
HAL Id: in2p3-00024134
https://in2p3.hal.science/in2p3-00024134v1

Submitted on 16 May 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secret Sequence Comparison on Public Grid Computing
Resources

K.I. Kurata, H. Nakamura, Vincent Breton

To cite this version:
K.I. Kurata, H. Nakamura, Vincent Breton. Secret Sequence Comparison on Public Grid Computing
Resources. Cluster Computing and Grid 2005 (CCGrid05), May 2005, Cardiff, United Kingdom.
pp.1-8. �in2p3-00024134�

https://in2p3.hal.science/in2p3-00024134v1
https://hal.archives-ouvertes.fr


Secret Sequence Comparison on Public Grid Computing Resources

Ken-ichi Kurata and Hiroshi Nakamura
Research Center for Advanced Science and Technology,

The University of Tokyo,
4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan

Email: {kurata, nakamura }@hal.rcast.u-tokyo.ac.jp

Vincent Breton
Laboratoire de Physique Corpusculaire de Clermont-Ferrand,

Centre National de la Recherche Scientifique,
24 avenue des Landais, 63177 Aubiere, France

Email: breton@clermont.in2p3.fr

Abstract

Once a new gene has been sequenced, it must be ver-
ified whether or not it is similar to previously sequenced
genes. In many cases, the organization that sequenced a
potentially novel gene needs to keep the sequence itself in
confidence. However, to compare the potentially novel se-
quence with known sequences, it must either be sent as
a query to public databases, or these databases must be
downloaded onto a local computer. In both cases, the po-
tentially new sequence is exposed to the public. In this
work, we propose a novel method to compare sequences
without any exact sequence information leaks to the public.
This method is based on our previous proposed method [1]
to find unique sequences on grid computing environments,
which is well-parallelized in reasonable performance. In
order to keep the exact sequence information in confidence,
this method samples intervals (subsequences) from a se-
quence, and these intervals are hashed. Any key cryptosys-
tem is not used. The hashed data are open to the public to
verify the novelty of the sequence. The experimental results
for 19797 h.sapiens genes show that the parallel implemen-
tation of this method performs reasonably well in terms of
speed and memory usage. In this paper, the implementation
on the world-wide testbeds of European Data Grid (EDG)
and its results are described.

1 Introduction

In the field of molecular biology, it is indispensable to
discover new genes related to biologically important reac-

tions. Once such genes have been sequenced, it is necessary
to be verified whether the sequences are already reported or
not. In order to verify the novelty of the sequences, in gen-
eral, this verification process involves searching for matches
in databases by means of a homology search program.

The comparison process using such a homology search
program requires the exact sequences be exposed to public
scrutiny. Thus, if it is desired to keep the putative novel
sequence confidential, then an alternative approach is con-
ceived to verify its novelty. The simple alternative approach
is to gather all databases from all around the world into a
local computer. Next, the verification process is executed
in-house. However, some of these databases include con-
fidential information, such as private medical information
and/or precious experimental information. If you would like
to touch such information, you have to establish a contract
to keep the information in secret. Furthermore, some of
the databases related to business are not freely available to
anonymous researchers. Accessing to these databases re-
quires quite a few costs. However, in general, all the thing
we would like to do after having discovered a new sequence
is to verify whether the sequence is already reported or not,
and to estimate the similarity to known gene sequences.

On the other hand, the size of the genomic databases
around the world is growing at an exponential pace. It is
becoming intractable to gather all the databases in local.
Therefore, it is unavoidable to propose a parallel calcula-
tion method implemented in a distributed computing envi-
ronment. Due to the development of the infrastructure of
world-wide high-speed networks, it is becoming feasible to
deploy a distributed computing environment on the Inter-
net. One of the projects that realize this type of comput-
ing environment is called the European Data Grid (EDG)



project [2]. Providing the infrastructure and tools that make
large-scale, secure resource sharing possible and straight-
forward is the Grid’s raison d’etre [3].

In this work, we implement a novel method to secretly
compare sequences without any key cryptosystem on a pub-
lic grid computing environment. First of all, our proposed
sampling method called Interval Sampling, [4] which in-
hibits the reconstruction of exact sequences, is explained.
Next, this method is gridified through our proposed tech-
nique [1] and sequences are compared in parallel without
any exact information on the international EDG testbeds.

2 Background

In order to verify whether a sequence is already regis-
tered or not, we would like to propose a sequence compar-
ison method which works without exposing the exact se-
quence of the target genes. Moreover, this method must
work in parallel in a distributed computing environment.

In this section, at first, two traditional sequence compar-
ison models are shown. The weak points of these models
are discussed. Next, we propose a computation model to
resolve such weak points. In this model, sequences are se-
cretly compared in parallel. We present our previous effort
to tackle to this challenge. Finally, one of the best solutions,
dubbed Interval Sampling, is described.

2.1 Traditional sequence comparison models

A new sequence is sent onto the computers near tar-
get databases. Each computer gathers registered gene se-
quences from its target databases. The comparisons then
are processed in parallel. Figure 1 shows this calculation
model.

ATGC...

Compare

Compare

Compare

...

Database

ATG...

Database

CCG...

Database

TTG...

new
sequence

Comparison in databases

Public
networks

Figure 1. When public computer resources
are used to compare sequences, the exact
sequence information must be opened on the
computers.

In this method, regrettably, the new sequence must be
exposed through public networks. It is possible to send

the encrypted sequence securely through public networks.
However, secret or public key distribution takes a risk of
exposure, if the key is not managed properly. Moreover, if
you use public computer resources to compare sequences,
the exact sequence information must be decoded, and be-
comes available on public computer resources. Therefore,
it is desirable to compare sequences without any key cryp-
tosystem.

On the other hand, if you gather into local all gene se-
quences on the target databases to keep in secret their ex-
act sequence information, great amounts of network loads
and local computing resources are required. Even if broad-
band networks between the local site and the databases are
available with powerful computing resources, all the tar-
get databases must be opened. Some of these databases
may have confidential information. In order to keep it in
confidence, they are not freely available to anonymous re-
searchers without any contract. Figure 2 shows this calcu-
lation model.

ATGC...

Compare

Compare

Compare

...

Database

ATG...

Database

CCG...

Database

TTG...

new
sequence

Comparison in local
Public

networks

Figure 2. When all gene sequences on the tar-
get databases are gathered into a local com-
puter , great amounts of network loads and lo-
cal computing resources are required. More-
over, all the target databases must be opened.

2.2 Secret sequence comparison model

In order to settle the weak points of the traditional se-
quence comparison models, the following model in Figure
3 is proposed.

Suppose that there exists a one-way process by means
of which a sequence is easy to transform but hard to recon-
struct, and the processed data have information enough to
verify the uniqueness. In other words, a sequence is en-
coded into a different form, by a straightforward process.
On the other hand, the reconstruction of the sequence from
these processed data is very difficult. In order to realize this
one-way process, we use the Interval Sampling function and
the hash function explained later in this article.

Moreover, suppose that the comparison job can be di-
vided into n jobs, each of which can be processed individu-



ATGC... Compare

Database

ATG...

new
sequence

Public area

easy!

too difficult!

...

processed
data

...

Private area

Compare

Compare

Database

CTA...

...

processed
data

...

...

Distributed
Computing
Resources

Process

Process

Process

Figure 3. Secret sequence comparison using
a distributed computing environment. Sup-
pose that there exists a one-way process by
means of which the sequence is easy to trans-
form but hard to reconstruct, and the pro-
cessed data have enough information to ver-
ify (or not) the novelty of the exact sequence.
Moreover, suppose that the comparison job
can be divided into n jobs, each of which can
be processed individually. In that case, we
do not need to distribute the exact sequence,
but only its processed form. And then, the
comparison can be executed on public com-
puter resources by using the processed data.
Moreover, since each part of the processed
data can be calculated individually, the com-
parison processes can be launched in parallel
in distributed computing environments.

ally. This job division is also realized by the hashing func-
tion. If unique sequences are discovered from these pro-
cessed data, it is possible to confidentially verify the nov-
elty of the sequence in parallel. In order to find unique se-
quences, we use the sort function explained in the algorithm
section. This algorithm is detailed in our previous work [1].

In our proposed method, it becomes unnecessary to ex-
pose the exact sequence to the public; we only need to ex-
pose its processed data, from which it is very hard to re-
construct the exact sequence. The comparison can there-
fore be executed on public computer resources by using the
processed data. Since each part of the processed data can
be calculated individually, the comparison processes can be
launched in parallel in distributed computing environments.

2.3 Our previous study

We proposed an algorithm to find unique sequences on
target genome in reasonable memory size and computing
performance [5]. Unique sequences are short sequences
which exist only once on the target genes. We also de-
scribed how to parallelize this algorithm and implement it
onto a distributed computing environment. The experimen-
tal result on a world-wide grid environment was reported
in our previous work [1]. Furthermore, we have proposed
a method called Artificial Mutation and Splicing (AMS)
site insertion to prevent the reconstruction of the exact se-
quences [6]. In this method, by means of inserting n sites
of artificial mutation and splicing (AMS) into the exact se-
quences, the number of combinations of the reconstruction
is multiplied by 2n. But this method has mainly two weak
points. The first is that the total file size grows in propor-
tion to the number of AMS sites, n. The second is that the
reconstructed sequences have high similarity to the exact se-
quence. Taking into consideration these weak points, Inter-
val Sampling (IS) method has been proposed [4]. After IS
is applied, the size of the sequence does not increase. More-
over, the similarity between the reconstructed sequences
and the exact sequence is very low.

In this work, the implementation of this IS method on
a grid computing environment and the experimental results
are presented.

3 Algorithm

ATCGCGGACC
Interval

Sampling A--G--G--C
-T--C--A--
--C--G--C-

Hash
&

Divide
AGGC
A
hash
key
A

C
CA

GGC
GC

hash
key
G

TCA
hash
key
T

CGC
C

GC

hash
key
C

ATTGATAAG

A--G--A--
-T--A--A-
--T--T--G

AGA
A

GA
G
hash
key
G

AA
A
hash
key
A

TAA
TTG
TG
hash
key
T

Link &Sort Link &Sort Link &Sort Link &Sort

AGA
AGGC
AA
A
A
A

CGC
CA
C
C

GGC
GA
GC
GC
G

TAA
TCA
TG
TTG

AGA,AGG,AA,CG,CA,
GG,GA,TA,TC,TG,TT

Interval
Sampling

Hash
&

Divide

Unique Sequences

In private

In public

Figure 4. Work flow of secret sequence com-
parison.

Figure 4 shows the work flow of our proposed algo-



rithm. First of all, the exact gene sequence is processed
by means of the Interval Sampling method. Second, sam-
pled sequence data are hashed and divided on the basis of
their own hash-key. Third, all the hashed data whose hash-
key is the same are linked and sorted. Finally, the novelty
of the gene sequence is verified by using the information of
unique sequences.

Now, an example is given. In this figure, there are two
input sequences, ATTGATAAG and ATCGCGGACC. Given
the condition that Interval I is 3, after the former sequence
is processed by IS, the subsequences AGA, TAA and TTG
are produced. After the latter sequence is processed, the
subsequences AGGC, TCA and CGC are produced. Next,
the sequences AGA, TAA and TTG, which were produced
by IS from ATTGATAAG, are processed by means of the
Hash & Divide function. On condition that hash-key length
is 1, there exist AGA and A, which have hash-key A at the
left end, and GA, which has hash-key G at the left end, as a
partial sequence of AGA. In the same way, by applying the
hash function to TAA and TTG, it is confirmed that there
are the partial sequences, AGA, A, and AA having hash-key
A, the sequences GA and G having hash-key G, and the se-
quences TAA, TTG, and TG having hash-key T. Next, the
Link & Sort function is applied. There are the sequences
AGA, A, AA and A, which have hash-key A at the left end,
on the left hand of the figure. These sequences come from
ATTGATAAG. On the right hand, there are the sequences
AGGC and A, which have hash-key A at the left end. Now,
the link function gathers these sequences into the leftmost
box. These sequences are sorted and the unique sequences
on these target genes, AGA, AGG and AA, are output. In
the same way, the link and sort function is executed for the
hash-key sequences, C, G and T. Finally, the novelty of the
target gene sequence can be verified. If one sequence exists
only once on all the target gene sequences, the gene includ-
ing this sequence exists only once among the target genes
and is unique. Therefore, we can determine the novelty of
gene sequences by finding the unique sequences on them.

Hereafter, each process is detailed.

3.1 Interval Sampling (IS)

Suppose that there is a gene sequence, s, s(j) ∈
{a, c, g, t}, j = 0 . . . l − 1, whose length is l. Now, Interval
Sampling f(s, I, x) is defined as follows.

y(I,x) = f(s, I, x)

=















s(x)s(x + I)s(x + 2I) . . . s(x + (b l
I
c − 1)I)

: x > m
s(x)s(x + I)s(x + 2I) . . . s(x + b l

I
cI)

: x ≤ m

Here, s is an input sequence, whose length is l. m = l

modulo I . I is an interval value. x is a variable, whose
range is 0 . . . I − 1. y(I,x) is the output sequence.

After the Interval Sampling method is applied, I output
sequences y(I,x), x = 0, . . . I − 1 are produced. m of the
sequences have the length of b l

I
c. I − m of them have the

length of b l
I
c − 1. In other words, this method samples

every I bases and makes I partial sequences.
Here we consider the reconstruction of the exact se-

quence. Suppose that only the sequences processed by IS
are available. In this situation, the number of possible re-
constructions is given by I−mPI−m ×m Pm, because the
sequences whose lengths are the same can be permuted ar-
bitrarily.

Let us see the example in Figure 4. In this figure, there
are two input sequences, ATTGATAAG and ATCGCGGACC.
On condition that Interval I is 3, after the former sequence
is processed by IS, AGA, TAA and TTG are produced. The
length of the exact sequence is 9. Thus, m = 9 mod-
ulo 3 = 0. When we try to reconstruct the exact se-
quence, there are 3P3 = 6 possibilities, TATTGAGAA,
TTATAGGAA, TATAGTAAG, TTAATGAGA, ATTGTAAGA
and ATTGATAAG. After the latter sequence is processed,
AGGC, TCA and CGC are produced. Now, the length of the
sequence is 10. Thus, m = 10 modulo 3 = 1. When we try
to reconstruct the original sequence, there are 2P2 ×1 P1 =
2 possibilities, ATCGCGGACC and ACTGGCGCAC.

3.2 Hash & Divide

The Hash & Divide function is detailed in our previous
work [1]. Using the sequence from the left end of the par-
tial sequences on target sequences as their hash-key, all the
partial sequences are hashed. And then, the total file can
be divided up to the number of the hash-key. This process
is of O(n) when n is the target gene file size. After a se-
quence is hashed, the length of partial sequences is limited
by threshold θ. In other words, the length is equal to or less
than θ.

The size of hashed sequences is proportional to θ. Thus,
the file size becomes approximately θn. Namely, the file
size becomes θ times larger than that of the input sequence.

Here, this function is explained through Figure 4. Let
us note the sequences AGA, TAA and TTG, which are
produced by IS from sequence ATTGATAAG. There ex-
ist AGA, GA and A as the partial sequences on AGA. On
condition that the hash-key length is 1, there exist AGA and
A, which have hash-key A at the left end, and GA, which
has hash-key G at the left end, as the partial sequences on
AGA. In the same manner, by applying the hash function
to TAA and TTG, it is confirmed that there are the partial
sequences, AGA, A, AA, A having hash-key A, the se-
quences GA, G having hash-key G, and the sequences
TAA, TTG, TG having hash-key T.



Table 1. Sequences processed by IS and their
subsequences.

ATTGATAAG
Processed by IS subsequences

AGA AGA, GA, A
TAA TAA, AA, A
TTG TTG, TG, G

ATCGCGGACC
Processed by IS subsequences

AGGC AGGC, GGC, GC, C
TCA TCA, CA, A
CGC CGC, GC, C

Table 2. Subsequences classified on the basis
of hash-key.

Hash-key Hash-key Hash-key Hash-key
A C G T

AGA A-GA G-A
A-

TAA A-A T-AA
A-

TTG G- T-TG
T-G

AGGC A-GGC C- G-GC
G-C

TCA A- C-A T-CA
CGC C-GC G-C

C-

3.3 Link & Sort

The Link & Sort function is detailed in our previous
work [1]. The link function gathers all the subsequences
having the same hash-key. The sort function launches the
radix-sort-like algorithm we have proposed. This process is
of O(n log n) when the total file size is n.

Let us consider the example in Figure 4. There are the
subsequences AGA, A, AA and A, which have hash-key
A at the left end, on the left hand of the figure. These
subsequences come from ATTGATAAG. On the right-hand,
there are the subsequences AGGC and A, which have hash-
key A at the left end. These subsequences come from
ATCGCGGACC. Now, the link function gathers these sub-
sequences into the leftmost box. In this box, there are
AGA, AGGC, AA, A, A and A. These subsequences are
sorted. At first, the character, which is on the right hand

of the hash-key A, of the subsequences is compared. The
character next to the hash-key on AGA, AGGC is G. Hence,
these subsequences are grouped together. Next, the sec-
ond character from the hash-key is compared in this group.
The second character on AGA is A. The second character
on AGGC is G. Now, these subsequences are separated on
the basis of their second character. In each group, there ex-
ists one subsequence. Therefore, the unique subsequences
AGA, AGG are output. In the same way, the link and sort
function is executed for the hash-key sequences, C, G and
T.

Table 3. Sorted subsequences
Hash-key Hash-key Hash-key Hash-key
A C G T

AG-A CG-C GG-C TA-A
AG-GC CA- GA- TC-A
AA- C GC TG-
A C GC TT-G
A G
A

3.4 Novelty of sequences

If some sequence exists only once on all the target genes,
the gene including this sequence exists only once on all the
target genes, and is unique. Therefore, we can determine
the novelty of a gene by finding the unique sequences on
it. For instance, TT is a unique sequence in Figure 4. It is
part of TTG. TTG comes from ATTGATAAG by means of
IS. Since ATTGATAAG has a unique sequence on itself, this
sequence is unique.

On the other hand, it is possible that there exists a gene,
which has no unique sequences on itself, but which is
unique as a whole against all the other target genes. Hence,
if no unique sequences are found on a gene by means of this
method, it can not be judged whether such a gene is unique
or not.

In a nutshell, if at least one of the partial sequences
of a target gene is unique, the target gene is unique as a
whole. To the contrary, if any of the partial sequences are
not unique, it can not be judged whether the target gene is
unique or not.

4 Experiments

In this section, an experimental result on the EDG
testbeds is shown. The environment of this experiment is
as follows. The data sets for the experiments were gathered
from the KEGG database [7]. The experiments were done



on condition of Interval I = 15, hash-key length = 7 and
threshold θ = 30. Thus, the length of the hashed sequences
was limited by 30. In other words, unique sequences whose
length is more than 30 can not be found.

Target genes were stored on a node of the European Or-
ganization for Nuclear Research (CERN) in Switzerland.
The genomic database was located at Research Center for
Advanced Science and Technology (RCAST) in the Uni-
versity of Tokyo in Japan. The computing nodes at RCAST
were used as parallel grid computing resources. This site
consisted of one Pentium III 1GHz 608 MB, six Pentium III
1.2GHz 512 MB and two Pentium 4 2GHz 1GB machines.
All the machines were connected onto the local network of
100 Mbps.

...

.
.
.

... Internet

EDG testbed
at CERN in Switzerland

CE

WN

WN

EDG testbed
at RCAST in Japan

900 MB

Calculation in private

Calculation in parallel
using grid computing resources

globus-url-copy

10
0 

M
bp

s

Interval
Sampling

Hash&Divide

Hash&Divide

Interval
Sampling

h.sapiens gene set
33 MB

Grid computing nodes

Link
&

Sort

Link
&

Sort

TERT gene

(1)

(2)

(4)

(3)

Figure 5. Secret sequence comparison on a
world-wide grid computing environment. (1)
h.sapiens gene set is processed by IS and
hashed at RCAST. (2) TERT gene is processed
by IS and hashed at CERN. (3) The processed
files of TERT are sent through the Internet
to RCAST. (4) The processed files of both
TERT gene and h.sapiens gene set are linked
and sorted in parallel on the grid computing
nodes at RCAST.

Figure 5 describes the calculation environment of com-
paring sequences in secret.

(1) First of all, the exact sequences of a h.sapiens gene
set were processed by IS and hashed at RCAST. The file size
of the h.sapiens gene set, which consisted of 19796 gene
sequences, was 33 MB. This gene set did not include the
target gene described as follows. After the gene set had been
processed by the IS method and the hash function, the size
became about 900 MB. This process spent about 22 minutes
on a Pentium 4 machine. The processed data were stored on
the database at RCAST and opened to the public. After the
above process is done only once, a variety of combinations
of sequence comparison can be launched.

Here, the novelty of a target gene, which is telomerase
reverse transcriptase (TERT) of h.sapiens, was verified. (2)
At first, this gene was processed by the IS method and
hashed within a few seconds on a node at CERN. After pro-
cessed, the processed file size became 245 KB. Next, this
processed file was divided into eight processed files based
on their hash-key. (3) These processed files were simulta-
neously sent to the nodes at RCAST through the Internet
by means of globus-url-copy command spending less than
10 s. (4) 8 jobs were launched in parallel to the 8 nodes
at RCAST. Each node linked one of the 8 processed files
of TERT to its corresponding file of the h.sapiens gene set
and sorted it. This link and sort function was done in par-
allel through globus-job-run command and spent 8 minutes
in total.

Table 4. Calculation time and data size.
TERT H.sapiens

gene set
Process a priori

Raw data size 3.5 KB 33 MB
Hash & Divide a few seconds 22 minutes
After-hashed data size 245 KB 900 MB

On-demand process: 8 jobs in parallel
Globus-url-copy from
CERN to RCAST for TERT 10 seconds
Link & Sort 8 minutes

The h.sapiens gene set did not include TERT. As a re-
sult, unique sequences were successfully found. The aver-
age length of unique sequence was less than 14. Therefore,
it was verified that some partial sequences produced from
the TERT gene never appeared on the h.sapiens gene set.
In other words, the TERT gene was unique on the h.sapiens
gene set. In addition, the average length said that the simi-
larity between the TERT gene and the other h.sapiens genes
was very low. The uniqueness of 99 % of the h.sapiens gene
set was verified on this condition.

Table 5 shows the annotation of the h.sapiens genes hav-
ing some unique sequences on condition of Interval value of
15, but no unique sequence on condition of Interval value of
1. When Interval value is 1, the sampled sequences are con-
secutive on the target genes. Therefore, any short unique
sequence as a primer and/or probe can not be designed for
these genes.

In this experiment, the length of 30 was assigned as the
threshold of after-hashed sequences. When the value of In-
terval was 15, 30 characters were sampled every 15 bases
from the partial sequences whose length was 450.



Table 5. H.sapiens genes having some unique
sequences on condition of Interval value =
15, but no unique sequence on condition of
Interval value = 1.

H.sapiens genes
hsa:2574 GAGE2; G antigen 2
hsa:9426 CDY2; chromodomain protein,

Y-linked, 2 [EC:2.3.1.48]
hsa:26749 GAGE8; G antigen 8
hsa:57054 DAZ3; deleted in azoospermia 3
hsa:57135 DAZ4; deleted in azoospermia 4
hsa:171489 SPANXE; SPANX family, member E
hsa:339041 LOC339041; hypothetical LOC339041
hsa:374948 LOC374948; similar to Hypothetical

protein DJ845O24.1

5 Discussions

Robustness of Interval Sampling In terms of reconstruc-
tion, we have proposed the Interval Sampling method. After
the exact sequence is processed by IS, I−mPI−m ×m Pm

possibilities of the reconstruction occur. Here, I is the value
of Interval, m = l modulo I , and l is the length of the exact
sequence. In general, it is possible to attach some random
sequence, whose length is k, at the tail of the exact sequence
in order to make m = l + k modulo I = 0. Thus, the possi-
bility of IPI is realized. In this experiment, 15 is assigned
as the value of I . 15P15 = 1.3×1012 possibilities of the re-
construction are realized for the TERT gene. In addition, as
the second protection, the sequences are hashed after pro-
cessed by IS. Hence, before taking into consideration the IS
method, the before-hashed sequences must be reconstructed
from only the hashed data, in order to reconstruct the exact
gene sequence. That is to say, this dual protection prohibits
the reconstruction.

Besides that, let us consider the reconstruction of se-
quences on a database. Now, suppose that all the gene se-
quences on the database have the same length, by attach-
ing random sequences at their tail of the sequences. When
there are C genes on the database, the possibility of CIPCI

is realized by means of IS. Because the origin of sampled
sequences can not be distinguished from the anonymous.
This value becomes an astronomical figure. Namely, the
reconstruction of databases processed by IS is realistically
impossible.

In order to improve the sensitivity of the verification, it
might be valid to make the value of Interval I small, and
to increase threshold θ. That is to say, our method be-
comes sensitive by making value I small and threshold θ
large. However, the reconstruction from the data processed

by IS becomes easier under the influence of the former.
The reconstruction of the before-hashed data from the after-
hashed ones becomes easier on account of the latter. There
is a trade-off between security and sensitivity.

Application of unique sequences Owing to the Interval
Sampling method, it becomes impossible to elaborate target
specific primers for Polymerase Chain Reaction (PCR) [8].
However, using the results of this proposed method, it is
possible to design probes for Ligase Chain Reaction (LCR)
[9]. For example, the average number of unique sequences
was about 13 and the value of Interval was 15, in this exper-
iment. Therefore, it is possible to make a set of probes for
LCR, whose product length becomes about 200-mer.

Table 5 signifies that there exists some gene sequences,
for which it is impossible to design any short unique con-
secutive sequence as a PCR primer or DNA chip probe. In
regard with probes, it is indispensable to make a short probe
for detecting the expression of genes specifically, because
a long probe is tolerant to a few mismatches. On the other
hand, these genes have some unique sequences on condition
of Interval value of 15. Therefore, the expression pattern of
these genes can be specifically distinguished by means of
LCR using specific short probes whose length is 15 each.

Relationship between calculation time, network speed
and data size In this work, a h.sapiens gene set of 33 MB
was used. The file size is much smaller than that of a whole
genome. However, once the gene sequences are divided into
some smaller pieces by the hash and divide function, these
pieces can be simultaneously processed in parallel through
the link and sort function. Let us consider a gene set whose
size is N . The total size of the gene set processed by the
hash function becomes θN . If the size of hash-key is as-
signed to k, the total file can be split into at most 4k pieces.
In this case, each file size becomes about θN

4k . For instance,
the size of the after-hashed file of the h.sapiens gene set
became about 900 MB in this experiment. The length of
7 was selected as hash-key k. The threshold value θ was
30. Thus, it is possible to divide the after-hashed file into
at most 47 = 16384 pieces of less than 2 MB each. These
pieces can be individually processed. Even if the file size
of target gene sets becomes larger, it is feasible to process
them in parallel by making the hash-key size larger.

In this experiment, 8 nodes at RCAST worked in paral-
lel and spent 8 minutes processing the jobs. On the other
hand, about 10 seconds were spent on transfering the query
sequence. Hence, the computation on the 8 nodes was
much heavier than the file transfer. Namely, the comput-
ing power is a bottleneck. Let us model the computation
time, TC . The sorting function is of O(D log D), where
D is the size of data and can be divided into the num-
ber of nodes, n. When the hash-key length is k, the cal-



culation can be parallelized by 4k, as mentioned above.
Suppose that the size of query sequences is much smaller
than that of databases and the performance of nodes is the
same as one another. The computation time is described
as TC = C D

n
log D

n
. When the parameters of this exper-

iment, TC=8 minutes, D=900 MB, n=8, are substituted,
C = 1.5×10−2. The network bandwidth is effectively used
if the time of file transfer, TN , is more than TC , namely,
TN ≥ TC . Let us consider how many nodes are needed
to meet this condition. In this experiment, TN=10 seconds.
Hence, 10

60 ≥ 1.5×10−2 900
n

log 900
n

. For example, the above
condition is satisfied with n ≥ 150. In other words, if more
than 150 nodes are available at RCAST, the calculation for
the h.sapiens gene set of 33 MB can be finished within the
file transfer time of a query sequence.

Our proposed method is well parallelized and can be eas-
ily extended to use the databases and computing resources
distributed in the world. Let us consider an environment in
which databases and computing resources are distributed.
The network bandwidth among the nodes is given as VN .
Suppose that there are n nodes and each node processes the
data of D

n
. On this condition, each node launches n−1

n
D
n

to others. If there exist lots of available nodes, namely
n � 1, the data flow between nodes is n−1

n
D
n

≈ D
n

, so
that the file transfer time TN , is D

n×VN
. The network must

be rapid enough to avoid idling the nodes. Namely, it is
required that TC ≥ TN . Hence, VN ≥ 1

C log D

n

. For exam-
ple, when the parameters in this experiment, D=900 MB,
C = 1.5×10−2 are substituted for the equation, if n = 512
and VN ≥ 2MB/s, then the computation works well with-
out any stall due to network delay.

An objective of the Data Grid project is to distribute an
enormous amount of data into a great deal of databases in
the world. In the near future, when it is realized to transfer
the data of G-byte order without any difficulties, our pro-
posed method works well on world-wide grid computing
environments.

6 Conclusion

In this research, we proposed a novel sequence compar-
ison method on grid computing environments. Without any
key cryptosystem, this method avoids the reconstruction
of the exact sequences by means of the Interval Sampling
method and the hash function. Only the processed data
are opened to the public for security reason. These opened
data have information enough to calculate similarity of se-
quences to verify the novelty of them. As a by-product of
the Interval Sampling method, some h.sapiens genes were
discovered, which could not be specifically detected by hy-
bridization but by LCR. The sequence comparison has been
successfully executed in parallel by means of public grid
computing resources.

7 Acknowledgments

This research is supported by CREST (Core Research
for Evolutional Science and Technology) Program by Japan
Science and Technology Agency (”MegaScale Computing
by ultra low power technology and modeling”).

References

[1] K. Kurata, V. Breton, and H. Nakamura, “A method
to find unique sequences on distributed genomic
databases,” in Proc. the 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid, Tokyo,
Japan, May 2003, pp. 62–69.

[2] V. Breton, J. Montagnat, and R. Medina, “Datagrid,
prototype of a biomedical grid,” in Proc. the conference
‘Synergy between bioinformatics, medical informatics
and neuroinformatics‘, Brussels, 2001.

[3] I. Foster, “The grid: A new infrastructure for 21st cen-
tury science,” Physics Today, vol. 54, no. 2, 2002.

[4] K. Kurata, H. Nakamura, and V. Breton, “Secret se-
quence comparison in distributed computing environ-
ments by interval sampling,” in Proc. the 2004 IEEE
Symposium on Computational Intelligence in Bioinfor-
matics and Computational Biology, San Diego, USA,
2004, pp. 198–205.

[5] K. Kurata, H.Nakamura, and V. Breton, “Finding
unique PCR products on distributed databases,” Trans-
actions on Advanced Computing Systems, Information
Processing Society of Japan, vol. 44, no. SIG6, pp. 34–
44, 2003.

[6] K. Kurata, H. Nakamura, and V. Breton, “A method to
verify originality of sequences secretly on distributed
computing environment,” in Proc. The 7th Interna-
tional Conference on High Performance Computing
and Grid in Asia Pacific Region, Saitama, Japan, 2004,
pp. 310–319.

[7] Anonymous ftp of the genomenet. [Online]. Available:
ftp://ftp.genome.ad.jp/pub/kegg/

[8] K. Kurata, G. Dine, C. Saguez, H. Nakamura, and
V. Breton, “Evaluation of unique sequences on the euro-
pean data grid,” in Proc. First Asia-Pacific Bioinformat-
ics Conference, Adelaide, Australia, 2003, pp. 43–52.

[9] F. Barany, “The ligase chain reaction in a pcr world,”
PCR Methods Application, vol. 1, no. 1, pp. 5–16, 1991.


