
HAL Id: in2p3-00024274
https://in2p3.hal.science/in2p3-00024274v1

Preprint submitted on 21 Jun 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Workload analysis of a cluster in a grid environment
E. Medernach

To cite this version:

E. Medernach. Workload analysis of a cluster in a grid environment. 2005. �in2p3-00024274�

https://in2p3.hal.science/in2p3-00024274v1
https://hal.archives-ouvertes.fr

de
m

oc
ri

te
-0

00
24

27
4,

 v
er

si
on

 1
 -

 2
1

Ju
n

20
05

Workload characterization and modelling 23rd June 2005

Workload analysis of a cluster

in a Grid environment

Emmanuel Medernach

Laboratoire de Physique Corpusculaire, CNRS-IN2P3

Campus des Cézeaux, 63177 Aubière Cedex, France
∗e-mail: medernac@clermont.in2p3.fr

Abstract. With Grids, we are able to
share computing resources and to provide
for scientific communities a global trans-
parent access to local facilities. In such an
environment the problems of fair resource
sharing and best usage arise. In this pa-
per, the analysis of the LPC cluster usage
(Clermont-Ferrand, France) in the EGEE
Grid environment is done, and from the
results a model for job arrival is proposed.

1 Introduction

Analysis of a cluster workload is essential to under-
stand better user behavior and how resources are
used [1]. We are interested to model and simulate
the usage of a Grid cluster node in order to com-
pare different scheduling policies and to find the
best suited one for our needs.

The Grid gives new ways to share resources be-
tween sites, both as computing and storage re-
sources. Grid defines a global architecture for dis-
tributed scheduling and resource management [2]
that enable resources scaling. We would like to un-
derstand better such a system so that a model can
be defined. With such a model, simulation may
be done and a quality of service and fairness could
then be proposed to the different users and groups.

Briefly, we have some groups of users that each
submit jobs to a group of clusters. These jobs
are placed inside a waiting queue on some clusters
before being scheduled and then processed. Each
group of users have their own need and their own
strategy to job submittal. We wish:

1. to have good metrics that describes the group
and user usage of the site.

∗This work was supported by EGEE.

2. to model the global behavior (average job wait-
ing time, average waiting queue length, system
utilization, etc.) in order to know what is the
influence of each parameter and to avoid site
saturation.

3. to simulate jobs arrivals and characteristics to
test and compare different scheduling strate-
gies. The goal is to maximize system utiliza-
tion and to provide fairness between site users
to avoid job starvation.

As parallel scheduling for p machines is a hard
problem [3, 4], heuristics are used [5, 6]. More-
over we have no exact value about the duration of
jobs, making the problem difficult. We need a good
model to be able to compare different scheduling
strategies. We believe that being able to charac-
terize users and groups behavior we could better
design scheduling strategies that promote fairness
and maintain a good throughput. From this paper
some metrics are revealed, from the job submittal
protocol a detailed arrival model for single user and
group is proposed and scheduling problems are dis-
cussed. We then suggest a new design based on our
observation and show relationship between fairness
issue and system utilization as a flow problem.

Our cluster usage in the EGEE (Enabling Grids
for E-science in Europe) Grid is presented in sec-
tion 2, the Grid middleware used is described.
Corresponding scheduling scheme is shown in sec-
tion 3. Then the workload of the LPC (Laboratoire
de Physique Corpusculaire) computing resource, is
presented (section 4) and the logs are analyzed sta-
tistically. A model is then proposed in section 5
that describes the job arrival rate to this cluster.
Simulation and validation are done in section 6 with
comparison with related works in section 7. Results
are discussed in section 8. Section 9 concludes this
paper.

1

2 2 ENVIRONMENT

2 Environment

2.1 Local situation

The EGEE node at LPC Clermont-Ferrand is a
Linux cluster made of 140 dual 3.0 GHz CPUs
with 1 GB of RAM and managed by 2 servers with
the LCG (LHC Computing Grid Project) middle-
ware. We are currently using MAUI as our cluster
scheduler [7, 8]. It is shared with the regional Grid
INSTRUIRE (http://www.instruire.org). Our
LPC Cluster role in EGEE is to be used mostly by
Biomedical users∗ located in Europe and by High
Energy Physics Communities. Biomedical research
is one core application of the EGEE project. The
approach is to apply the computing methods and
tools developed in high energy physics for biome-
dical applications. Our team has been involved in
international research group focused on deploying
biomedical applications in a Grid environment.

One pilot application is GATE which is based
on the Monte Carlo GEANT4 [9] toolkit developed
by the high energy physics community. Radiothe-
rapy and brachytherapy use ionizing radiations to
treat cancer. Before each treatment, physicians and
physicists plan the treatment using analytical treat-
ment planning systems and medical images data of
the tumor. By using the Grid environment pro-
vided by the EGEE project, we will be able to
reduce the computing time of Monte Carlo simu-
lations in order to provide a reasonable time con-
suming tool for specific cancer treatment requiring
Monte-Carlo accuracy.

Another group is Dteam, this group is partly re-
sponsible of sending tests and monitoring jobs to
our site. Total CPU time used by this group is
small relatively to the other one, but the jobs sent
are important for the site monitoring. There are
also groups using the cluster from the LHC exper-
iments at CERN (http://www.cern.ch). There
are different kind of jobs for a given group. For ex-
ample, Data Analysis requires a lot of I/O whereas
Monte-Carlo Simulation needs few I/O.

2.2 EGEE Grid technology

In Grid world, resources are controlled by their
owners. For instance different kind of scheduling

∗Our cluster represented 75% of all the Biomed Virtual
Organization (VO) jobs in 2004.

policies could be used for each site. A Grid resource
center provides to the Grid computing and/or stor-
age resources and also services that allow jobs to be
submitted by guests users, security services, moni-
toring tools, storage facility and software manage-
ment. The main issue of submitting a job to a
remote site is to provide some warranty of security
and correct execution. In fact the middleware au-
tomatically resubmits job when there is a problem
with one site. Security and authentication are also
provided as Grid services.

The Grid principle is to allow user a worldwide
transparent access to computing and storage re-
sources. In the case of EGEE, this access is aimed
to be transparent by using LCG middleware built
on top of the Globus Toolkit [10]. Middleware acts
as a layer of software that provides homogeneous
access to different Grid resource centers.

2.3 LCG Middleware

LCG is organized into Virtual Organizations
(VOs): dynamic collections of individuals and in-
stitutions sharing resources in a flexible, secure and
coordinated manner. Resource sharing is facili-
tated and controlled by a set of services that al-
low resources to be discovered, accessed, allocated,
monitored and accounted for, regardless of their
physical location. Since these services provide a
layer between physical resources and applications,
they are often referred to as Grid Middleware [11].

Bag of task applications are parallel applications
composed of independent jobs. No communications
are required between running jobs. Since jobs from
a same task may execute on different sites commu-
nications between jobs are avoided. In this con-
text, users submit their jobs to the Grid one by
one through the middleware. Our cluster receives
jobs only from the Grid. This means that each
job requests for one and only one processor. Users
could directly specify the execution site or let a
Grid service choose the best destination for them.
Users give only a rough estimation of the maximum
job running time. In general this estimated time is
overestimated and very imprecise [12]. Instead of
speaking about an estimated time, it could be bet-
ter to speak about an upper bound for job duration,
so this value provided by users is more a precision
value. The bigger the value is the more imprecise
the value of the actual runtime could be.

http://www.instruire.org
http://www.cern.ch

3

Figure 1 shows the scenario of a job submittal.
In this figure rounded boxes are grid services and
ellipses are the different jobs states. As there is no
communications between jobs, jobs could run inde-
pendently on multiple clusters. Instead of commu-
nicating between job execution, jobs write output
files to Storage Elements (SE) of the Grid. Small
output files could also be sent to the UI. Replica Lo-
cation Service (RLS) is a Grid service that allow lo-
cation of replicated data. Other jobs may read and
work on the data generated, forming “pipelines” of
jobs.

The users Grid entry point is called an User In-
terface (UI). This is the gateway to Grid services.
From this machine, users are given the capability
to submit jobs to a Computing Element and to fol-
low their jobs status [13]. A Computing Element
(CE) is composed of Grid batch queues. A Com-
puting Element is built on a homogeneous farm of
computing nodes called Worker Nodes (WN) and
on a node called a GateKeeper acting as a security
front-end to the rest of the Grid.

Users can query the Information System in order
to know both the state of different grid nodes and
where their jobs are able to run depending on job
requirements. This match-making process has been
packaged as a Grid service known as the Resource
Broker (RB). Users could either submit their jobs
directly to different sites or to a central Resource
Broker which then dispatches their jobs to match-
ing sites.

The services of the Workload Management Sys-
tem (WMS) are responsible for the acceptance of
job submits and the dispatching of these jobs to the
appropriate CEs, depending on job requirements
and on available resources. The Resource Broker is
the machine where the WMS services run, there is
at least one RB for each VO. The duty of the RB
is to find the best resource matching the require-
ments of a job (match-making process). (For more
details see [14])

Users are then mapped to a local account on the
chosen executing CE. When a CE receives a job,
it enqueues it inside an appropriate batch queue,
chosen depending on the job requirements, for in-
stance depending on the maximum running time. A
scheduler then proceeds all these queues to decide
the execution of jobs. Users could question about
status of their jobs during all the job lifetime.

3 Scheduling scheme

The goal of the scheduler is first to enable execu-
tion of jobs, to maximize job throughput and to
maintain a good equilibrium between users in their
usage of the cluster [15]. At the same time sched-
uler has to avoid starvation, that is jobs, users or
groups that access scarcely to available cluster re-
sources compared to others.

Scheduling is done on-line, i.e the scheduler has
no knowledge about all the job input requests but
jobs are submitted to the cluster at arbitrary time.
No preemption is done, the cluster uses a space-
sharing mode for jobs. In a Grid environment long-
time running jobs are common. The worst case is
when the cluster is full of jobs running for days
and at the same time receiving jobs blocked in the
waiting queue.

Short jobs like monitoring jobs barely delay too
much longer jobs. For example, a 1 day job could
wait 15 minutes before starting, but it is unwise if
a 5 minutes job has to wait the same 15 minutes.
This results in production of algorithms classes that
encourage the start of short jobs over longer jobs.
(Short jobs have higher priority [16]) Some other so-
lution proposed is to split the cluster in static sub-
clusters but this is not compatible with a sharing
vision like Grids. Ideal on-line scheduler will maxi-
mize cluster usage and fairness between groups and
users. Of course a good trade-off has to be found
between the two.

3.1 Local situation

We are using two servers to manage our 140 CPUs,
on each machine there are 5 queues where each
group could send their jobs to. Each queue has
its own limit in maximum CPU Time. A job in
a given queue is killed if it exceeds its queue time
limit. There are in fact two limits, one is the max-
imum CPU time, the other one is the maximum
total time (or Wall time) a job could use. For each
queue there is also a limit in the number of jobs
than can run at a given time. This is done in order
to avoid that the cluster is full with long running
jobs and short jobs cannot run before days. Likely
there is the same limit in number of running jobs
for a given group.

Maui Scheduler and the Portable Batch Sys-
tem (PBS) run on multiple hardware and oper-

4 3 SCHEDULING SCHEME

User Interface (UI) Input Sandbox

READY

WAIT

SUBMITTED

SCHEDULED

RUNNING

LRMS (PBS for instance)

Resource Broker (RB)

DONE

CLEARED

Computing Element (CE)

Resource Broker (RB)

Globus Gatekeeper LRMS (PBS for instance)

BDII

Resource Broker (RB)

Resource Broker (RB)

User Interface (UI)

Query the Information system

Computing Element (CE)

Globus Gatekeeper

Output Sandbox

Output Sandbox

Output Sandbox

Output Sandbox

User Interface (UI)
Account

Authentication
Proxy

Virtual organization

Resource Broker (RB)

Resource Broker (RB)Job submittal

Resource Broker (RB)

Worker Nodes (WNs)
Worker Nodes (WNs)

Worker Nodes (WNs)

Automatic resubmission

Wrapper script

Grid Batch Queuing

Scheduling

Input Sandbox

Job description file

Figure 1: Job submittal scenario

Queue Max CPU Max Wall Max Jobs
(H:M) (H:M)

Test 00:05 00:15 130
Short 00:20 01:30 130
Long 08:00 24:00 130
Day 24:00 36:00 130
Infinite 48:00 72:00 130

Table 1: Queue configuration (maximum CPU
time, Wall time and running jobs)

ating systems. MAUI is a scheduling policy en-
gine that is used together with the PBS batch sys-
tem. PBS manages the job reception in queues
and execution on cluster nodes. MAUI is a First-

Come-First-Served backfill scheduler with priori-
ties. This means that is checks periodically the
running queues, execution of lower priority jobs is
allowed if it is determined that their running will
not delay jobs higher in the queue [8]. Maui is un-
fortunately not event driven, it polls regularly the
PBS queues to decide which jobs to run. MAUI
allows to add a priority property for each queue.
Our site configuration is that the shorter the queue
allows jobs to run, the more priority is given to that
job. Jobs are then selected to run depending on a
priority based on the job attributes such as owner,
group, queue, waiting time, etc.

4.1 Running time 5

4 Workload data analysis

Workload analysis allows to obtain a model of the
user behavior [17]. Such a model is essential for
understanding how the different parameters change
the resource center usage. Meta-computing work-
load [18] like Grid environments is composed of dif-
ferent site workloads. We are interested in mod-
elling workload of our site which is part of the
EGEE computational Grid. Our site receives only
jobs coming from the EGEE Grid and each requests
for only one CPU.

Traces of users activities are obtained from ac-
countings on the server logs. Logs contain in-
formation about users, resources used, jobs ar-
rival time and jobs completion time. It is possi-
ble to use directly these traces to obtain a static
simulation or to use a dynamic model instead.
Workload models are more flexible than logs, be-
cause they allow to generate traces with different
parameters and better understand workload prop-
erties [1]. Workload analysis allows to obtain a
model of users activity. Such a model is essen-
tial for understanding how the different parameters
change the resource center usage. Our workload
data has been converted to the Standard Work-
load Format (http://www.cs.huji.ac.il/labs/
parallel/workload/) and made publicly available
for further researches.

Workload is from August 1st 2004 to May 15th
2005. We have a cluster containing 140 CPUs since
September 15th. This can be visible in the figure 2,
3(a) and 3(b), where we notice that the number of
jobs sent increases. Statistics are obtained from the
PBS log files. PBS log files are well structured for
data analysis. An AWK script is used to extract
information from PBS log files. AWK acts on lines
matched by regular expressions. We do not have
information about users Login time because users
send jobs to our cluster from an User Interface (UI)
of the EGEE Grid and not directly.

4.1 Running time

During 280 days, our site received 230474 jobs from
which 94474 Dteam jobs and 108197 Biomed jobs
(table 2). For all these jobs there are 23208 jobs
that failed and were dequeued. It appears that jobs
are submitted irregularly and by bursts, that is lot
of jobs submitted in a short period of time followed

Group Mean Standard Number
Deviation of jobs

Biomed 5417 22942.2 108197
Dteam 222 3673.6 94474
LHCb 2072 7783.4 9709
Atlas 13071 28788.8 7979
Dzero 213 393.9 1332

Table 2: Group running time in seconds and total
number of jobs submitted

by a period of relative inactivity. From the logs,
there are not much differences between CPU time
and total time, so it means that jobs sent to our
cluster are really CPU intensive jobs and not I/O
intensive. Dteam jobs are mainly short monitor-
ing jobs but all Dteam jobs are not regularly sent
jobs. We have 6784.6 days CPU time consumed by
Biomed for 108197 jobs (Mean of one hour and half
per jobs, table 2). Repartition of cumulative job
duration distributions for Biomed VO is shown on
figure 4. The duration of about 70% of Biomed jobs
are less than 15 minutes and 50% under 10 seconds,
there are a dominant number of small running jobs
but the distribution is very wide as shown by the
high standard deviation compared to the mean in
table 2.

Queue Mean Standard CV
Deviation

Test 31.0 373.6 12.0
Short 149.5 1230.5 8.2
Long 2943.2 11881.2 4.0
Day 6634.8 25489.2 3.8
Infinite 10062.2 30824.5 3.0

Table 3: Queue mean running time in seconds, cor-
responding Standard Deviation and Coefficient of
Variation

Users submit their jobs with an estimated
run length. For relationships between execution
time and requested job duration and its accuracy
see [19]. To sum up estimated jobs duration are es-
sentially inaccurate. It is in fact an upper bound for
job duration which could in reality take any value
below it. Table 3 shows for each queue the mean
running time, its standard deviation and coefficient

http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/

6 4 WORKLOAD DATA ANALYSIS

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

01 Aug 01 Sep 01 Oct 01 Nov 01 Dec 01 Jan 01 Feb 01 Mar 01 Apr 01 May

N
um

be
r

of
 jo

bs

Date

Biomed jobs

(a) Number of Biomed jobs received per weeks (from
August 2004 to May 2005)

 0

 2000

 4000

 6000

 8000

 10000

01 Aug 01 Sep 01 Oct 01 Nov 01 Dec 01 Jan 01 Feb 01 Mar 01 Apr 01 May

N
um

be
r

of
 jo

bs
Date

Dteam jobs

(b) Number of Dteam jobs received per weeks (from
August 2004 to May 2005)

Figure 2: Number of jobs received per VO and per week from August 2004 to May 2005

 0

 10

 20

 30

 40

 50

 60

01 Aug 01 Sep 01 Oct 01 Nov 01 Dec 01 Jan 01 Feb 01 Mar 01 Apr 01 May

S
ys

te
m

 u
til

iz
at

io
n

(%
)

Date

Site utilization

(a) System utilization per weeks (from August 2004
to May 2005)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

01 Aug 01 Sep 01 Oct 01 Nov 01 Dec 01 Jan 01 Feb 01 Mar 01 Apr 01 May

C
P

U
 T

im
e

(D
ay

s)

Date

Biomed CPU Time
Dteam jobs

(b) CPU consumed by Biomed and Dteam jobs per
weeks (from August 2004 to May 2005)

Figure 3: Cluster utilization as CPU consumed per VO and per week from August 2004 to May 2005

4.2 Waiting time 7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 sec 1 min 5 min 15 min 1h 8h 24h 48h

F
ra

ct
io

n
of

 jo
bs

Duration (hours)

Dteam Job duration

(a) Dteam job runtime

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 sec 1 min 5 min 15 min 1h 8h 24h 48h

F
ra

ct
io

n
of

 jo
bs

Duration (hours)

Biomed Job duration

(b) Biomed job runtime

Figure 4: Dteam and Biomed job runtime distributions (logscale on time axis)

of variation (CV) which is the ratio between stan-
dard deviation and the mean. CV decreases as the
queue maximum runtime increase. This means that
jobs in shorter queues vary a lot in their duration
compared to longer jobs and we can expect that
more the upper bound given is high the more con-
fidence in using the queue mean runtime as a an
estimation we could have.

A commonly used method for modelling duration
distribution is to use log-uniform distribution. Fig-
ures 4(a) and 4(b) show the fraction of Dteam and
Biomed jobs with duration less than some value.
Job duration has been modelled with a multi-stage
log-uniform model in [20] which is piecewise linear
in log space. In this case Dteam and Biomed job
duration could be approximated respectively with
a 3 and a 6 stages log-uniform distribution.

4.2 Waiting time

Table 4 shows that jobs coming from the Dteam
group are the more unfairly treaten. Dteam group
sends short jobs very often, Dteam jobs are then all
placed in queue waiting that long jobs from other
groups finished. Dzero group sends short jobs more
rarely and is also less penalized than Dteam be-
cause there are less Dzero jobs that are waiting
together in queue before being treated. The best
treated group is LHCb with not very long running

Group Mean Stretch Standard CV
Deviation

Biomed 781.5 0.874 16398.8 20.9
Dteam 1424.1 0.135 26104.5 18.3
LHCb 217.7 0.905 2000.7 9.1
Atlas 2332.8 0.848 13052.1 5.5
Dzero 90.7 0.701 546.3 6.0

Table 4: Group mean waiting time in seconds, cor-
responding Standard Deviation and Coefficient of
Variation

jobs (average of about 34 minutes) and one job
about every 41 minutes. The best behavior to re-
duce waiting time per jobs seems to send jobs that
are not too short compared to the waiting factor,
and send not too very often in order to avoid that
they all wait together inside a queue. Very long
jobs is not a good behavior too as the scheduler
delay them to run shorter one if possible.

Table 5 shows the mean waiting time per jobs
on a given queue. There is a problem with such
a metric, for example: Consider one job arriving
on a cluster with only one free CPU, it will run
on it during a time T with no waiting time. Con-
sider now that this job is splitted in N shorter jobs
(numbered 0 . . .N − 1) with equal total duration
T . Then the waiting time for the job number i will

8 4 WORKLOAD DATA ANALYSIS

Queue Mean Standard CV Number
Deviation of jobs

Test 33335.9 148326.4 4.4 45760
Short 1249.7 27621.8 22.1 81963
Long 535.1 5338.8 9.9 32879
Day 466.8 8170.7 17.5 19275
Infinite 1753.9 24439.8 13.9 49060

Table 5: Queue mean waiting time in seconds, cor-
responding Standard Deviation, Coefficient of Vari-
ation and number of jobs

be iT/N , and the total waiting time (N − 1)T/2.
So the more a job is splitted the more it will wait
in total. Another metric that does not depend on
the number of jobs is the total waiting time divided
by the number of jobs and by the total job dura-
tion. Let note ŴT this normalized waiting time,
We obtain:

ŴT =
TotalWaitingT ime

NJobs ∗ TotalDuration

ŴT =
MeanWaitingT ime

NJobs ∗ MeanDuration
(4.1)

Queue ŴT Group ŴT
Test 2.35e-2 Biomed 1.58e-5
Short 1.02e-4 Dteam 6.79e-5
Long 5.53e-6 LHCb 1.08e-5
Day 3.65e-6 Atlas 2.23e-5
Infinite 3.55e-6 Dzero 31.9e-5

Table 6: Queue and Group normalized waiting time

With this metric, the Test queue is still the most
unfairly treated and the Infinite queue has the more
benefits compared to the other queues. Dteam
group is again bad treated because their jobs are
mainly sent to the Test queue. The more unfairly
treated group is Dzero.

4.3 Arrival time

Job arrival daily cycle is presented in figure 5. This
figure shows the number of arrival depending on job
arrival hours, with a 10 minutes sampling. Clearly
users prefer to send their jobs at o’clock. In fact
we receive regular monitoring jobs from the VO

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
um

be
r

of
 jo

bs
 a

rr
iv

ed

Hours

Job arrivals per time of day

Figure 5: Job arrival daily cycle

Group Mean Standard CV
(seconds) Deviation

Biomed 223.6 5194.5 23.22
Dteam 256.2 2385.4 9.31
LHCb 2474.6 39460.5 15.94
Atlas 2824.1 60789.4 21.52
Dzero 5018.7 50996.6 10.16

Table 7: Group interarrival time in seconds, cor-
responding Standard Deviation and Coefficient of
Variation

Dteam. The monitoring jobs are submitted every
hour from goc.grid-support.ac.uk. Users are lo-
cated in all Europe, so the effect of sending at work-
ing hours is summed over all users timezones. How-
ever the shape is similar compared to other daily
cycle, during night (before 8am) less jobs are sub-
mitted and there is an activity peak around midday,
2pm and 4pm.

Table 7 shows the moments of interarrival time
for each group. CV is much higher than 1, this
means that arrivals are not Poisson processes and
are very irregularly distributed. For instance we
could receive 10 jobs in 10 minutes followed by
nothing during the 50 next minutes. In this case we
have a mean interarrival time of 6 minutes but in
fact when jobs arrived they arrived every minutes.

Figure 3(a) shows the system utilization of our
cluster during each week. There are a maximum of
980 CPU days consumed each week for 140 CPUs.
We have a highly varying cluster activity.

goc.grid-support.ac.uk

9

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30 35 40

P
ro

po
rt

io
n

Jobs sent per 5 minutes

Frequencies (Biomed)

(a) Biomed job arrival rate each 5 minutes

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25

P
ro

po
rt

io
n

Jobs sent per 5 minutes

Frequencies (Dteam)

(b) Dteam job arrival rate each 5 minutes

Figure 6: Arrival frequencies for Biomed and Dteam VOs (Proportion of occurrences of n jobs received
during an interval of 5 minutes)

4.4 Frequency analysis

Job arrival rate is a common measurement for a
site usage in queuing theory. Figures 6(a) and 6(b)
present the job arrival rate distribution. It is the
number of time n jobs are submitted during inter-
val length of 5 minutes. They show that most of the
time the cluster does not receive jobs but jobs ar-
rived grouped. Users actually submit groups of jobs
and not stand-alone jobs. It explains the shape of
the arrival rate: it fastly decreases but too slowly
compared to a Poisson distribution. Poisson dis-
tribution is usually used for modelling the arrival
process but evidences are against that fact [21].

Dteam monitoring jobs are short and regular
jobs, there is no need of a special arrival model
for such jobs. What we observe for other kind of
jobs is that the job arrival law is not a Poisson Law
(see table 7 where CV ≫ 1) as for instance a web
site traffic [22]. What really happens is that users
come using the cluster from an User Interface dur-
ing some time interval. During this time they send
jobs to the cluster. Users log to an User Interface
machine in order to send their jobs to a RB that
dispatch them to some CEs. Note that one can
send jobs to our cluster only from an User Inter-
face, it means for instance that jobs running on a
cluster cannot send secondary jobs. On a comput-
ing site we do not have this user login information,

but only job arrival.

First we look at modelling user arrival and sub-
mission behavior. Secondly we show that the model
proposed shows good results for a group behavior.

5 Model

5.1 Login model

In this section we begin to model user Login/Logout
behavior from the Grid job flow (figure 1). We
neglect the case where an user has multiple login
on different UI at the same time. We mean that
a user is in the state Login if he is in the state of
sending jobs from an UI to our cluster, else he is in
the state Logout.

Markov chains are like automatons with for each
state a probability of transition. One property of
Markov chains is that future states depend only
on the current state and not on the past history.
So a Markov state must contains all the infor-
mation needed for future states. We decided to
model the Login/Logout behavior as a continuous
Markov chain. During each dt, a Logout user has
a probability during dt of λdt to login and a Login
user has a probability during dt of δdt to logout
(see figure 7). λ is called the Login rate and δ is
called the Logout rate.

10 5 MODEL

dt1 − δ1 − λ dt

δ dt

λ dt

Logout Login

Figure 7: Login/Logout cycle

All these parameters could vary over time as we
see with the variation of the week job arrival (fig-
ure 3(a)) or during day time (figure 5) The model
proposed could be used more accurately with non-
constant parameters at the expense of more calcu-
lation and more difficult fitting. For example, one
could numerically use Fourier series for the Login
rate or for the submittal rate to model this daily
cycle. We use now constant parameters for calcu-
lation, looking for general properties.

We would like to have the probabilities during
time that the user is logged or not logged. Let
PLogin(t) and PLogout(t) be respectively probability
that the user is logged or not logged at time t. We
have from the modelling:

PLogout(t + dt) = (1 − λdt)PLogout(t)

+ δdtPLogin(t) (5.1)

PLogin(t + dt) = (1 − δdt)PLogin(t)

+ λdtPLogout(t) (5.2)

At equilibrium we have no variation so

PLogout(t + dt) = PLogout(t) = PLogout (5.3)

PLogin(t + dt) = PLogin(t) = PLogin (5.4)

We obtain:

PLogout =
δ

λ + δ
(5.5)

PLogin =
λ

λ + δ
(5.6)

5.2 Job submittal model

During period when users are logged they could
submit jobs. We model the job submittal rate for
one user as follows: During dt when the user is
logged he has a probability of µdt to submit a job.
With δ = 0 we have a delayed Poisson process,
with µ = 0 no jobs are submitted. The full model
is shown at figure 8, it shows all the possible out-
comes with corresponding probabilities from one of
the possible state to the next after a small period
dt. Numbers inside circles are the number of jobs
submitted from the start. Login states are below
and Logout states are at the top. We have:

• Pn(t) is the probability to be in the state “User
is not logged at time t and n jobs have been
submitted between time 0 and t.”

• Qn(t) is the probability to be in the state
“User is logged at time t and n jobs have been
submitted between time 0 and t.”

• Rn(t) is the probability to be in the state “n
jobs have been submitted between time 0 and
t.” We have Rn = Pn + Qn.

From the model, we obtain with the same
method as before this recursive differential equa-
tion:

M =

(
−λ δ
λ −(µ + δ)

)
(5.7)

(
P0

Q0

)′

= M

(
P0

Q0

)
(5.8)

(
Pn

Qn

)′

= M

(
Pn

Qn

)
+

(
0

µQn−1

)
(5.9)

This results to the following recursive equation
(in case the parameters are constants, M is a con-
stant)

(
Pn

Qn

)
= eMt

∫
e−Mx

(
0

µQn−1

)
dx (5.10)

We take a look at the probability of having no
job arrival during an interval of time t which is P0

and Q0. R0 is the the probability that no jobs have
been submitted between arbitrary time 0 and t. So
from the above model, we have:

(
P0

Q0

)′

=

(
−λ δ
λ −(µ + δ)

) (
P0

Q0

)
(5.11)

5.3 Model characteristics 11

1 − λ dt

dt1 − (δ + µ)

dtµ

1 − λ dt

dt1 − (δ + µ)

dtµ

1 − λ dt

dt1 − (δ + µ)

dtµ

1 − λ dt

dt1 − (δ + µ)

dtµ

λ dt λ dt λ dt λ dt

δ dt δ dt δ dt δ dt

Logout

Login

0 1 2 3

0 1 2 3

Figure 8: Markov modelling of jobs submittal

At arbitrary time we could be in the state Login
with probability λ/(λ + δ) and in the state Logout
with the probability δ/(λ + δ). We have from the
results above:

(
P0(0)
Q0(0)

)
=

(
PLogout

PLogin

)
=

1

λ + δ

(
δ
λ

)
(5.12)

R0 = P0 + Q0 (5.13)

Finally we obtain the result.

R0(t) = m0

e−m1t − e−m2t

m1 − m2

+
m1e

−m2t − m2e
−m1t

m1 − m2

(5.14)

Where

m0 =
λµ

λ + δ
= µPLogin (5.15)

m1 + m2 = λ + δ + µ (5.16)

m1m2 = λµ (5.17)

(5.18)

With λ = 0 or µ = 0, we obtain that no jobs
are submitted (R0(t) = 1). With δ = 0, this is
a Poisson process and R0(t) = e−µt. Note that

during a period of t there are in average µPLogint
jobs submitted, we have also for small period t,

R0(t) ≈ 1 − µPLogint (5.19)

We have also

R′
0
(0) = −µPLogin (5.20)

R′
0
(0) = −

Number of jobs submitted

Total duration
(5.21)

R0(t) could be estimated by splitting the arrival
processes in intervals of duration t and estimating
the ratio of intervals with no arrival. The error of
this estimation is linear with t. Another issue is
that the logs precision is not below one second.

5.3 Model characteristics

We have also these interesting properties:

R′
0
(0) = −µPLogin (5.22)

R′′
0
(0)

R′
0
(0)

= −µ (5.23)

R′
0
(0)2

R′′
0
(0)

= PLogin (5.24)

R′′′
0

(0)

R′′
0
(0)

= −(µ + δ) (5.25)

12 6 SIMULATION AND VALIDATION

Probability distribution of the duration between
two jobs arrival is called an interarrival process.
Interarrival process is a common metric in queuing
theory. We have A(t) = P0(t) + Q0(t) with the
initial condition that user just submits a job. This
implies that user is logged.

P0(0) = 0.0, Q0(0) = 1.0

A(t) = µ
e−m1t − e−m2t

m1 − m2

+
m1e

−m2t − m2e
−m1t

m1 − m2

(5.26)

p =
µ − m2

m1 − m2

(5.27)

A(t) = pe−m1t + (1 − p)e−m2t (5.28)

We have µ ∈ [m1; m2] because

(µ − m1)(µ − m2) = µ2 − (λ + δ + µ)µ + δµ

(µ − m1)(µ − m2) = −δµ < 0 (5.29)

So p ∈ [0; 1], and we have an hyper-exponential
interarrival law of order 2 with parameters p =
(µ − m2)/(m1 − m2), m1, m2. This result is co-
herent with other experimental fitting results [23]
Moreover any hyper-exponential law of order 2 may
be modelled with the Markov chain described in fig-
ure 8 with parameters µ = pm1 + (1 − p)m2, λ =
m1m2/µ, δ = m1 + m2 − µ − λ

Let calculate the mean interarrival time.
Probability to have an interarrival time between
θ and θ + dθ is A(θ)−A(θ + dθ) = −A′(θ)dθ. The
mean is

Ã =

∫ ∞

0

−θA′(θ)dθ =

∫ ∞

0

A(θ)dθ (5.30)

Ã =
1

µPLogin

=
λ + δ

λµ
(5.31)

Let compute the variance of interarrival distribu-
tion.

var =

∫ ∞

0

−(θ − Ã)2A′(θ)dθ (5.32)

var = 2

∫ ∞

0

θA(θ)dθ − Ã2 (5.33)

var

Ã2
= CV 2 = 1 + 2

δµ

(λ + δ)2
(5.34)

CV 2 = 1 + 2 P2

Logout

µ

δ
(5.35)

Another interesting property is the number of
jobs submitted by this model during a Login period.
Let Pn be the probability to receive n jobs during
a Login period. We have:

Pn =

∫ ∞

0

(µt)n

n!
e−µtδe−δtdt (5.36)

Pn =
δ

µ + δ
(

µ

µ + δ
)n (5.37)

This is a geometric law. The mean number of jobs
submitted by Login period is µ/δ.

5.4 Group model

Groups are composed of users, either regular users
sending jobs at regular time or users with a Lo-
gin/Logout like behavior. Metrics defined below as
the mean number of jobs sent by Login state, the
mean submittal rate and probability of Login could
represent an user behavior.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0 20 40 60 80 100 120

Jo
b

su
bm

itt
al

 r
at

e
(J

ob
s

pe
r

se
co

nd
s)

User rank

Job submittal rate

Figure 9: Users job submittal rates during their
period of activity

Figure 9 shows the sorted distribution of users
submittal rate (µPLogin). Except for the highest
values it is quite a straight line in logspace. This
observation could be included in a group model.

6 Simulation and validation

We have done a simulation in Scheme [24] directly
using the Markov model. We began by fitting users
behavior from the logs with our model. Like the
frequency obtained from the logs, the model shows

13

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25

P
ro

ba
bi

lit
y

Jobs sent per 5 minutes

Biomed user
Simulation (Error = 4.929e-3)

Poisson distribution fitting with the same mean

(a) Biomed user 1

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25

P
ro

ba
bi

lit
y

Jobs sent per 5 minutes

Biomed user
Simulation (Error = 3.534e-3)

(b) Biomed user 2

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25

P
ro

ba
bi

lit
y

Jobs sent per 5 minutes

Biomed user
Simulation (Error = 1.1078e-2)

(c) Biomed user 3

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25

P
ro

ba
bi

lit
y

Jobs sent per 5 minutes

Biomed user
Simulation (Error = 8.78e-2)

(d) Biomed user 4

Name µ δ λ Error
Biomed user 1 0.0837 0.02079 2.1e-4 4.929e-3
Biomed user 2 0.0620 0.01188 1.2e-4 3.534e-3
Biomed user 3 0.0832 0.02475 2.5e-4 1.1078e-2
Biomed user 4 0.0365 1.4285e-3 1.075e-4 8.78e-2

Figure 10: Biomed simulation results

14 6 SIMULATION AND VALIDATION

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5000 10000 15000 20000 25000 30000

P
ro

ba
bi

lit
y

Interval length (seconds)

R0 probability for Biomed user 6 at LPC cluster
Hyper-exponential fitting (order 2)

(a) LPC cluster Biomed user

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000

P
ro

ba
bi

lit
y

Interval length (seconds)

R0 probability for user 3 at NASA Ames
Hyper-exponential fitting (order 2)

(b) NASA Ames most active user

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 2000 4000 6000 8000 10000 12000

P
ro

ba
bi

lit
y

Interval length (seconds)

R0 probability for user 75 at DAS2 fs0 cluster
Hyper-exponential fitting (order 2)

(c) DAS2 fs0 cluster most active user

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5000 10000 15000 20000 25000 30000

P
ro

ba
bi

lit
y

Interval length (seconds)

R0 probability for user 35 at SDSC Blue Horizon
Hyper-exponential fitting (order 2)

(d) SDSC Blue Horizon most active user

Figure 11: Hyper-Exponential fitting of R0 for a Biomed LPC user and for the most active users at
NASA Ames, DAS2 and SDSC Blue Horizon clusters.

6.1 Other workloads comparison 15

a majority of intervals with no job arrival, possi-
bly followed by a relatively flat area and a fast de-
creases. Some fitting results are presented in fig-
ures 10. Norm used to fit real data is the max-
imum difference between the two cumulative dis-
tributions. We fitted the frequency data for each
user.

During a period of t there are in average µPLogint
jobs submitted. We evaluate the value of µPLogin

which is the average number of jobs submitted by
seconds. We use that value when doing a set of sim-
ulation in order to fit a known real user probability
distribution. We have two free parameters, so we
vary PLogin between 0.0 and 1.0 and lambda which
the inverse is the average time an user is Logout.
Some results obtained are shown in figures 10.

µ parameter decides of the frequency length of
the curve. Without the Login behavior we would
have obtained a classic Poisson curve of µ parame-
ter. 1/µ is the mean interarrival time during Login
period. An idea to evaluate µ would be to evaluate
the job arrival rate during Login periods, but we
lack that Login information.

δ and λ are the Logout and Login parameters.
What is really important is the ratio λ/(λ + δ)
which is PLogin. This is the ratio between time
user is active on the cluster and total time. δ and
PLogin are measures of the deviation from a clas-
sic Poisson law. For instance, the mean number
of jobs submitted by Login period is µ/δ and the
mean job submittal rate is µPLogin. For a same
PLogin we could have very different scenarios. A
user could be active for long time but rarely logged
and another user could be active for short period
with frequent login. 1/δ is the mean Login time,
1/λ is the mean Logout time.

The R0 probability is essential for studying job
arrival time. 1 − R0(t) is the probability that be-
tween time 0 and t we have received at least one
job. It is easier to fit the R0 distribution for an user
than the interarrival distribution because we have
more points. Figure 11(a) shows a typical graph of
R0 for a Biomed user. It shows for instance that
for intervals of 10000 seconds, this Biomed user has
a probability of about 0.2 to submits one or more
jobs. We have fitted this probability with hyper-
exponential curve, that is a summation of expo-
nential curves. There was too much noises for high
interval time to fit that curve. In fact errors on R0

are linear with t. So we have smoothed the curve

before fitting by averaging near points. R0 for this
user was fitted with a sum of two exponentials.

It seems that more than the Login/Logout be-
havior there is also a notion of user activity. For
example during the preparation of jobs or analysis
phase of the results an user does not use the Grid
and consequently the cluster at all. More than the
Login and Logout state an Inactive state could be
added to the model if needed.

6.1 Other workloads comparison

User number 3 is the most active user from the
NASA Ames iPSC/860 workload †. Figure 11(b)
shows its R0(t) probability, it is clearly hyper-
exponential of order 2, as other users like number
22 and 23. Other users like number 12 and 15 are
more classical Poissonian users.

DAS2 Clusters (see note †) used also PBS and
MAUI as their batch system and scheduler. The
main difference we have with them is that they use
Globus to co-allocate nodes on different clusters.
We only have bag of tasks applications which in-
teracts together in a pipeline way by files stored
on SEs. Their fs0 144 CPUs cluster is quite similar
with ours. Figure 11(c) shows the R0(t) probability
for their most active user and corresponding hyper-
exponential fitting or order 2.

SDSC Blue Horizon cluster (see note †) have a to-
tal of 144 nodes. The R0(t) distribution probability
of their most active user was fitted with a hyper-
exponential of order 2 in figure 11(d).

7 Related works

Our Grid environment is very particular and dif-
ferent from common cluster environment as paral-
lelism involved requires no interaction between pro-
cesses and degree of parallelism is one for all jobs.

To be able to completely simulate the node us-
age we need not only the jobs submittal process but
also the job duration process. Our runtime model

†The workload log from the NASA Ames iPSC/860 was
graciously provided by Bill Nitzberg. The workload logs
from DAS2 were graciously provided by Hui Li, David Groep
and Lex Wolters. The workload log from the SDSC Blue
Horizon was graciously provided by Travis Earheart and
Nancy Wilkins-Diehr. All are available at the Parallel Work-
load Archives http://www.cs.huji.ac.il/labs/parallel/

workload/

http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/

16 8 DISCUSSION

is similar with the Downey model [20] for run-
time which is composed of linear pieces in logspace.
There is a strong correlation between successive
jobs running time but it seems unlikely that a gen-
eral model for duration may be made because it de-
pends highly on algorithms and data used by users.

Most other models use Poisson distribution for
interarrival distribution. But evidences, like CV
be much higher than one, demonstrate that ex-
ponential distributions does not fit well the real
data [25, 26]. The need of a detailed model was
expressed in [27]. With constant parameters our
model exhibits a hyper-exponential distribution for
interarrival rate and justify such a distribution
choice. One strong benefit of our model is that
it is general and could be used numerically with
non-constant parameters at the expense of difficult
fitting.

8 Discussion

What could be stated is that job maximum run
times provided by users are essentially inaccurate,
some authors are even not using this information
for scheduling [2]. Maybe a better concept is the
relative urgency of a job. For example on a grid
software managers are people responsible for in-
stalling software on cluster nodes by sending in-
stallation jobs. Software manager jobs may be re-
garded as more urgent than other jobs type. So
sending jobs with an estimated runtime could be
replaced by sending jobs with an urgency param-
eter. That urgency could be established in part
as a site policy. Each site administrator could de-
fine some users classes for different kind of jobs and
software used with different jobs priorities. For in-
stance a site hosted in some laboratory might wish
to promote its scientific domain more than other
domain, or some specific applications might need
quality of services like real time interaction.

Another idea for scheduling is to have some sort
of risk assessment measured during the scheduler
decision. This risk assessment may be based on
blocking probabilities obtained either from the logs
or from some user behavior models. For example,
it could be wise to forbid that a group or an user
takes all the cluster at a given time but instead to
let some few percents of it open for short jobs or
low CPU consuming jobs like monitoring.

Information System shows for a site the num-
ber of job currently running and waiting. But it
is not really the relevant metric in an on-line envi-
ronment. A better metric for a cluster is the com-
puting flow rate input and the computing flow rate
capacity. A cluster is able to treat some amount
of computation per unit of time. So a cluster is
contributing to the Grid with some computation
flow rate (in GigaFLOPS or TeraFLOPS). As with
classical queuing theory if the input rate is higher
than the capacity, the site is overloaded and the
global performances are low due to jobs waiting to
be processed. What happens is that the site receive
more jobs that is is able to treat in a given time.
So the queues begin to grow and jobs have to wait
more and more before being started, resulting in
performance decay. Similarly when the computa-
tion submitted rate is lower than the site capacity
the site is under-used. Job submittal have also to
be fairly distributed according to the site capac-
ity. For example, a site that is twice bigger than
another site have to receive twice more computing
request than the other site. But there is a problem
to globally enforce this submittal scheme on all the
Grid. This is why a local site migration policy may
be better than a central migration policy done with
the RB.

To be more precise there are two different kinds
of cluster flow rate metrics, one is the local flow
rate and the other one is the global flow rate. The
local computing flow rate is the flow rate that one
job sees when reaching the site. The global flow
rate is the computing flow rate a group of jobs
see when reaching the site. That global flow rate
is also the main measurement for meta-scheduling
between sites. These two metrics are different, for
instance we could have a site with a lot of slow ma-
chines (low local flow rate and big global flow rate)
and another site with only few supercomputers (big
local flow rate and low global flow rate). But the
most interesting metric for one job is the local flow
rate. This means that if each job wants individu-
ally to be processed at the best local flow rate site,
this site will saturate and be globally slow.

As far as all users and groups computation total
flow rate is less than the site global flow rate or
site capacity, there is no real fairness issue because
there is no strife to access the site resources, there
is enough for all. The problem comes when the
sum of all computation flow rate is greater than

17

the site capacity, firstly this globally reduces the
site performance, secondly the scheduler must take
decision to share fairly these resources. The Grid
is an ideal tool that would allow to balance the
load between sites by migrating jobs [2]. A site
that share their resources and is not saturated could
discharge another heavily loaded site. Some kind
of local site flow control could maintain a bounded
input rate even with fluctuating jobs submittal. For
instance fairness between groups and users could
be maintained by decreasing the most demanding
input rate and distributing it to other less saturated
sites.

Another benefits is that applications computing
flow rates may be partly expressed by users in their
job requirements. Computing flow rate takes into
account both the jobs sizes and their time limits.
Fairness between users is then ensured if whatever
may be flow values asked by each user, part granted
to each penalizes no other one. Computing flow
rate granted by a site to an application may depend
on the applications degree of parallelism, that is for
the moment the number of jobs. For instance it
may be more difficult to serve an application com-
posed of only one job asking for a lot of computing
flow rate than to serve an application asking the
same computing flow rate but composed of many
jobs. Urgency is not totally measured by a com-
puting flow rate. For example a critical medical
application which is a matter of life or death ar-
riving on a full site has to be treated in priority.
Allocating flow rates between users and groups has
to be right and to take under account priority or
urgency issues.

To use a site wisely users have to bound their
computational flow rate and to negotiate it with
site managers. A computing model has to be de-
fined and published. These remarks are impor-
tant in the case of on-line computing like Grids
where meta-scheduling strategy have to take a lot
of parameters into account. General on-line load
balancing and scheduling algorithms [28, 29, 30, 31]
may be applied. The problem of finding the best
suited scheduling policy is still an open problem. A
better understanding of job running time is nece-
ssary to have a full model.

The LCG middleware allows users to send their
jobs to different nodes. This is done by the way of a
central element called a Resource Broker, that col-
lects user’s requests and distributes them to com-

puting sites. The main purpose is to match the
available resources and balance the load of job sub-
mittal requests. Jobs are better localized near the
data they need to use.

We would like to advise instead a peer to peer [32]
view of the Grid over a centralized one. In this
view computing sites themselves work together
with other computing sites to balance the aver-
age workload. Not relying on dependent services
greatly improves the reliability and adaptability of
the whole systems. That kind of meta-scheduling
have to be globally distributed as stated by Dmitry
Zotkin and Peter J. Keleher [12]:

In a distributed system like Grid, the use of a
central Grid scheduler‡ may result in a performance
bottleneck and lead to a failure of the whole system.
It is therefore appropriate to use a decentralized
scheduler architecture and distributed algorithm.

gLite [33] is the next generation middleware for
Grid computing. gLite will provide lightweight
middleware for Grid computing. The gLite Grid
services follow a Service Oriented Architecture
which will facilitate interoperability among Grid
services. Architecture details of gLite could be
viewed in [11]. The architecture constituted by this
set of services is not bound to specific implemen-
tations of the services and although the services
are expected to work together in a concerted way
in order to achieve the goals of the end-user they
can be deployed and used independently, allowing
their exploitation in different contexts. The gLite
service decomposition has been largely influenced
by the work performed in the LCG project. Ser-
vice implementations need to be inter-operable in
such a way that a client may talk to different inde-
pendent implementations of the same service. This
can be achieved in developing lightweight services
that only require minimal support from their de-
ployment environment and defining standard and
extensible communication protocols between Grid
services.

9 Conclusion

So far we have analyzed the workload of a Grid
enabled cluster and proposed an infinite Markov-
based model that describes the process of jobs ar-

‡like the Resource Broker used in LCG middleware

18 REFERENCES

rival. Then a numerical fitting has been done be-
tween the logs and the model. We find a very simi-
lar behavior compared to the logs, even bursts were
observed during the simulation.

Acknowledgments

The cluster at LPC Clermont-Ferrand was funded
by Conseil Régional d’Auvergne within the frame-
work of the INSTRUIRE project (http://www.
instruire.org)

References

[1] Dror G. Feitelson. Workload modeling for perfor-
mance evaluation. In Maria Carla Calzarossa and
Salvatore Tucci, editors, Performance Evaluation
of Complex Systems: Techniques and Tools, pages
114–141. Springer-Verlag, Sep 2002. Lect. Notes
Comput. Sci. vol. 2459.

[2] Darin England and Jon B. Weissman. Costs and
benefits of load sharing in the computational grid.
In Dror G. Feitelson and Larry Rudolph, editors,
Job Scheduling Strategies for Parallel Processing.
Springer-Verlag, 2004.

[3] M. Garey and D.S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. Freeman, San Francisco, CA., 1979.

[4] Stephan Mertens. The easiest hard problem: Num-
ber partitioning. In A.G. Percus, G. Istrate, and
C. Moore, editors, Computational Complexity and
Statistical Physics, New York, 2004. Oxford Uni-
versity Press.

[5] Dror Feitelson School. Parallel job scheduling
— a status report. In Dror G. Feitelson, Larry
Rudolph, and Uwe Schwiegelshohn, editors, Job
Scheduling Strategies for Parallel Processing, pages
1–16. Springer Verlag, 2004.

[6] Dror G. Feitelson and Larry Rudolph. Parallel job
scheduling: Issues and approaches. In Dror G.
Feitelson and Larry Rudolph, editors, Job Schedul-
ing Strategies for Parallel Processing, pages 1–18.
Springer-Verlag, 1995. Lect. Notes Comput. Sci.
vol. 949.

[7] David Jackson, Quinn Snell, and Mark Clement.
Core algorithms of the Maui scheduler. In Dror G.
Feitelson and Larry Rudolph, editors, Job Schedul-
ing Strategies for Parallel Processing, pages 87–
102. Springer Verlag, 2001. Lect. Notes Comput.
Sci. vol. 2221.

[8] Brett Bode, David M. Halstead, Ricky Kendall,
and Zhou Lei. The Portable Batch Scheduler and
the Maui Scheduler on Linux Clusters, USENIX
Association. 4th Annual Linux Showcase Confer-
ence, 2000.

[9] S. Agostinelli et al. Geant 4 (GEometry ANd
Tracking): a Simulation toolkit. Nuclear Instru-
ments and Methods in Physics Research, pages
250–303, 2003.

[10] Ian Foster and Carl Kesselman. Globus: A
metacomputing infrastructure toolkit. The In-
ternational Journal of Supercomputer Applications
and High Performance Computing, 11(2):115–128,
Summer 1997.

[11] EGEE Design Team. EGEE middleware ar-
chitecture, EGEE-DJRA1.1-476451-v1.0, August
2004. Also available as https://edms.cern.ch/

document/476451/1.0.

[12] Dmitry Zotkin and Peter J. Keleher. Job-length
estimation and performance in backfilling sched-
ulers. In HPDC, 1999.

[13] Antonio Delgado Peris, Patricia Méndez Lorenzo,
Flavia Donno, Andrea Sciabà, Simone Campana,
and Roberto Santinelli. LCG User guide, 2004.

[14] G. Avellino, S. Beco, B. Cantalupo, A. Maras-
chini, F. Pacini, M. Sottilaro, A. Terracina,
D. Colling, F. Giacomini, E. Ronchieri, A. Gi-
anelle, R. Peluso, M. Sgaravatto, A. Guarise,
R. Piro, A. Werbrouck, D. Kouřil, A. Křenek,
L. Matyska, M. Mulač, J. Posṕǐsil, M. Ruda,
Z. Salvet, J. Sitera, J. Škrabal, M. Vocu̇, M. Mez-
zadri, F. Prelz, S. Monforte, and M. Pappalardo.
The datagrid workload management system: Chal-
lenges and results. Kluwer Academic Publishers,
2004.

[15] Dror G. Feitelson and Larry Rudolph. Toward con-
vergence in job schedulers for parallel supercom-
puters. In Dror G. Feitelson and Larry Rudolph,
editors, Job Scheduling Strategies for Parallel Pro-
cessing, pages 1–26. Springer-Verlag, 1996. Lect.
Notes Comput. Sci. vol. 1162.

[16] Su-Hui Chiang, Andrea Arpaci-Dusseau, and
Mary K. Vernon. The impact of more accurate
requested runtimes on production job scheduling
performance. In Dror G. Feitelson, Larry Rudolph,
and Uwe Schwiegelshohn, editors, Job Scheduling
Strategies for Parallel Processing, pages 103–127.
Springer Verlag, 2002. Lect. Notes Comput. Sci.
vol. 2537.

[17] Maria Calzarossa and Giuseppe Serazzi. Work-
load characterization: A survey. Proc. IEEE,
81(8):1136–1150, 1993.

http://www.instruire.org
http://www.instruire.org
https://edms.cern.ch/document/476451/1.0
https://edms.cern.ch/document/476451/1.0

REFERENCES 19

[18] Steve J. Chapin, Walfredo Cirne, Dror G. Feitel-
son, James Patton Jones, Scott T. Leutenegger,
Uwe Schwiegelshohn, Warren Smith, and David
Talby. Benchmarks and standards for the evalua-
tion of parallel job schedulers. In Dror G. Feitelson
and Larry Rudolph, editors, Job Scheduling Strate-
gies for Parallel Processing, pages 67–90. Springer-
Verlag, 1999. Lect. Notes Comput. Sci. vol. 1659.

[19] Walfredo Cirne and Francine Berman. A com-
prehensive model of the supercomputer workload,
2001.

[20] Allen B. Downey and Dror G. Feitelson. The elu-
sive goal of workload characterization. Perf. Eval.
Rev., 26(4):14–29, 1999.

[21] Dror G. Feitelson and Bill Nitzberg. Job charac-
teristics of a production parallel scientific workload
on the NASA Ames iPSC/860. In Dror G. Feit-
elson and Larry Rudolph, editors, Job Scheduling
Strategies for Parallel Processing, pages 337–360.
Springer-Verlag, 1995. Lect. Notes Comput. Sci.
vol. 949.

[22] Vern Paxson and Sally Floyd. Wide area traf-
fic: the failure of Poisson modeling. IEEE/ACM
Transactions on Networking, 3(3):226–244, 1995.

[23] Hui Li, David Groep, and Lex Wolters. Workload
characteristics of a multi-cluster supercomputer.
In Dror G. Feitelson, Larry Rudolph, and Uwe
Schwiegelshohn, editors, Job Scheduling Strategies
for Parallel Processing. Springer Verlag, 2004.

[24] Richard Kelsey, William Clinger, and
Jonathan Rees (Editors). Revised5 report
on the algorithmic language Scheme. ACM
SIGPLAN Notices, 33(9):26–76, 1998.

[25] Dror G. Feitelson. Metrics for parallel job schedul-
ing and their convergence. In Dror G. Feitelson and
Larry Rudolph, editors, Job Scheduling Strategies
for Parallel Processing, pages 188–205. Springer
Verlag, 2001. Lect. Notes Comput. Sci. vol. 2221.

[26] Joefon Jann, Pratap Pattnaik, Hubertus Franke,
Fang Wang, Joseph Skovira, and Joseph Riodan.
Modeling of workload in MPPs. In Dror G. Feitel-
son and Larry Rudolph, editors, Job Scheduling
Strategies for Parallel Processing, pages 95–116.
Springer Verlag, 1997. Lect. Notes Comput. Sci.
vol. 1291.

[27] David Talby, Dror G. Feitelson, and Adi Raveh.
Comparing logs and models of parallel workloads
using the co-plot method. In Dror G. Feitelson and
Larry Rudolph, editors, Job Scheduling Strategies
for Parallel Processing, pages 43–66. Springer Ver-
lag, 1999. Lect. Notes Comput. Sci. vol. 1659.

[28] Yossi Azar, Bala Kalyansasundaram, Serge A.
Plotkin, Kirk Pruhs, and Orli Waarts. On-line
load balancing of temporary tasks. J. Algorithms,
22(1):93–110, 1997.

[29] Yossi Azar, Andrei Z. Broder, and Anna R. Kar-
lin. On-line load balancing. Theoretical Computer
Science, 130(1):73–84, 1994.

[30] A. Bar-Noy, A. Freund, and J. Naor. New algo-
rithms for related machines with temporary jobs.
In E.K. Burke, editor, Journal of Scheduling, pages
259–272. Springer-Verlag, 2000.

[31] Tak-Wah Lam, Hing-Fung Ting, Kar-Keung To,
and Wai-Ha Wong. On-line load balancing of tem-
porary tasks revisited. Theoretical Computer Sci-
ence, 270(1–2):325–340, 2002.

[32] Nazareno Andrade, Walfredo Cirne, Francisco
Brasileiro, and Paulo Roisenberg. OurGrid: An
approach to easily assemble grids with equitable
resource sharing. In Proceedings of the 9th Work-
shop on Job Scheduling Strategies for Parallel Pro-
cessing, June 2003.

[33] EGEE Design Team. Design of the EGEE mid-
dleware grid services. EGEE JRA1, 2004. Also
available as https://edms.cern.ch/document/

487871/1.0.

https://edms.cern.ch/document/487871/1.0
https://edms.cern.ch/document/487871/1.0

