
HAL Id: in2p3-00023428
https://in2p3.hal.science/in2p3-00023428v1

Submitted on 13 Dec 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finding unique PCR products on distributed databases
K.I. Kurata, H. Nakamura, Vincent Breton

To cite this version:
K.I. Kurata, H. Nakamura, Vincent Breton. Finding unique PCR products on distributed databases.
3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2003) / First
International Workshop on Biomedical Computations on the Grid, May 2003, Tokyo, Japan. �in2p3-
00023428�

https://in2p3.hal.science/in2p3-00023428v1
https://hal.archives-ouvertes.fr

Finding Unique PCR Products on Distributed Databases

Ken-ichi Kurata, † Hiroshi Nakamura†† and Vincent Breton†††

Thanks to the development of genetic engineering, various kinds of genomic information are
being unveiled. Hence, now, it becomes feasible to study in molecular biology by analyzing
the entire genomic information. On the other hand, the quantity of the genomic information
stocked in database is increasing day after day. In order to process the whole information, we
have to develop an effective method to deal with lots of data. It is indispensable not only to
make an effective and rapid algorithm but also to use high-speed computer resource so as to
analyze the biological information.

For this purpose, as one of the most promised computing environments, the grid computing
architecture has appeared recently. The European Data Grid (EDG) is one of the grid com-
puting environments. In the first stage of designing hybridization probes and PCR primers,
it is extremely important to find genuinely unique sequence on a target genome. We deployed
a novel method to design PCR primers, which takes into account not only the specificity of
the primer itself but also the uniqueness of the product length. In this paper, we improve our
proposed method to find unique PCR products on distributed databases. We show also the
sequences found by our method, which can not be uniquely observed by any probe sequence
but by a pair of PCR primers on S. cerevisiae genome.

1. Introduction

The genomic sequences are being unveiled
in an unprecedented scale. The development
of genetic engineering accelerates this process.
Hence, it has been indispensable to analyze the
whole genomic information in molecular biol-
ogy. A great amount of gene sequences are dis-
covered by the new technology and these are
being stocked in public and private databases
more and more. Thus, we have been able to
support molecular biological experiments in the
manner of informatics. One of the traditional
biological methods is Polymerase Chain Reac-
tion (PCR), which is used broadly and usually
in molecular biology, such as gene therapy, gene
diagnosis, DNA sequencing, and gene expres-
sion pattern observation. In order to do suc-
cessful experiments in PCR, it is important to
select target-specific sequences from the whole
genomic information.

On the other hand, it is said that the quan-
tity of stocked genomic information doubles ev-
ery 8 months. The more the quantity of ge-
netic information augments, the more compu-
tation power is required. Thus we have to de-

† Laboratoire de Mathematiques Appliquees aux Sys-
temes, Ecole Centrale Paris

†† Research Center for Advanced Science and Technol-
ogy, The University of Tokyo

††† Laboratoire de Physique Corpusculaire de Clermont-
Ferrand, Centre National de la Recherche Scientifique

velop new methods of analyzing such informa-
tion efficiently and rapidly. One of the solu-
tions is to implement and process the algorithm
in a distributed computing environment. Now,
thanks to the development of the infrastructure
of high-speed networks, it is becoming feasible
to deploy the distributed computing environ-
ment on the Internet. One of the projects that
realize this type of computing environment is
called the European Data Grid project12). This
project provides the users with the distributed
computing environment to deal with the prob-
lems hard to resolve. Providing the infrastruc-
ture and tools that make large-scale, secure re-
source sharing possible and straightforward is
the Grid’s raison d’etre10),11).

In the first stage of designing hybridization
reaction probes and PCR primers, it is ex-
tremely important to find genuinely unique se-
quence on a target genome. If genuinely unique
sequences are not used, wrong products can be
produced. We have ever proposed a method
to find genuinely unique sequences on target
genes5). Furthermore, in order to design the
primers that produce a specific product, the
specificity of a primer itself is taken into con-
sideration. We have also proposed the method
that ensures the specificity of a pair of primers,
namely, the uniqueness of its product length in
PCR6).

It spends large amount of time to survey the
uniqueness of all the possible product lengths

on target genome. However, since confirmation
processes are independent of each other accord-
ing to each length, it can be done in parallel.

In this paper, we modified our proposed
method of finding unique PCR products to
work on distributed database in parallel. We
describe its implementation on the European
Data Grid and show the result of computing ex-
periments on S. cerevisiae. Moreover, we show
the sequences found by our method, which can
not be uniquely observed by any probe sequence
but by a pair of PCR primers.

2. Target specific primer in PCR

In this section, we discuss the condition of the
target specific primer. At first, the specificity of
a sequence itself as a primer is discussed. Next,
the specificity of a sequence as a pair of primers
is shown.

2.1 Specificity of a sequence as a
primer itself

In this part, firstly, the condition of proper
primer sequences is shown. Secondly, the con-
dition of unique sequences is described. Finally,
the condition of the target specific primer is
summarized.

A primer must strictly hybridize with the tar-
get gene and avoid hybridizing with non-target
genes. The reaction of hybridization in the 3’-
end region influences most on the total PCR or
RT3). On the other hand, the start of elonga-
tion reaction in PCR is relatively insensitive to
the hybridization reaction in the 5’-end region.

Primer

Polymerase

Polymerase

Polymerase

Polymerase

Primer

a non-target gene a non-target gene

5’

3’ 5’ 3’

Fig. 1 Illustration on the way of commencement in
elongation reaction. On the left, a mismatch
occurs in the 5’-end region of the sequence. On
the right, a mismatch occurs in the 3’-end re-
gion of the sequence.

Fig. 1 illustrates how the elongation reaction
proceeds. On the left, when the partial se-
quence in the 3’-end region of the primer hy-
bridizes with a non-target gene, the elongation
reaction begins without the hybridization reac-
tion in the 5’-end region. On the contrary, as
shown on the right, if the sequence does not
hybridize in the 3’-end region, it is difficult for
the polymerase to start the elongation reaction.
When a mismatch against non-targets occurs

on the sequence near the 3’-end of the primer,
the elongation reaction hardly begins. Only if
the sequence of the 3’-end region of the primer
is enough unique, the correct elongation reac-
tion can proceed efficiently. The efficiency of
hybridization is mainly influenced by the con-
secutive region of sequence without mismatch1).
Therefore, the most important factor to drive
elongation reaction accurately and efficiently is
the uniqueness of the sequence in the 3’-end re-
gion. Hence, we must select the sequence that
has a unique and short sequence in the 3’-end
region as an optimal primer.

We have proposed how to calculate the min-
imum length of a unique consecutive sequence
(USL) in our previous work4). USL means the
minimum length of a unique sequence. If the
length of a partial sequence of a gene is be-
yond the value of its USL, the sequence becomes
unique on the whole target genome. By means
of this method, some short sequences that ex-
ist only once on the entire target genome can be
found. In other words, the uniqueness of the se-
quences on the target genome is guaranteed by
this method, unlike the frequency of occurrence
method5). If the sequence existing more than
twice on the entire target genome is used as a
primer, the specific band is never produced.

The sequence of the target specific primer
should not exist more than twice on the tar-
get genomic sequence. If a sequence frequently
occurring on the target genome is used as a
primer, a lot of unexpected products are am-
plified. Namely, the important signal could be
subdued by much noise. Thus, as for the target
specific primer, we claim the following charac-
teristics:
(1) The 3’-end sequence of the primer must

exist only once on the whole genome,
namely it must be unique.

(2) The unique sequence must be as short as
possible.

2.2 Specificity of a sequence as a pair
of primers

In this part, at first, we discuss the condition
of PCR products. Next, the condition of the
sequences amplifying a unique product in PCR
is described. Finally, the condition is summa-
rized.

In PCR, in order to amplify the partial se-
quence that we desire, we can use two oligo
sequences as a pair of primers. The partial se-
quence sandwiched between one primer and the
other is amplified.

forward primer
a non-target gene

reverse primer

Fig. 2 Illustration on how PCR works. Both primers
hybridize with a non-target gene.

Fig. 2 and Fig. 3 illustrate how PCR works.
In Fig. 2, the consecutive sequence in the 3’-
end region of a forward primer is matching the
partial sequence of a non-target. That of the
reverse primer is also matching the partial se-
quence of the non-target. On this condition,
both primers possibly hybridize with the non-
target gene and the elongation reaction proba-
bly begins on both sequences. After n cycles of
PCR, the quantity of its wrong product grows
by the factor of 2n .

a non-target gene

reverse primer

forward primer

reverse primer

forward primer
a non-target gene

Fig. 3 Illustration on how PCR works. One of the
primers hybridizes with a non-target gene.

To the contrary, as shown in Fig. 3, when ei-
ther forward primer or reverse one is specific, it
is difficult for the polymerase to accomplish the
reaction. When the sequence of one primer is
not matching the partial sequence of the non-
target, even if the other primer is matching the
non-target, the quantity of its wrong product is
proportional to at most 2n after n-cycle PCR.
Thus, in PCR, only when the mis-hybridization
reaction on both primers takes place, the wrong
product is amplified. Namely, we can say that
the reaction induced by 2 sequences contributes
to the total reaction in PCR. In other words,
the elongation reaction in PCR is influenced by
the specificity of 2 sequences. Hence, we must
select the sequence that has a unique and short
sequence on either edge as an optimal sequence.

Besides that, the amplified product can be
distinguished in length. Even if several regions
of target or non-target genes are amplified at a

time, it is still possible to discern their existence
by observing their product length. In other
words, we can distinguish the specific prod-
uct from among the others by looking at their
length by means of electrophoresis. Inversely
speaking, it is necessary to circumvent the pos-
sibility of wrong PCR products whose length is
the same as that of the target. Therefore, we
must take into consideration the uniqueness of
product length. In short, the following is re-
quired.
(1) The edge sequences of a product must be

unique.
(2) The uniqueness of product length must

be taken into account.
(3) These unique sequences must be as short

as possible.

3. Algorithm

The goal is to find a unique product as short
as possible, which exists only once on the target
genes. The algorithm processed on each CE is
shown as follows.

It is computationally demanding to naively
compare all partial sequences of the target
genes with one another. Hence, we take the fol-
lowing strategy to find such sequences rapidly.
At first, the number of the combinations of se-
quences to be compared with each other is re-
duced by hashing all the genomic information.
Next, an algorithm like radix sort processes the
comparison among sequences on each comput-
ing element. Finally, all the results are gathered
and candidate sequences are selected.

Our method is composed of 3 steps, described
as follows: (1) make a Look Up Table (LUT)
from the whole genomic information; (2) calcu-
late Unique Sequence Length (USL) by using
the algorithm like radix sort; (3) select the can-
didate sequences for a primer.

3.1 Construction of LUT for pair of
primers

Here, we explain how a LUT for a primer-pair
is made by using the whole genomic information
of the target organism. Once the LUT for tar-
get sequences are made, all the sequences hav-
ing the same hash-key are rapidly found. As de-
scribed above, the hybridization of the consec-
utive sequence in the 3’-end region of a primer
is most important in the total PCR. Moreover,
the uniqueness of the product length must be
ensured.

Therefore, as shown in Fig. 4, we make a
hash-key sequence by concatenating one edge

ulB

inner-sequence

A

B

primer

primer

Gene

ulA

hash-key

Fig. 4 This illustration shows how to assign a hash-
key sequence on target gene sequences. The
sequence composed of both edge sequences of
all partial sequences on the targets are allotted
to a hash-key sequence. Namely, the concate-
nated sequence A + B is used as the hash-key
sequence. These hash-key sequences are used
as the 3’-end sequence of each primer. The
matching length from the hash-key sequence in
each direction is given as the unique length of
A (ulA) or the unique length of B (ulB), re-
spectively. The size of ulA + ulB is used as the
criterion.

sequence with another one on a PCR prod-
uct when making LUT. Namely, we use the se-
quence A + B as a hash-key. Now, we call the
sequence intercalated between A and B “inner-
sequence”. As shown in this figure, the 3’-end
sequence of the forward primer is sequence A
and that of the reverse primer is sequence B.
On one hand, we can select a large value as the
length of inner-sequence in order to amplify a
sequence for cloning and sequencing. On the
other hand, we can select a small value in order
to amplify a sequence for gene expression pat-
tern observation in PCR. Besides that, when
the size of inner-sequence is assigned to 0, we
can evaluate the specificity of the probes for
Ligase Chain Reaction (LCR).

The LUT is made as follows. Suppose that
there is an organism that has l genes. The gene
of the target organism is described as gi, i =
1, . . . l. The length of each gene is given as |gi| =
mi and the nucleotide of position j from the 5’-
end of gene i is specified as gi(j), gi(j) ∈ {
a,t,g,c }. Now, the LUT for all the positions
of all the genes, j = 1, . . . , mi, i = 1, . . . , l, is
made. Each subsequence gi(j) . . . gi(j + h −
1)gi(j + h + s) . . . gi(j + 2h + s− 1) of position
j from the 5’-end of gene i is used as the hash-
key sequence for LUT (i, j). The length of the
hash-key sequence is assigned to 2h, that is, the
length of A + B is 2h. The length of the inner-
sequence is s. The LUT includes a pointer to
the next position at which the same hash-key

sequence appears. All the positions that have
the same hash-key sequence are quickly found
only by searching the LUT. The size of the LUT
is proportional to that of the target.

An example of the algorithm in detail is
shown as follows. Let us assume that there is
an organism that has a very short genome ”5’-
tgaatgcgaaccccaacgcgaataccaacgctaatat-3’”. Here,
the size of hash-key is appointed 4, h = 2.
Namely, the size of the 3’-end sequence of the
primers each is 2. The size of inner-sequence is
4, namely, s = 4.

The LUT is composed as shown in Fig. 5. ’-
1’ means terminal signal in LUT. If this signal
occurs in LUT, after that, no sequence includ-
ing the same hash-key sequence exists. Now, let
us find the hash-key sequence, ’aaaa’, namely
sequence ’aa----aa’. Here, ’----’ means an
arbitrary sequence whose length is 4. At first,
this sequence appears at position 3. Next, we
can find it at position 9 on the genomic se-
quence only by looking at the LUT. The pointer
to the next position is given at position 3 of the
LUT. Similarly, all the positions, 15, 21 and 27,
where ’aa----aa’ appears, are found by using
the LUT.

3.2 Calculation of unique sequence
length (USL) for pair of primers

Here, the problem is how to calculate the
value of USL. The method that naively com-
pares all the sequences with each other spends
a great deal of computation time. Thus, we
describe an effective method to calculate the
value of USL by using an algorithm based on
radix sort.

Now, as shown in Fig. 4, let us consider sub-
sequence gik

(j) . . . gik
(j + h − 1)gik

(j + h +
s) . . . gik

(j + 2h + s − 1) of gene gik
as a hash-

key sequence. The hash-key sequence is as-
signed to the sequence of the 3’-end region of
primer. Suppose that a hash-key sequence, H ,
appears n times on the genome as subsequence
gik

(j) . . . gik
(j + h− 1)gik

(j + h + s) . . . gik
(j +

2h + s − 1) of gene gik
, k = {1, . . . , n}.

Here, the following is done for every hash-key.
In the following, ’:=’ represents substitution.

sk(2x − 1) := gik
(jk − x)

sk(2x) := gik
(jk + 2h + s − 1 + x)

k = {1, . . . n}
x = {1, . . . Th}

Th means the threshold where the comparison
stops.

Initially, ul := 0. Here, unique length (ul)

Pos.: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Seq.: t g a a t g c g a a c c c c a a c g
LUT : -1 -1 9 22 -1 -1 -1 -1 15 -1 -1 -1 -1 -1 21 -1 29 -1

Pos.: 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Seq.: c g a a t a c c a a c g c t a a t a
LUT : -1 -1 27 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Fig. 5 An example of the LUT for a pair of primers

stands for the total matching length, ulA +
ulB, as shown in Fig. 4. In other words, ulA
represents the matching length from the 5’-end
of the hash-key and ulB represents the match-
ing length from the 3’-end of the hash-key.
N = {1, . . . , n} is the set of all the positions
where the same hash-key occurs. Rr is a sub-
set of set N , and r = {a, c, g, t}. r signifies
the name of sorting buckets. Now, the sorting
function SORT(N, ul) is called.

In regard with the sorting method to design
a pair of primers, we have already discussed it
in our recent work6).

SORT(N , ul)
(1) ul := ul + 1.
(2) If the size of N is 1, then subsequence

sk(ul) . . . sk(1)H, k ∈ N is a unique se-
quence, whose length is ul + h.

(3) Initially, Rr := φ for all the elements of
r = {a, c, g, t}, and the following is done
for all the elements of N , k ∈ N, r =
{a, c, g, t}.
(a) If sk(ul) is nucleotide ’a’, then

Ra := Ra ⊕ k.
(b) If sk(ul) is nucleotide ’c’, then

Rc := Rc ⊕ k.
(c) If sk(ul) is nucleotide ’g’, then

Rg := Rg ⊕ k.
(d) If sk(ul) is nucleotide ’t’, then

Rt := Rt ⊕ k.
(4) If the size of Ra is more than 1, then call

the function, SORT(Ra, ul) .
(5) If the size of Rc is more than 1, then call

the function, SORT(Rc, ul) .
(6) If the size of Rg is more than 1, then call

the function, SORT(Rg, ul) .
(7) If the size of Rt is more than 1, then call

the function, SORT(Rt, ul) .
The minimum length of a unique sequence is

calculated by the above method.
For instance, we consider the organ-

ism that has the very short genome ”5’-
tgaatgcgaaccccaacgcgaataccaacgctaatat-3’”. The
size of hash-key is 4 and that of inner-sequence
is 4. Here, let us make a comparison among
partial sequences including ’aa----aa’. 5 par-

tial sequences including ’aa----aa’ are found
on this genome by using LUT. Hence, if exe-
cuted naively, the comparison of 10 combina-
tions should be processed. Now, the compar-
ison is executed using the proposed algorithm
like radix sort as follows. 5 partial sequences
including ’aa----aa’ are shown in Table 1.

Table 1 An example of radix sort: 1

1 tgaatgcgaacc
tgcgaaccccaacgcg
cccaacgcgaatac

cgcgaataccaacgct
accaacgctaatat

At first, these sequences are sorted on the ba-
sis of their character next to both edges of the
hash-key sequence, ’aaaa’, as shown in Ta-
ble 2.

Table 2 An example of radix sort: 2

1 t g aatgcgaa c c
tgc g aaccccaa c gcg
cgc g aataccaa c gct

2 cc c aacgcgaa t ac
ac c aacgctaa t at

The sequences that have character ’g’ left
to ’aa----aa’ and ’c’ right to it are sorted in
row 1. The sequences that have ’c’ and ’t’
on each edge are sorted in row 2. Next, after
ul := ul + 1, these sequences are sorted in the
same manner in each row. The result is shown
in Table 3.

Table 3 An example of radix sort: 3

1 t gaatgcgaac c
2 tg c gaaccccaac g cg

cg c gaataccaac g ct
3 c c caacgcgaat a c

a c caacgctaat a t

In row 1 of Table 3, only one sequence exists.
Then, this sequence is unique and its USL is 4,
namely, on this condition in product length, if
the matching length of the 3’-end region of ei-

ther forward primer or reverse primer is beyond
3, this product becomes unique on the whole
genome. The final result is shown in Table 4.

Table 4 The result of the example of radix sort.
USL means Unique Sequence Length.

Sequence
1 4 t gaa tgcg aac c
2 6 t cccc aacgc g
3 6 c tacc aacgc t
4 5 c ccaa c
5 5 a ccaa aata t

USL

gcgaa
gcgaa

cgcg aata
cgct

3.3 Sequence selection for primer
Finally, we select the sequences that have the

small value of USL. The partial sequence whose
value of USL is small befits a primer candidate.
This operation is executed on the entire target
genome.

4. Deployment on the European Data
Grid

The goal of the European Data Grid
Project12) is the development of a novel en-
vironment to support globally distributed sci-
entific exploration involving multi-PetaByte
datasets. The project is designing and develop-
ing middle-ware solutions and testbeds capable
of scaling to handle PetaBytes of distributed
data, tens of thousands of resources (proces-
sors, disks, etc.), and thousands of simultane-
ous users. DataGrid biomedical work package
gathers biologists, computer scientists, physi-
cians and physicists around the common goal
of deploying a biomedical grid9) .

UI
SE

SESESE

CECECE

CE
RB

Job 1
Job 2
Job 3
Job 4

Job 1
Job 2 Job 3

Job 4

Result 1
Result 2
Result 3
Result 4

Result 1 Result 2 Result 3

Result 4

Fig. 6 Illustration on the working flow upon the Data
Grid. UI, RB, CE and SE mean User Inter-
face, Resource Broker, Computing Element and
Storage Element, respectively.

We describe the structure of the Euro-
pean Data Grid (EDG) in Fig. 6. The
EDG is mainly composed of 4 computing el-
ements: User Interface (UI), Resource Bro-
ker(RB), Computer Element(CE) and Storage
Element(SE). At first, a user belonging to the

EDG can contact with all the machine through
a UI machine in place. On the UI machine,
all the necessary commands to issue jobs upon
the EDG are furnished. In other words, all the
users hoping to process their jobs on the EDG
have to use a UI machine as an entrance for this
environment. Next, all the jobs issued with the
UI are sent to a RB machine. The RB ma-
chine having received the commands from the
UI seeks for available computer resources, that
is, CEs, and schedules all the jobs. When the
RB machine finds an available CE, it sends one
of the jobs to this CE. The CE machine pro-
cesses the received jobs using its Working Node
(WN) machines. If the CE machine is ordered
to use some databases, it seeks for the SE hav-
ing the requested data and orders them. Fi-
nally, the termination of the calculation is re-
ported to the UI through the RB and the user
can gather all the results on the UI machine.

Every machine on the EDG must have their
own server certificate. All the users hoping to
issue commands on the EDG have to obtain
their own user certificate. Moreover, every user
must also obtain their own account on a UI ma-
chine. After obtaining the certificate and con-
necting a UI machine, one can be authorized by
grid-proxy-init command. Once one has been
authorized, all the resources on the EDG come
to be available.

5. Implementation

In this section, we describe the program exe-
cuting the proposed method and its implemen-
tation on the EDG. At first, we describe an im-
plementation of our proposed algorithm on the
EDG. Next, the computing environment and
the working flow of the program are shown.

5.1 Implementation of our proposed
algorithm

The goal is to find a unique product from
among databases distributed on networks. It
is computationally intractable to gather all
the genomic sequences upon one computer and
naively compare all partial sequences with one
another. Hence, we take the following strategy
to find such sequences rapidly. At first, all of
the target genomic sequences are hashed and
decomposed into some smaller parts on each
database. Next, the partial sequences that have
the same hash-key sequence are gathered from
among all the target databases and linked on a
computer. An algorithm of radix sort makes a
comparison among sequences on the computer.

Our program is composed of 2 steps, de-
scribed as follows: (1)All of the target genomic
sequences are hashed and divided into smaller
files; (2)The partial sequences that have the
same hash-key are linked and Unique Sequence
Length (USL) is calculated by using the radix
sort algorithm.

5.1.1 Hash and divide
Firstly, every target genomic sequence is

hashed and divided.

genomic
data

hash-key 1

hash-key 2

hash-key 3

hash-key n

.

.

.

SE 1

CE
hash & devide

genome 1

genomic
data

hash-key 1

hash-key 2

hash-key 3

hash-key n

.

.

.

SE 2

CE
hash & devide

genome 2

...

Fig. 7 The illustration on hashing and dividing func-
tion. One of the target genomes is located on
one of the SEs. Each target genome stored on
the SE is sent onto a CE. The sequences of
the target genome are hashed and divided into
smaller files based on hash-key on the CE. All
the hashed and divided sequences are put back
onto their SE. The function is processed for ev-
ery target genome individually.

Fig. 7 illustrates the flow of processing target
genome. The following function is individually
processed for all the target genomes stored in
a distributed environment. In a first step, the
target genome is stored on a Storage Element
(SE). The target genome is divided into some
files. In this paper, each SE is regarded as one
of the distributed databases and deals with one
file of the divided target genome. Next, the tar-
get genome is brought onto a Computing Ele-
ment (CE) from the SE. The sequence is hashed
and decomposed into some smaller files based
on hash-key sequence on the CE. Each file has
its own hash-key sequences and has the same
number of hash-key as each other. At last, all
the hashed files are stored back onto the SE.

5.1.2 Link and sort
Secondly, the partial sequences having the

same hash-key are gathered and linked on a CE.
Fig. 8 shows the way of linking the partial

sequences having the same hash-key. At first,
the partial sequences having the same hash-
key as each other are gathered onto a CE from
among the hashed and divided sequences on all
the target databases. These partial sequences
are linked with each other on the basis of their

hash-key 1

hash-key 2

hash-key 3

.

.

.
genome 1

hash-key 1

hash-key 2

hash-key 3

.

.

.
genome 2

hash-key 1

hash-key 2

hash-key 3

.

.

.
genome 3

CE 1
link & sort

CE 2
link & sort

hash-key 1 hash-key 2

SE 1 SE 2 SE 3

Fig. 8 The illustration on linking and sorting function.
Each CE gathers all the partial sequences hav-
ing the same hash-key from among the target
distributed databases. Then, the sequences are
linked and sorted on each CE. Each linking and
sorting function is processed in parallel.

hash-key and sorted on the CE.
For instance, as shown in Fig. 8, CE 1 gath-

ers all the partial sequences having the hash-
key 1 from among all the SEs. Next, the CE
links these partial sequences and sorts them.
Since the target genomic sequences are made
smaller files by hashing and dividing function,
it is sufficient to process only the partial se-
quences having the same hash-key at once in-
stead of the whole genomic sequences. There-
fore, it is possible to handle them without con-
suming a large amount of memory space. While
CE 1 is processing all the partial sequences hav-
ing the hash-key 1, CE 2 is also able to process
all the partial sequences having the hash-key 2
individually. According to hash-key, every se-
quence can be processed in parallel.

5.2 Calculation environment
The environment of the European Data Grid

was installed and configured with LCFG server
box13). LCFG is one of the standard instal-
lation systems of the Data Grid environment.
Once the LCFG server is installed, it automat-
ically provides all the client machines with all
the provisions to bootstrap. Moreover, all the
client machines are automatically maintained
and configured by the LCFG server. In this
research, the Data Grid environment based on
Globus 2 beta was installed through the LCFG
server. All the main elements, such as User
Interface (UI), Computing Element (CE), Stor-
age Element (SE) and Working Node (WN) are
installed and configured with this system. For
the moment, Redhat Linux 6.2 is supposed to
be installed into all the machines used on the
Data Grid environment. All the calculation was

processed in the environment of Fig. 9. machines is described at the European Data
Grid web site15).

UI

CERN
Switzerland

RB

CE

Result
Job

CE

SE

SE

NIKHEF
Netherlands

CE SE

INFN
Italy

Data CE

Other sites
5.3 Working flow
The working flow of the program is shown in

Fig. 10.

CE
hash

&
divide

SE1 genomic
file 1

(3 MB)

CE

SE2

hash
&

divide

CE

SE3

hash
&

divide

genomic
file 2

(3 MB)

genomic
file 3

(3 MB)

genomic
file 1

genomic
file 2

genomic
file 3

target
genome
(9.5 MB)

hashed file (20 MB) hashed file (20 MB) hashed file (20 MB)

Fig. 9 Illustration on the Data Grid environment used
in this experiment. First of all, all the tasks
are sent to the RB from the UI. Next, the RB
allocates them to available CEs at that time.
The CEs can use SEs in order to read and write
target genomic data and temporary files. Each
SE is regarded as a distributed database and
has one of the hashed data files. At last, the
termination of all the calculation is reported to
the UI and all the results are gathered. The
CE machines located in the other EDG sites
can also be used.

First of all, we issued all the commands
from a UI machine located in the European
Organization for Nuclear Research (CERN) in
Switzerland. Every job was sent to the RB ma-
chine located in CERN. This machine sched-
uled and dispersed all the jobs to available CEs
on the Data Grid. The CE machine contacts
SE machines when reading and writing files.
Each CE processed the job received from the
RB and returned the result to the UI. In this
experiment, the SE machines, which are located
in CERN, in the Instituto Nazionale di Fisica
Nucleare (INFN) in Italy and in the National
Institute for Nuclear Physics and High Energy
Physics (NIKHEF) in Netherlands were used.

The speed of local file transfer in CERN,
INFN and NIKHEF was about 60 Mbps. The
speed of file transfer between the machines of
INFN and the machines of CERN was about
12 Mbps. The speed between NIKHEF and
CERN was about 7 Mbps. The speed between
NIKHEF and INFN was about 11 Mbps. The
best effective bandwidth is measured by means
of globus-url-copy command using a file of about
47 MB. Each job is allotted to one of the avail-
able CPUs by the RB. The specification of the

SE1 file 1
file 2
file 3

CE

Results
UI

SE2

link
&

sort

.
.
.

.
.
.

SE3

.
.
.

CE
link
&

sort

CE
link
&

sort

. . .

file 1
file 1
file 1

file 1
file 2
file 3

file 1
file 2
file 3

file 2
file 2
file 2

file n
file n
file n

pr
oc

es
se

d
in

 p
ar

al
le

l

Fig. 10 The illustration on the data flow of our pro-
gram. At first, all the sequences of the target
genome are fetched from a genome database
and they are divided and stored on SE ma-
chines. Each divided genomic file is hashed
and classified into some smaller files on the
basis of their hash-key upon each SE. Next,
each file is sent to an available CE and sorted.
At last, all the results are reported. In this
experiment, S. cerevisiae genome is analyzed.
This genome is divided into 3 files and stored
on the SEs.

First of all, the target genomic sequence is
fetched from a public database and it is di-
vided and stored on a SE. In this experiments,
S. cerevisiae genome was fetched, divided into 3
files, which having 2240, 2240, 2239 ORFs, re-
spectively. These files were stored on the SE of
CERN, RAL and NIKHEF, respectively. Each
genomic sequence file is hashed and divided on
the basis of hash-key on a CE. All the processed
data are brought back to each SE. Next, a CE
looks for all the partial sequences that have
the same hash-key from among all the hashed
databases. As shown in Fig. 10, CEs processed
every hash-key sequence in parallel from among
3 SE databases. All the files that include the
partial sequences having the same hash-key are
linked and sorted on the CE. Finally, the re-
sults, the values of USL, are sent back to the
UI machine.

6. Result

In this section, the calculation result is given.
We tried to discover unique product sequences
on the whole genome of S. cerevisiae (9.5 MB)
by using the proposed method. The length of
the hash-key sequence, h, was assigned to 3.
The limit of the maximum length of unique
sequence length was assigned to 50-mer. The
length of inner-sequence, s, was 2000. The se-
quences whose length was beyond this threshold
were removed.

To begin with, the whole genomic file was
divided into 3 smaller files and stored on the
SE each. Each file was hashed on the basis of
hash-key sequence. It took about 7 minutes to
do this calculation. The total size of the hashed
file of S. cerevisiae genome became about 60
MB. About 20 MB each were store back to its

becomes 10.

Table 5 ORFs that do not have any unique sequences
as probes but have a unique sequence-pair on
condition that the value of inner-sequence be
2000.

TyB Gag-Pol protein
similar to subtelomeric encoded proteins

Table 5 shows the ORFs that do not have
any unique sequences as probes but have a
unique sequence-pair on condition that the
value of inner-sequence be 2000. No unique
sequence was found for these genes when the
inner-sequence length is 0. This result means
any unique sequence for probe can not be de-
signed for these genes. These genes can not be
specifically detected by hybridization reaction.
However, it is possible to specifically distinguish
their correct products from wrong products by
PCR. That is to say, we can make no target
specific probe but a target specific primer-pair
for these genes.

7. Discussion

In our proposed method, the uniqueness of
sequences was guaranteed on the whole target.
This method deduced the minimum length of
every unique sequence on the target and we
used the length of the unique sequences as cri-
teria of the specificity of them. We made much
of the 3’-end region of the sequence for primer
and described how to realize it. It is important
to find unique sequences on genome in order
to design primers and probes. Suppose that
there are some sequences, which are not unique
on their target genome, but seems to be suit-
able for primers and probes according to GC
contents and secondary structure. If such se-
quences are used as primers, wrong products
are made. On the other hand, once a unique
sequence pair has been found in advance, it is
possible to verify its biological characteristics,
such as hybridization energy, melting temper-
ature (Tm), secondary structure and so forth,
without any risk of wrong products.

Hereafter, we will make this method take into
consideration single gap and single mismatch in
the 5’-end region. Furthermore, this method
can be applied to probe design by consider-
ing the hybridization reaction of the whole se-
quence, not only in 3’-end region.

As for the method to find the unique se-
quence, suffix tree (or suffix array) is useful and

SE.

10

1

C
al

cu
la

ti
on

 t
im

e
[m

in
.]

Fig. 11 Calculation time versus the number of tasks
processed in parallel. The x-axis represents
the number of files split by the hashing and
dividing function. Each file has the same
number of hash-key as each other. The y-
axis represents the calculation time in parallel,
namely, it is the time to link and sort the tar-
get gene sequence.

In this experiment, each file was divided into
smaller files on the basis of hash-key sequence.
The number of hash-key that each file has was
the same as each other. Fig. 11 shows the
total calculation time to complete the linking
and sorting function. The x-axis represents the
number of files divided by the hashing and di-
viding function. That is to say, the tasks can
be processed in parallel by this number. The
y-axis represents the total calculation time in
parallel, namely the time to link and sort. The
smaller each file was divided, the less time was
consumed until the number of the divided files

4 10

Number of files

popular one. In fact, there are some methods to
design optimal DNA oligo primers by using suf-
fix array2). However, a large amount of DNA
sequences are to be unveiled more and more.
The more the quantity of genomic information
increases, the more the computer power is re-
quired. Hence, it will be inevitable not only to
invent a rapid algorithm to analyze the infor-
mation but also to develop methods to imple-
ment and process it in a distributed computing
environment, such as the Data Grid.

We described that our primer-pair design
method was easily processed in parallel for each
inner-sequence value and implemented on the
EDG. As a target genome, we used S. cerevisiae
genome. In order to process larger genomic
information, such as human genome, a larger
amount of memory resource is required. How-
ever, according to each inner-sequence length,
each calculation can be processed in parallel.
Moreover, in regard with target genome size,
the problem can be divided into smaller tasks
on the basis of hash-key. Once the target
genome has been hashed, each problem can be
sorted individually. The number of tasks pro-
cessed in parallel is limited by the length of
hash-key. When the length is assigned to n, the
hashed target genome is divided into at most 4n

files. The size of each file can be 4n times less
than that of the hashed target genome. These
files can be processed in parallel. Therefore,
even if the target genome becomes much larger,
it is feasible to process them in parallel by mak-
ing the hash-key size larger. For instance, in
this paper, the hash-key length was assigned
to 7. The total file size of the hashed target
genome became about 60 MB. Therefore, it is
possible to divide the genomic files into at most
47 = 16384 pieces of 4 KB each. In a nutshell,
(l + 1) × 4n commands can be issued at once
if there exist enough CEs. If the uniqueness of
products was investigated between 0 to 2000-
mers. Therefore, 2001 × 47 = 32784384 com-
mands for sorting can be issued at once.

In regard with the parallelism, as seen from
Fig. 11, until the number of the divided files be-
comes 10, the total calculation time decreases
on EDG. Because the amount of the task that
each computer processes decreases when the
size of each file gets small. After that, as
the number of the divided files augments, the
total calculation time increases. When many
tasks are simultaneously issued, they can be
assigned to available CEs located in the sites

far from target genomic databases, such as CC-
IN2P3 and INFN15). In addition, in general,
the smaller the file size is, the lower the effec-
tive bandwidth of network becomes. That is
the reason why the calculation time increases
when the whole process is divided into much
smaller pieces.

8. Acknowledgements

We are grateful to the members of the Euro-
pean Data Grid project, especially, the fellows
of the biomedical work package group for their
valuable advice.

References

1) Allawi,H.T. and SantaLucia,J.J. , “Ther-
modynamics and NMR of Internal G.T
Mismatches in DNA”, Biochemistry Vol.36,
pp.10581–10594, 1997

2) Fugen,L. and Stormo,G.D. “Selection of op-
timal DNA oligos for gene expression arrays”,
Bioinformatics Vol.17, pp.1067–1076, 2001

3) Griffais,R., Andre,P.M. and Thibon,M. “K-
tuple frequency in the human genome and poly-
merase chain reaction”, Nucleic Acids Research
Vol.19, pp.3887–3889, 1991

4) Hosaka,N., Kurata,K. and Nakamura,H. “Com-
parison of Methods for Probe Design”, Genome
Informatics 12, pp.449-450, 2001

5) Kurata,K. and Nakamura,H. “Novel Method
for Primer/Probe Design”, Genome Informat
ics 11, pp.331–332, 2000

6) Kurata,K., Dine,G., Saguez,C. and Naka-
mura,H. “Rapid Analysis of Specificity of PCR
Product on the Whole Genome”, Proc. of
PDPTA, CSREA Press, Las Vegas, 246–252,
2002

7) Mitsuhashi,M., Cooper,A., Ogura,M., Shina-
gawa,T., Yano,K. and Hosokawa,T. “Oligonu-
cleotide probe design - a new approach”, Na
ture Vol.367, pp.759–761, 1994

8) SantaLucia,J.J. “A unified view of polymer,
dumbbell, and oligonucleotide DNA nearest-
neighbor thermodynamics”, Proc. Natl. Acad.
Sci. USA Vol.17, pp.1460–1465, 1998

9) Breton,V., Montagnat,J. and Medina,R. “Data-
Grid, prototype of a biomedical Grid”, Proc. of
Synergy between bioinformatics, medical infor-
matics and neuroinformatics, Brussels, Decem-
ber 2001, submitted to Methods of information
in medicine, 2001

10) Foster,I., Kesselman,C., and Tuecke,S. “The
Anatomy of the Grid”, International Journal
of High Performance Computing Applications
Vol.15, No.3, pp.200–222, 2001

11) Foster,I. “The Grid: A New Infrastructure

for 21st Century Science”, Physics Today pp.
Vol.54, No.2, 2002

12) Segal,B. “Grid computing: the European
data project”, IEEE Nuclear Science Sympo
sium and Medical Imaging Conference, Lyon,
France, pp.15–20, 2000

13) Iven,J. “WP4 Interim Installation Solution”,
http://datagrid.in2p3.fr/distribution

/datagrid/wp4/installation/doc/
14) The DataGrid Project,

http://eu-datagrid.web.cern.ch/eu-datagrid/
15) Testbed status,

http://marianne.in2p3.fr/datagrid
/giis/giis.html

Ken-ichi Kurata received
the BE degree in Applied Math-
ematics in 1998 and the MS de-
gree in Physics in 2000 from
the University of Tokyo. He
belongs to Laboratoire M.A.S,
Ecole Centrale de Paris since

2001. He is a member of the biomedical
group of the European Data Grid project. His
research interests include bioinformatics and
high-performance computing. He is a member
of the IPSJ.

Hiroshi Nakamura received
the BE, ME, and Ph.D. de-
gree in Electrical Engineering
from the University of Tokyo
in 1985, 1987, and 1990 respec-
tively. From 1990 to 1996, he
was a faculty of Institute of In-

formation Sciences and Engineering at Univer-
sity of Tsukuba, where he was a member of
CP-PACS project. He is currently an Asso-
ciate Professor of Research Center for Advanced
Science and Technology at the University of
Tokyo. His research interests include com-
puter architecture, high-performance comput-
ing, and bioinfomatics. He received the best
paper award from IPSJ in 1994 and Sakai Spe-
cial Researcher Award from IPSJ in 2002. He
is a member of the IEEE, the ACM, the IEICE,
and the IPSJ.

Vincent Breton received his
Engineer degree from Ecole Cen-
trale de Paris in 1985 and his
PhD in Nuclear Physics from
the University of Paris XI- Or-
say in 1990. From 1990, he has
been a research associate at the

French National Center for Scientific Research
(CNRS). After participating for 10 years to high
energy and nuclear physics experiments at Uni-
versity of Stanford, Thomas Jefferson Labora-
tory (USA) and CERN (Switzerland), his fo-
cus shifted towards the application of grid tech-
nilogy to biomedical sciences. Leader of the
biomedical work package of the european Data-
Grid project, he has chaired the first European
conference on grids for health.

