ D̃0K∗− channel [11], we determinersB = 0.28+0.06
−0.10, and we can exclude at the two-standard

deviation level the interval75◦ < γ < 105◦.

4. TheK0
S π−π+ Dalitz analysis [4, 8, 7]

Among theD̃0 decay modes studied so far theK0
S π−π+ channel is the one with the highest

sensitivity toγ because of the best overall combination of branching ratio magnitude,D0−D0

interference and background level. This mode offers a reasonably high branching ratio (10−5,
including secondary decays) and a clean experimental signature (only charged tracks in the final
state). The decay modeK0

S π−π+ can be accessed through many intermediate states: "wrong sign"
or "right" K∗ resonances,K0

S ρ0 CP− eigenstate, ... Therefore, an analysis of the the amplitude of
theD̃0 decay over them2(K0

S π−) vs. m2(K0
S π+) (m2− vs. m2

+) Dalitz plane structure is sensitive to the
same kind of observable as for both theGLWandADSmethods. The sensitivity toγ varies strongly
over the Dalitz plane. The contribution from theb→ ucs transition in theB− → D(∗)0K−/K∗−

(B+ → D(∗)0K+/K∗+) decay can significantly be amplified by the amplitudeAD+ (AD−) of the
D0 → K0

S π−π+ (D0 → K0
S π+π−) decay (AD∓ ≡AD(m2∓,m2±)). Assuming noCP asymmetry inD

decays, the decay rate of the chainB−→D(∗)0K−/K∗− (B+→D(∗)0K+/K∗+), andD̃0→K0
S π−π+,

can be written as:Γ∓(m2−,m2
+) ∝ |AD∓|2 + r2

B|AD±|2 +2
{

x∓Re[AD∓A ∗
D±]+y∓ Im[AD∓A ∗

D±]
}

.

We have introduced theCartesian coordinates: {x∓,y∓}= {Re, Im}[rBei(δB∓γ)], for which the
constraintr2

B = x2∓+y2∓ holds. These are natural parameters to describe the amplitude of the decay.
A simultaneous fit both to theB± decays and̃D0 → K0

S π−π+ decays is then performed to extract
12 parameters:{x−,y−} from B− → D̃0K−, {x∗−,y∗−} from B− → D̃∗0K−, and{xs−,ys−} from
B−→ D̃0K∗−. In the last case, we deal with(K0

S π∓)non−K∗ contribution, by defining an effective
dilution parameterκ asx2

s∓+y2
s∓ = κ2rs2

B, with 0≤ κ ≤ 1.
Since the measurement ofγ arises from the interference term inΓ∓(m2−,m2

+), the uncertainty
in the knowledge of the complex form ofAD can lead to a systematic uncertainty. Two different
models describing theD0 → K0

S π−π+ decay have been used in the recentBABAR analysis [7].
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The first model (also referred to as Breit-Wigner model) is the same as used for our previously
reported measurement ofγ on B− → D̃(∗)0K−, D̃0 → K0

S π−π+ decays [8], and expressesAD as
a sum of two-body decay-matrix elements and a non-resonant contribution. In the second model
(hereafter referred to as theππ S-wave K-matrix model) the treatment of theππ S-wave states
in D0 → K0

S π−π+ uses a K-matrix formalism to account for the non-trivial dynamics due to the
presence of broad and overlapping resonances. The two models have been obtained using a high
statistics flavor taggedD0 sample (D∗+ → D0π+

s ) selected frome+e− → cc̄ events recorded by
BABAR.

At the end of the analysis, the 7 parameters:γ, δB, δ ∗B, δsB, rB, r∗B, andκ.rsB, are extracted from
the 12Cartesian coordinatesusing a frequentist approach that defines a7−D Neyman Confidence
Region. The values for all these parameters can be found in the documents [8] and [7]. But it
should be noticed that the values ofrB andr∗B stand in the range0− 0.35 ( 2-standard deviation
interval) whileκ.rsB is presently less constrained (< 0.75).

The overall value for theEW CPphase is:γ = [67±28(stat.)±13(syst.)±11(Dalitz model)]◦.
Where it can be noticed that the uncertainty coming from the employedDalitz modelwould limit
the measurement at infinite statistic. Though so far we have used the "Breit-Wigner model" to
perform the fit, it has been checked that the relative systematic uncertainty of that measurement
with respect to a fit to the "theππ S-wave K-matrix model" is3◦ (incorporated in the above result).
This indicates that the Dalitz model uncertainty could eventually be strongly reduced in a future
analysis.
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