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1. Introduction 

 The treatment of various pathologies in orthopaedic and dental surgery requires the 

implantation of a biomaterial to compensate for bone loss due to trauma and fracture and 

promote healing [1, 2]. Many materials have been developed for bone tissues replacement. 

They need to be stable for a long period of time and firmly fixed to bone [3, 4].  

Actually, a lot of synthetic bone substitutes and prosthesis are available to repair bony 

tissues that are lost or damaged. The most widely used are polymers, metallic alloys 

(Ti6Al4V, Co-Cr, inox, …) and bioceramics (alumina (Al2O3), zirconia (ZrO2), calcium 

phosphates, bioactive glasses, biovitroceramics) [5, 6]. The ultimate goal of these materials is 

to reach full integration of the non-living implant with living bone. With advances in ceramic 

technology, the application of calcium phosphate materials, bioactive glasses and 

biovitroceramics as bone substitutes or as coatings on prosthesis has received considerable 

attention, because they are highly biocompatible (well accepted in biological environment) 

and they have bioactive properties [7-9].  

In orthopaedic and dental applications, calcium phosphate based ceramics, bioactive 

glasses, biovitroceramics and composites have been used by virtue of their ability to bond 

with bone tissues and to promote bone formation [10, 11]. These materials have become 

known as ‘bioactive ceramics’. They are capable, through physico-chemical reactions, to 

establish a direct contact with bone [12]. This concept of bonding through a thin or 

nonexistent interfacial layer permits to distinguish different types of bioactive materials 

(figure 1). As the chemical composition of calcium phosphate biomaterials is similar to that of 

vertebrate mineral phases (bone, dentin, etc.) [13, 14], they have proved to be efficient bone 

substitutes. Calcium-deficient apatite (CDA), hydroxyapatite (HA) and β-tricalcium 

phosphate are frequently used [15, 16] either alone or in association, e.g. biphasic calcium 

phosphate (BCP) [11, 17]. Bioactive glasses and biovitroceramics developed during the past 



few decades have provided promising alternatives as materials to repair or replace parts of the 

skeletal system and as prosthetic coatings [18, 19]. Hench proved that bioactive glass (45 % 

SiO2, 24.5 % CaO, 24.5 % Na2O and 6 % P2O5) was able to bond to living bone due to the 

formation of an apatite layer on its surface [20].  Kokubo demonstrated similar reactions for 

bioactive ceramics which bonded to bone through an intervening apatite layer, suggesting 

chemical bonding [21, 22]. On the other, chemical treatment of Ti with NaOH aqueous 

solutions also creates surfaces that grow apatite layers and form a strong bond to bone [23, 

24]. 

Together with the development of bioceramics, several efforts have been pursued in 

order to explain the mechanisms responsible for their in vitro and in vivo behaviours [25]. 

Many critical and complex reactions take place at the implant/bone tissues interface [26]. 

Structural and chemical evaluation at the nanometer scale of this interface is primordial to 

determine the success of an implant. Elemental composition and surface properties play a 

very important role in these reactions [27, 28]. Knowledge of the elemental distribution at the 

biomaterials/bone tissues interface is important to understand the physico-chemical 

mechanisms involved during the material integration and bone bonding [29, 30].  

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) 

associated to energy dispersive X-ray spectroscopy (EDXS), X-ray photo-electron 

spectroscopy (XPS), electron energy loss spectroscopy (EELS) are methods which permits the 

analysis of bioceramics/bone tissues interface at the required resolution [31-35]. SEM, TEM 

and associated techniques are powerful tools which can provide chemical and physical 

information : morphology, interlayer thickness, chemical species, local bonding, and the 

nature of crystalline or amorphous products [36-39]. On the other hand, complementary 

techniques like PIXE (Particles induced X-ray emission), SIMS (Secondary ion mass 

spectrometry) and AFM (atomic force microscopy) are useful to better evaluate biomaterials/ 



bone tissues interface. PIXE and SIMS allow elemental mapping at the surface or at interfaces 

with a good spatial resolution. These methods are interesting to study trace elements locally at 

biomaterials interface [40]. AFM is used to study changes of surface morphology and 

roughness and even to determine adsorption of proteins on materials, surface rugosities 

induced by protein adsorption [41-44].   

 

2. Physico-chemical reactions at calcium phosphate ceramics-bone tissues interface 

Calcium phosphate ceramics are very used to repair bone defects or as prosthetic 

coatings [45, 46]. Coatings of metal implants with calcium phosphate materials combine the 

bioactive properties of the calcium phosphate material and the strength of the metal. Various 

types of calcium phosphate materials can be elaborated : dicalcium phosphate dihydrate 

(Brushite, CaHPO4.H2O), dicalcium phosphate anhydrous (Monetite, CaHPO4), β-Tricalcium 

phosphate (β-TCP, Ca3(PO4)2), Tetracalcium phosphate (TTCP, Ca4P2O9), Octacalcium 

phosphate (OCP, Ca8H2(PO4)6.5H2O), Calcium hydroxyapatite (HA, Ca10(PO4)6(OH)2), 

Calcium fluorapatite (FA, Ca10(PO4)6F2), … They are available in various physical forms: 

particles or blocks ; dense or porous. Coatings can be obtained by plasma spray, 

electrodeposition or dip coating of sol-gel preparations [47-52]. Macroporosities (pores > 100 

µm) are created by the addition of volatile substances before sintering at high temperatures. 

Microporosities (pores < 10 µm) are induced by the sintering process, the time and the 

temperature. These materials differ in their solubility and physico-chemical reactions during 

their interactions with bone tissues. The most used in surgery and the most studied are 

hydroxyaptite, β Tricalcium phosphate.  

 

 

 



2.1 Hydroxyapatite (HA) - ββββ Tricalcium phosphate (ββββ-TCP) 

 Synthetic hydroxyapatites are calcium phosphate ceramics elaborated by co-

precipitation, by hydrolysis of acidic Ca-P compounds or by sol-gel process. Co-precipitation 

method consists of an aqueous hydrolysis under pressure and under temperature treatment of 

Ca(NO3)2, H3PO4, NH4OH and H2O [53]. The acidic Ca-P compounds include dicalcium 

phosphate dihydrate, dicalcium phosphate anhydrous and octacalcium phosphate [54, 55]. 

Sol-gel process used ethanol solutions with Ca(NO3)2.4H2O and P2O5 as Ca and P precursors 

respectively [56, 57].  

 

This ceramic is used under different forms : powders, bulk or as coatings. For 

example, figure 2 shows a STEM micrograph of nanostructures of hydroxyapatite powders. 

For bulk materials, various porosities are available [58]. We can distinguish microporosities 

(<10 µm) which permit diffusion of ions and fluids from macroporosities (100-600 µm) 

which permit cellular colonisation. Macroporosities give osteoconductive properties to the 

ceramic. 

 When HA or β-TCP materials are in contact with living system (cells, fluids, …) they 

undergo biodegradation/biodissolution. This process results in physico-chemical changes like 

breaking into smaller particles, loss of mechanical strength, modification of micro- and 

macroporosities, modification of the implant size [59, 60]. The dissolution is principally 

caused by reduction in pH in the implant environment and can lead to changes in the materials 

at the micrometer and nanometer level. This phenomenon can be described as the bioactivity 

process [61, 62]. 

The bioactivity process was studied in vitro and in vivo [33, 63-66]. It occurs under an 

acidic attack with H+ at the material surface [67]. The correlation between dissolution in 

acellular conditions in vitro and in cell-mediated dissolution (biodegradation/bioresorption) in 



cell culture and in vivo comes from the fact that both processes (cellular or acellular) are 

caused by acidic conditions [68, 69]. The acidic attack leads to the dissolution of 

hydroxyapatite : changes in porosity, density, loss of material, changes in particles diameter 

and average crystals size [63]. This dissolution results in a high release of Ca2+, −3
4PO  ions 

into the surrounding fluids and tissues [15, 70]. These ions are free to combine with other ions 

from biological fluids to form other calcium phosphate phases. Concentrations of calcium and 

phosphorus increase in the surrounding fluids and this supersaturation induces reprecipitation 

of other apatite crystals (brushite, octacalcium phosphate, carbonated-hydroxyapatite …) at 

the ceramic surface [71]. These apatite crystals may incorporate Ca2+, Mg2+, −2
3CO , −3

4PO , 

−F  and organic molecules present in the surrounding fluids [72, 73]. The presence of Mg2+ 

stabilizes brushite, octacalcium phosphate and reduces their transformation into apatite [74]. 

On the other hand, −2
3CO , −F  and some protein molecules can promote the formation of 

apatite [75].  This dissolution-reprecipitation process leads to the formation of a carbonated 

apatite layer at the material surface.  This layer is in the order of 200-800 nm [76-77]. Then, 

an extra-cellular matrix (collagenous and non-collagenous proteins) is produced. This is 

followed by the mineralization of collagen fibrils together with the incorporation of the newly 

formed apatite crystals in the newly formed bone [78, 79]. These reactions permit a strong 

chemical bond with newly formed bone at the implant/bone interface [33].  

Solubility of hydroxyapatites varies with different factors : porosity, grain size, 

crystallinity, sintering temperature … [80-84]. The solubility increases with the porosity and 

pores size [85]. Porous hydroxyapatite dissolves more rapidly than dense hydroxyapatite [86]. 

An increase of the sintering temperature leads to an increase of the hydroxyapatite crystals 

size and reduces the number of lattice defects. For example, hydroxyapatite treated at 600°C 

has crystals of 180 nm in size and crystals of 350 nm in size with a treatment at 1180°C [82]. 

Smaller crystals will dissolve more rapidly than larger crystals of the same composition, due 



to the surface area exposed to the biological environment and to the greater number of lattice 

defects [15, 83, 87-89]. Moreover, the grain boundaries without lattice continuity could be 

more soluble than grain boundaries with a lattice continuity [15, 84]. The presence and 

characteristics of the grain boundaries are also influence by sintering temperature and 

duration. In addition, the crystalline phase and ionic substitution can influence the dissolution 

process [90, 91]. It has been demonstrated that β-TCP is more soluble and biodegrades to a 

greater extend than HA [92].  

 

2.2 Biphasic calcium phosphate ceramics (BCP) 

 With biphasic calcium phosphate ceramics, Daculsi developed a bioactive concept. 

This concept is base on an optimum balance of the more stable phase of HA and more soluble 

β-TCP [17]. To prepare BCP a mixture of HA and β-TCP is prepared by precipitation or co-

precipitation and sintered at 1100°C. BCP with varying β-TCP/HA ratios can be prepared by 

sintering precipitated calcium deficient apatites of varying Ca/P ratios [33, 93, 94]. These 

calcium deficient apatites can be elaborated by precipitation of dicalcium phosphate dihydrate 

(CaHPO4.2H2O) or dicalcium phosphate anhydrous (CaHPO4) or octacalcium phosphate 

(Ca8H2(PO4).5H2O) [95] 

This material is soluble and gradually dissolves when it is in contact with bone tissues. 

Its dissolution depends on the β-TCP/HA and concerns the individual HA or β-TCP crystals 

[15, 33]. During dissolution, the proportion of HA to β-TCP crystals in BCP appeared greater 

and the decrease in average size of crystals is associated with an increase in the size of 

macroporosity [96]. Daculsi demonstrated for the first time that the new microcrystals were 

not necessarily deposited on collagenous fibers and a process of calcification occurs through 

the formation of carbonate apatites in association with the CaP ceramics without cell 

differenciation [97]. The formation of these carbonated apatites occurs through the HA or β-



TCP crystals dissolution and precipitation under certain supersaturation conditions.  The 

precipitation occurs at the periphery of the HA or β-TCP crystals and forms a layer. These 

reactions lead to new bone formation together with the release of calcium and phosphate ions 

into the surrounding biological fluids [94-99]. The new bone is firmly bonded to the 

biomaterials through the carbonate apatite layer and progressively replaces the materials. This 

bond becomes reinforced by the crystal-protein affinity. 

 

3. Physico-chemical reactions at bioactive glasses-bone tissues interface  

 3.1 Definition of bioactive glasses 

In 1970, Hench  [20] [100] discovers the bioactive glasses. They are amorphous 

materials with low mechanical properties which reduces their applications to prosthetic 

coatings [101, 102] and to fill bony defects [103-105]. Bone bonding was first demonstrated 

for a certain compositional range of bioactive glasses that contained SiO2, CaO, Na2O and 

P2O5 [20]. The bioactivity properties of these materials depend on the percentage of these 

three oxides : SiO2, CaO, Na2O. Figure 3 shows the compositional dependence of bone 

bonding for the SiO2-CaO-Na2O-P2O5 system [106]. Compositions in region A, are bioactive 

and bond to bone. The concentration of SiO2 must be less than 60 mol% together with a high 

CaO and Na2O content and a high CaO/P2O5 ratio. Glasses with high amount of P2O5 do not 

bond to bone tissues. These compositional definitions lead to a highly reactive material when 

exposed to a biological environment. The most known composition is based upon the formula 

called ‘45S5’ : (45%) SiO2, (24.5%) CaO, (24.5%) Na2O and (6%) P2O5. In region E, 

bioactive glasses are able to bond strongly to collagenous constituent of soft tissues.  In region 

B, a high increase of SiO2 leads to the formation of classical glasses which are bio-inert 

material [107] (figure 3). The interfacial reactions result in the formation of a fibrous capsule 

at the material-bone tissues interface. Region C defines glasses which are resorbable and 



disappear within 10-30 days of implantation [106]. An increase of CaO or Na2O leads to a 

non-glass material (region D). In fact, a very limited range of bioactive glass compositions, 

containing SiO2-CaO-Na2O-P2O5, that have less than 60% SiO2 exhibit a high bioactivity and 

bond to both bone and soft connective tissues [108].  

Bioactive glasses can be obtained by melting the components at 1350°C or by sol-gel 

method at a lower temperature [109]. The synthesis of bioactive glasses by sol-gel process 

was proposed in the last decade [110, 111]. The solutions to obtain bioactive gel-glasses were 

prepared from stoichiometric amounts of tetraethoxysilane, triethyl phosphate and 

Ca(NO3)2.4H2O. Hydrolysis and condensation at low temperature create a highly 

interconnected 3-D gel network composed of (SiO4)
4- tetrahedral via bridging oxygen bonds 

or by Si-O-Ca or Si-O-P non-bridging bonds [112-115]. 

 

3.2 Kinetics of interfacial reactions 

 Interfacial reactions during bonding to bone tissues have been studied in vitro during 

interactions between bioactive glasses and biological fluids (table 1) or in vivo during 

interactions with bony tissues [116-121]. The bone bonding process can be decomposed in 11 

stages. At the bioactive glass-bone interface a complex series of physico-chemical reactions 

including dissolution, diffusion, ionic exchange, precipitation occurs according to time of 

interaction together with cellular events which lead to the rapid formation of new bone 

(figures 4 and 5) [122-126]: 

• Stage 1: Rapid exchange of alkali ions (Na+ or K+) with H+ or H3O
+ from 

surrounding fluids through an exchange layer of the order of 200 nm [30, 37]. The 

exchange process consist of a flow of H3O
+ ions and an equivalent flow of sodium 

ions into the solution from the glass represented as follow : 

Si-O-Na+  + H3O
+  →  Si-OH  +  H2O  +  Na

+
(solution) 



This stage is usually controlled by diffusion and exhibits a t-1/2 dependence. 

• Stage 2 : Loss of soluble Si to the solution resulting from breaking of Si-O-Si 

bonds. Soluble silicon migrates toward the surface and there is formation of Si-OH 

(silanols) and Si-(OH)4 groups at the surface :  

Si-O-Si  + H2O  →  Si-OH  +  OH-Si  

• Stage 3 : Condensation and repolymerisation of a hydrated Si rich layer on 

the surface depleted in alkali and Ca,P elements. This layer is a vitreous gel and 

growth by alkali ions exchange [43].  

• Stage 4 : Migration of Ca and P from the glass to the surface trough the Si 

layer. Several authors described this phenomenon as a diffusion process through the Si 

rich layer. Formation of a Ca-P film on top of the Si layer, followed by growth of an 

amorphous Ca-P rich film by incorporation of soluble calcium and phosphate from the 

bulk material and from the surrounding biological fluids. 

• Stage 5 : Crystallization of an hydroxyl carbonate apatite (HCA) layer on top 

of the Si layer. Growth of the HCA layer [127]. At the beginning the apatite crystals 

size is of the order of 200 nm. The size of the HCA layer increases to some 

micrometers by consuming Ca2+, −3
4PO , −2

3CO , −2
4HPO , OH- from surrounding fluids. 

The characteristic double layer formation (stage I-V) on the surface of a bioactive 

glass is schematically shown in figure 5. 

• Stage 6 : Adsorption and desorption of biological growth factors in the HCA 

layer from surrounding tissues. This incorporation of biochemical growth factors 

activate differentiation of stem cells. 

• Stage 7 : Action of macrophages to remove debris from the site allowing 

cells to occupy the space. 

• Stage 8 : Attachment of stem cells on the bioactive glass surface. 



• Stage 9 : Differentiation of stem cells to form bone growing cells, such as 

osteoblasts. 

• Stage 10 : Generation of extra cellular matrix by the osteoblasts to form bone. 

• Stage 11 : Crystallisation of inorganic calcium phosphate matrix to enclose 

bone cells in a living composite structure. 

 

Formation and growth of this biological apatite layer in situ represents the bioactivity 

properties and permits a chemical link between the materials and the newly formed bone. The 

formation of this layer occurs very rapidly and the delay depends on the bioactive glasses 

composition which influences greatly its dissolution. Reaction stages 1 and 2 are responsible 

for the dissolution of a bioactive glass and therefore influence the rate of HCA layer 

formation. At the periphery of the 45S5 glass, it has been demonstrated that, after only 1 h a 

Ca-P rich layer begins to develop [128].  The apatite crystals of the HCA layer and the apatite 

crystals of the newly formed bone are intermingled each others which leads to the high 

bonding strength of the interface [129]. For example, figure 6 shows bioactive glass particles 

immersed four days in biological fluids. Interactions between bioactive glass particles and the 

fluids lead to the materials dissolution, to the formation of a Si layer and finally to the 

precipitation of an apatite layer. On the STEM micrograph, this layer appears as an electron 

dense layer. At this short time period, the apatite layer is of the order of 500 nm in thickness 

and its size will increases with time. In case of a crystallised apatite layer, a needle shape like 

structure will appear. EDXS spectrum on this layer demonstrates the presence of Ca and P 

elements. The apatite layer acts as a template for bone cells adhesion and differentiation 

[119].  

For bioactive implants, it is necessary to be able to control the solubility of the 

material. A low solubility material is necessary if the implant is designed to have a long life 



and is used as coating on metals alloys like titanium. In order to improve the long-term 

stability of the glass and to reduce the glass networks dissolution which occurs within days, 

addition of other elements can be done. Optimisation of bioactive glasses properties concerns 

the compromise between bioactivity and solubility which is related to individual components 

[130-132]. For example, addition of Al2O3 can be used to control the solubility of the glass 

without altering the surface reaction kinetics of the material. However, this addition may 

inhibit the bone bonding [133]. Greenspan and Hench demonstrate that a concentration of 

Al2O3 higher than 2% inhibits bioactivity [134]. 

 

3.3 Sol-gel derived bioactive glasses 

 No melt derived glasses with more than 60 mol% SiO2 are bioactive. In order to obtain 

bioactivity for silica levels higher than 60 mol% the sol-gel process must be employed. 

In case of bioactive gel-glasses derived materials, the 1-10 nm scale solid network of 

the gel is completely interpenetrated by pore liquid. The pore liquid consists of a highly 

structured hydrated layer with hydrated connective tissues. Biological molecules can 

exchange with these hydrated layers inside the pores and maintain their structure together 

with their biological properties [135, 136]. The nanometer sized pores of the gel glass are 

proposed to act as initiation sites for apatite nucleation [137]. Bioactive glasses elaborated by 

sol-gel process permit an increase of HCA formation and higher bioactivity [138-140]. This is 

attributed to a higher release of soluble silica that nucleates HCA crystals in the nanometer 

sized pores of the gel [141]. Pore sizes greater than 2 nm were required to achieve rapid 

kinetics for HCA layer formation. Moreover, an increase of the surface area lead to an 

increase of the surface exposed to biological fluids, improving ion exchange (stage 1) and a 

greater release of soluble silica (stage 2) that is required to form a porous silica rich layer. The 



extended of SiO2 composition range from 60% to 90% of bioactive glasses is supposed to 

come from the specific porous structure of sol-gel derived glasses. 

 

Hench demonstrates that chemical composition, amount of glass phase and solubility 

can be used to classify bioactive materials [142]. He classified bioactive materials into two 

classes : class A is osteoproductive and class B is osteoconductive [12]. Class A releases Si 

under silicic acid form due to ion exchange and network dissolution, and rapidly provides a Si 

layer which permits the precipitation of an amorphous Ca-P layer and finally cristallisation of 

a HCA layer. This class of glasses elicits bone and soft tissues bonding with proliferation and 

differentiation of osteoprogenitor cells. Class B has low or zero rate of Si release and forms a 

HCA layer more slowly than class A. This class only shows bone bonding. 

 

 

4. Physico-chemical reactions at biovitroceramics-bone tissues interface 

 4.1 Definition of biovitroceramics 

In 1982, Yamamuro and Kokubo develop bioactive glass-ceramics or called 

‘biovitroceramics’ [143-146]. A vitro ceramic is obtained by a temperature treatment of a 

glass in which nucleation factors are added in order to induce a partial or total crystallisation 

of this glass. This glass-ceramic has excellent mechanical properties. A biovitroceramic has a 

structure and a particular chemical composition which are crucial for the bioactivity 

properties. Three types of biovitroceramics can be elaborated [147, 148] : 

• Biovitroceramics composed with a vitreous matrix ((16.6%) MgO, (24.2%) 

CaO, (59.2%) SiO2) in which apatite crystals (oxyfluoroapatite : Ca10(PO4)6(O,F2) are 

incorporated.  



• Biovitroceramics (A-W) composed with a vitreous matrix in which apatite 

crystals and β-wollastonite crystals (CaSiO3) are incorporated. 

•  Biovitroceramics composed with a vitreous matrix in which apatite crystals, 

β-wollastonite crystals and whitelockite crystals (3CaOP2O5) are incorporated. 

 

4.2 Kinetics of interfacial reactions 

 Studies of the bioactivity was made in vitro during interactions between 

biovitroceramics and biological fluids, and in vivo during interactions between 

biovitroceramics and bone [29, 149-153]. The bioactivity process is based on (figure 7) : 

• Dissolution of the vitreous matrix, wollastonite crystals and whitelockite 

crystals (if they are incorporated). 

• Ionic release of HSiO3
-, Ca2+, Mg2+ at the surface.    

• Precipitation of an apatite (Ca-P) layer by consuming Ca2+, −3
4PO , −2

3CO ,  

and −2
4HPO  from biological fluids. After 7 days, the A-W ceramics is completely 

covered by a layer of apatite. The Ca-P rich layer consists of a carbonate containing 

hydroxyapatite of small crystallites. 

 The apatite phase present in the glass-ceramic does not play an important role during 

physico-chemical reactions at the bioceramic periphery and the formation of  an apatite layer 

on its surface [29]. In fact, ions released from the vitreous matrix and from wollastonite play 

an important role in forming the apatite layer on their surface. The Ca-P layer is formed by a 

chemical reaction of the glass-ceramic with surrounding fluids, in which organic substances 

such as cells and proteins take little part [29]. The formation of this apatite layer at the surface 

of biovitroceramics occurs without the formation of a Si-rich layer even though a substantial 

concentration of soluble silicon was lost to solution [149]. However, calcium and silicate ions 

dissolved from the glass–ceramic cooperatively play an important role in forming the apatite 



layer on its surface in the body environment. The calcium ions might increase the degree of 

supersaturation of surrounding body fluids with respect to the apatite precipitation [29]. 

Silicate ions might provide favourable sites for nucleation of the apatite on the 

biovitroceramics surface because the apatite is only formed on the surface [154]. Phosphate 

ions required for the formation of the apatite layer are supplied only from the surrounding 

fluids (figure 7). The Ca-P layer of some micrometers in thickness permits a chemical bond 

between the materials and the newly formed bone (figure 8). Kokubo demonstrates that the 

Ca-P layer at the interface plays the essential role in forming the chemical and strong bond of 

the glass-ceramics to the bone [155].  

 

5. Physico-chemical reactions at bioactive titanium surface 

Metals like titanium and its alloys are biocompatible materials which are clinically 

used as bone substitutes under high loading conditions. However, no direct chemical bond is 

formed at the interface between these materials and bone. In order to give bioactive surface 

properties to these biomaterials various methods are used [156, 157]. The most known are 

elaboration with physical methods of coatings with bioactive materials like hydroxyapatite or 

bioactive glasses [158, 159]. Unfortunately it is difficult to control quality of the coatings 

[160, 161]. Recently, it has been found that even pure titania hydrogel prepared by sol-gel 

method induces apatite formation [162-164].  

When titanium is treated by immersion in alkaline solution (NaOH), a hydrated 

titanium oxide gel layer containing alkali ions is formed on its surface. This gel layer is 

dehydrated and densified to form an amorphous alkali titanate (TiO2 + Na
+) layer by heat 

treatment below 600°C. When the pre-treated titanium is exposed to biological fluids, the 

alkali ions are released from the amorphous alkali titanate layer and hydronium ions enter into 

the surface layer, resulting in the formation of a titanium oxide hydrogel layer. The released 



Na+ ions increase the degree of supersaturation of the soaking solution with respect to apatite 

by increasing pH, and titanium oxide hydrogel induces apatite nucleation on the titanium 

surface [165]. Figure 9 schematised possible structural changes of the titanium surface during 

chemical treatment and subsequent apatite formation in simulated body fluids (SBF)  [162] : 

a – Generally, the surface of titanium is covered with a thin passive titanium oxide 

layer. 

b – During acidic etching, this TiO2 passive layer dissolves to form TiH2. In contact 

with air moisture a new titanium oxide layer is formed. This layer is thinner than the original 

one. 

c – In alkali solution, however, even this thin passive layer dissolves to form an 

amorphous layer containing Na+ ions.  

d to f – Upon exposure to SBF, the thus treated titanium releases Na+ ions from the 

surface via ion exchange with Ca2+ from the surrounding fluids. Subsequently, the 

incorporation of −3
4PO , −2

3CO  occurs which leads to an HCA layer. The amorphous TiO2-layer 

formed on the surface induces the apatite nucleation. The released Na+ ions accelerate the 

apatite nucleation by increasing the ionic activity of apatite due to increasing pH [166]  

 

Conclusion 

Bioactive ceramics differ in composition and physico-chemical properties from each 

other and from bone. These differences must be taken into consideration for a better bone 

growth at the expense of biomaterials and to adapt to new development of specific 

biomaterials.   Characterisation of bioceramics/bone tissues interface in terms of physico-

chemical properties and cellular response is important to better understand events occurring at 

bone/bioceramic interface [167]. A sequence of events at the surface of the bioactive 

materials promotes bone bonding resulting in a uniquely strong and intimate bone/materials 



interface. The sequence of events differs with the materials and includes : (1) biodissolution / 

biodegradation / bioresorption of bioactive material by extracellular and intracellular 

interactions; (2) formation through physico-chemical reactions / reprecipitation of apatite 

microcrytals (intimately associated with the organic matrix) at the surface of bioactive 

materials ; (3) mineralization of the collagen fibrils and incorporation of the new apatite 

crystals in the newly formed bone. However, a common characteristic of bioactive materials 

is a time-dependent, kinetic modification of the surface that occurs during interactions with 

bone tissues. The surface forms a biologically active (hydroxycarbonate) apatite layer of 

nanometer scale that permits a firm bone bonding. This apatite layer is chemically and 

structurally equivalent to the mineral phase of bone which allows an interfacial bonding [168-

170]. This bioactive fixation has strength equal to or greater than bone after 3-6 months. The 

rate of apatite layer formation and the time for onset of crystallisation varies greatly with the 

bioactive materials composition [171]. When the rate becomes excessively slow, no bond 

forms, and the material is no longer bioactive. This bonding rate and thickness of interfacial 

bonding layers permits to define and to develop many bioactive materials with specific 

properties (figure 1). This new generation of bioactive materials should increase the quality of 

life of millions of people as the life expectancy increase.  
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Tables captions 

 

Table 1 : Ion concentrations (mmol/l) of biological solutions used to study physico-chemical 

reactions of bioactive materials. 

Reprinted from Ref. 158. L. Jonasova et al., ‘Hydroxyapatite formation on alkali-treated 

titanium with different content of Na+ in the surface layer’, Biomaterials 33, 3095 (2002), 

copyright (2002), with permission from Elsevier. 

 

 

 Na+ K+ Mg2+ Ca2+ Cl- HCO3
- HPO4

2- SO4
2- 

Simulated body fluid, SBF 142 5 1 2.5 131 5 1 1 

Human plasma 142 3.6-5.5 1 2.12-2.6 95-107 27 0.65-1.45 1 

 

Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figures captions 

 

Figure 1 : Comparison of interfacial thickness of reaction layer of bioactive implants bonded 

to bone or thickness of nonadherant fibrous tissue in contact with inactive bioceramics in 

bone. 

Reprinted from Ref. 106. L.L. Hench, ‘Bioceramics’, J. Am. Ceram. Soc. 81, 1705, (1998), 

copyright 1998, with permission from The American Ceramic Society (www.ceramics.org.).  

 

Figure 2 : STEM micrograph showing nanostructures of hydroxyapatite particles. 

 

Figure 3 : Compositional dependence (in wt%) of bone bonding and soft tissue bonding of 

bioactive glasses and glass-ceramics. All compositions in region A are bioactive and bond to 

bone. They have constant 6wt% of P2O5. A/W glass-ceramic has higher P2O5 content. 

Compositions in region B are bioinert and lead to formation of a nonadherant fibrous capsule. 

Compositions in region C are resorbable. Region D is restricted by technical factors. Region E 

(soft tissue bonding) is inside the dashed line where the bioactivity is very high. 

Reprinted from Ref. 106. L.L. Hench, ‘Bioceramics’, J. Am. Ceram. Soc. 81, 1705, (1998), 

copyright 1998, with permission from The American Ceramic Society (www.ceramics.org.).  

 

Figure 4 : Sequence of interfacial reactions involved in forming a bond between tissue and 

bioactive ceramics. 

Reprinted from Ref. 12. L.L. Hench, ‘Biomaterials: a forecast for the future’, Biomaterials 19, 

1419 (1998), copyright (1998), with permission from Elsevier. 

 

 



Figure 5 : Schematic illustration of the surface stages (I-V) reactions on bioactive glass, 

forming double SiO2-rich and Ca,P-rich layers. 

Reprinted from Ref. 126. O. Peitl et al., ‘Highly bioactive P2O5-Na2O-CaO-SiO2 glass-

ceramics’, Journal of Non-Cryst. Solids 292, 115 (2001), copyright (2001), with permission 

from Elsevier. 

 

Figure 6 : STEM micrograph of bioactive glass particles immersed in a biological solution 

during four days. The particles are in dissolution and an electron dense layer appears (apatite 

layer).  

 

Figure 7 : Schematic representation of surface structure of A-W exposed to body fluid. 

Reprinted from Ref. 29. T. Kokubo, ‘Surface chemistry of bioactive glass-ceramics’, Journal 

of Non-Cryst. Solids 120, 138 (1990), copyright (1990), with permission from Elsevier. 

 

Figure 8 : Schematic representation of formation of apatite layer on the surface of A-W. 

Reprinted from Ref. 29. T. Kokubo, ‘Surface chemistry of bioactive glass-ceramics’, Journal 

of Non-Cryst. Solids 120, 138 (1990), copyright (1990), with permission from Elsevier. 

 

Figure 9 : Possible structural changes of the titanium surface (a), during acid etching (b), 

alkali treatment (c), and subsequent apatite formation in SBF (d-f). 

Reprinted from Ref. 158. L. Jonasova et al., ‘Hydroxyapatite formation on alkali-treated 

titanium with different content of Na+ in the surface layer’, Biomaterials 33, 3095 (2002), 

copyright (2002), with permission from Elsevier. 
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Figure 4 
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Figure 9 
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