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Abstract
A simple recipe for generating a complete set of mutually unbiased bases in dimension

(2j + 1)e, with 2j + 1 prime ande positive integer, is developed from a single matrix
acting on a space of constant angular momentumj and defined in terms of the irreducible
characters of the cyclic groupC2j+1. As two pending results, this matrix is used in the
derivation of a polar decomposition of SU(2) and of a FFZ algebra.
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Introduction

The notion of mutually unbiased bases (MUBs) [1-23], originally introduced by Schwinger
and named by Wootters [3], is of paramount importance in quantum information theory,
especially in quantum cryptography and quantum state tomography. Let us recall that two
orthonormal bases{|anα〉 : nα = 0, 1, · · · , d − 1} and{|bnβ〉 : nβ = 0, 1, · · · , d − 1}
of a d-dimensional Hilbert space, with an inner product denoted as 〈 | 〉, are said to be
mutually unbiased if and only if

|〈anα|bnβ〉| = δ(a, b)δ(nα, nβ) + [1 − δ(a, b)]
1√
d

In dimensiond, the maximum number of pairwise MUBs isd+1 [1-5]; a set consisting of
d + 1 pairwise MUBs is called a complete set. As a matter of fact, the upper boundd + 1
is attained whend is a prime number or the power of a prime number [2-9,16]. There
are numerous ways for constructing complete sets of MUBs [1-23], most ot them being
based on discrete Fourier analysis in Galois fields and Galois rings [3,9,12,14,16,19,21],
discrete Wigner functions [3,10,21,22], generalized Pauli matrices [5-8,10]. Note also
that the existence of MUBs can be related to the problem of finding mutually orthogonal
Latin squares [11,15,22] and a solution of the mean King problem [11,22]. Let us also
mention that the existence of MUBs has been addressed by various authors from the point
of view of finite geometries [13,15,17,19]. Finally, Lie algebra approaches to MUBs have
been developed recently [20,23].

The aim of this letter is to give a simple algorithm for generating MUBs in dimension
d whered is a prime number or, more generally, the power of a prime number.

The main results

Let ǫ(j) be a(2j + 1)-dimensional Hilbert space of constant angular momentumj (the
quantum numberj is such that2j ∈ N

∗). An orthonormal basis forǫ(j) is provided by
the set{|j, m〉 : m = j, j−1, · · · ,−j} where the angular momentum state vectors|j, m〉,
sometimes referred to as spherical or computational or Fockstates, are eigenstates of the
squareJ2 of a generalized angular momentum and itsz-componentjz.

We now consider the(2j + 1)-dimensional unitary matrix

Va =

















0 qa 0 · · · 0
0 0 q2a · · · 0
...

...
... · · · ...

0 0 0 · · · q2ja

1 0 0 · · · 0

















, a ∈ {0, 1, · · · , 2j}

builded on the spherical or standard basisbs = (|j, j〉, |j, j − 1〉, · · · , |j,−j〉). Here, the
parameterq is a rooth of unity defined by

q = exp

(

i
2π

2j + 1

)
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We have the immediate property

Tr
(

V †
a Vb

)

= (2j + 1)δ(a, b)

The matrixVa is a generalization of the matrixUr with r ∈ R introduced in [24] in the
framework of a polar decomposition of SU(2) and used in [23] for generating MUBs in the
casesd = 2 and3. The set{V0, V1, · · · , V2j} of the2j +1 matricesVa is constructed from
the2j + 1 irreducible character vectors of the cyclic groupC2j+1. Indeed, the nonzero
matrix elements of the matrixVa are given by the irreducible character vector

χa = (1, qa, · · · , q2ja)

of C2j+1.
It is straightforward to find the eigenvalues and eigenvectors of Va. As a result, the

spectrum ofVa is non-degenerate. The eigenvector|jnαa〉 corresponding to the eigen-
value

λ(janα) = qja+nα

reads

|janα〉 =
1√

2j + 1

j
∑

m=−j

q
1

2
(j+m)(j−m+1)a+(j+m)nα |j, m〉 (1)

The2j + 1 eigenvectors|janα〉 of the matrixVa generate an orthonormal basisba of the
spaceǫ(j). For fixed a, the basesba andbs are mutually unbiased. More specifically, we
have the following result.

Result 1. In the case where2j + 1 is a prime integer, the set comprizing the spherical
basisbs and the2j + 1 basesba for a = 0, 1, · · · , 2j constitute a complete set of2(j + 1)
MUBs.

At this point, a natural question arises. How to construct a complete set of MUBs for
the direct product spaceǫ(j)⊗ǫ(j)⊗· · ·⊗ǫ(j) (with e factors) of dimensiond = (2j+1)e,
where2j + 1 is prime ande is an integer greater or equal to 2? The answer follows from
the following result.

Result 2. In the case where2j + 1 is a prime integer, the eigenvectors of the matrices

Wa1a2···ae
= Va1

⊗ Va2
⊗ · · · ⊗ Vae

, ai ∈ {0, 1, · · · , 2j}, i = 1, 2, · · · , e

together with thed-dimensional computational basis can be arranged to form a complete
set ofd + 1 = (2j + 1)e + 1 MUBs.

The proofs of Results 1 and 2 can be obtained from an adaptation of the proofs in
Refs. [5-7,12,21].

Two related results

We would like to outline two Lie-like aspects of this work.
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First, we can find a polar decomposition of the shift operators j+ andj− of the Lie
group SU(2) in terms of the unitary operatorva associated to the matrixVa. The operator
va satisfies

va|j, m〉 = q(j−m)a[1 − δ(m, j)]|j, m + 1〉 + δ(m, j)|j,−j〉
for m = j, j − 1, · · · ,−j. Following [23,24], let us define the Hermitean operatorh
through

h|j, m〉 =
√

(j + m)(j − m + 1)|j, m〉
We can show that the linear operators

j+ = hva, j− = v†
ah, jz =

1

2
(h2 − v†

ah
2va)

have the following action

j±|j, m〉 = q±(j∓m+ 1

2
∓ 1

2
)a
√

(j − m)(j + m + 1)|j, m ± 1〉, jz|j, m〉 = m|j, m〉 (2)

on the standard state vector|j, m〉 for m = j, j − 1, · · · ,−j. As a consequence, we get

[jz, j±] = ±j±, [j+, j−] = 2jz

Hence, the operatorsj+, j− andjz span the Lie algebra of SU(2). This result is to be com-
pared with similar results obtained in [21,23-25] without the occurrence of the parameter
a. It is to be emphasised that this result holds for any value ofa (a = 0, 1, · · · , 2j). How-
ever, note that the action ofj± on |j, m〉 depends ona. The Condon and Shortley phase
convention used in atomic spectroscopy amounts to takea = 0 in Eq. (2).

Second, the cyclic character of the irreducible representations ofC2j+1 render possible
to expressVa in function ofV0. In fact, we have

Va = V0Z
a

where
Z = diag(1, q, · · · , q2j)

The matricesVa andZ have an interesting property, namely, theyq-commute in the sense
that

VaZ − qZVa = 0

By defining
Tm = q

1

2
m1m2V m1

a Zm2 , m = (m1, m2) ∈ N
∗2

we easily obtain the commutator

[Tm, Tn] = 2i sin

(

π

2j + 1
m ∧ n

)

Tm+n

where
m ∧ n = m1n2 − m2n1, m + n = (m1 + n1, m2 + n2)

so that the linear operatorsTm span the FFZ infinite dimensional Lie algebra introduced
by Fairlie, Fletcher and Zachos [26]. The latter result parallels the ones obtained, on one
hand, from a study ofk-fermions and of the Dirac quantum phase operator through aq-
deformation of the harmonic oscillator [27] and, on the other hand, from an investigation
of correlation measure for finite quantum systems [25].
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Closing remarks

In the case whered is a prime number (2j+1) or the power of a prime number ((2j+1)e),
Results 1 and 2 provide us with a simple mean for generating a complete set of MUBs
from the knowledge of a single matrix, viz., the matrixVa. It should be noted that when
2j + 1 is not a prime number, Eq. (1) can be used for spanning MUBs as well; however,
in that case, it is not possible to generate a complete set of MUBs.

The main interest of our approach relies on the fact that MUBscan be constructed
from a simple generic matrixVa and yields calculations easily codable on a computer. In
addition, the matrixVa turns out to be of physical interest and plays an important role in
the polar decomposition of SU(2) and for the derivation of the FFZ algebra.

These matters, inherited from aq-deformation approach to symmetry and supersym-
metry [27,28], will be developed in a full paper.
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