On the multiple-humped fission barriers and half-lives of actinides
Résumé
The energy of actinide nuclei has been determined within a generalized liquid drop model taking into account the proximity energy, the mass and charge asymmetry, an accurate nuclear radius in adding the shell and pairing energies. Double and triple-humped potential barriers appear. The second maximum corresponds to the transition from compact and creviced one-body shapes to two touching ellipsoids. A third minimum and third peak appear in special asymmetric exit channels where one fragment is almost a magic nucleus with a quasi-spherical shape while the other one evolves from oblate to prolate shapes. The heights of the double and triple-humped fission barriers agree precisely with the experimental results in all the actinide region. The predicted half-lives follow the experimental data trend.