Kaluza-Klein gravitons are negative energy dust in brane cosmology
Résumé
We discuss the effect of Kaluza-Klein (KK) modes of bulk metric perturbations on the second Randall-Sundrum (RS II) type brane cosmology, taking the possible backreaction in the bulk and on the brane into account. KK gravitons may be produced via quantum fluctuations during a de Sitter (dS) inflating phase of our brane universe. In an effective 4-dimensional theory in which one integrates out the extra-dimensional dependence in the action, KK gravitons are equivalent to massive gravitons on the brane with masses $m>3H/2$, where $H$ represents the expansion rate of a dS brane. Thus production of even a tiny amount of KK gravitons may eventually have a significant impact on the late-time brane cosmology. As a first step to quantify the effect of KK gravitons on the brane, we calculate the effective energy density and pressure for a single KK mode. Surprisingly, we find that a KK mode behaves as cosmic dust with a negative energy density on the brane. We note that the bulk energy density of a KK mode is positive definite and there occurs no singular phenomenon in the bulk.