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Abstract

Thanks to the development of genetic engineering, various
kinds of genomic information are being unveiled. Hence, now,
it becomes feasible to study in molecular biology by analyz-
ing the entire genomic information. On the other hand, the
quantity of the genomic information stocked in database is in-
creasing day after day. In order to process the whole informa-
tion, we have to develop an effective method to deal with lots
of data. It is indispensable not only to make an effective and
rapid algorithm but also to use high-speed computer resource
so as to analyze the biological information. For this purpose,
as one of the most promised computing environments, the grid
computing architecture has appeared recently. The European
Data Grid (EDG) is one of the grid computing environments
(Segal 2000).

In this paper, at first, we propose an effective sequence
analysis method to find out and evaluate unique sequences for
primer design by extending the previously proposed method
(Kurata 2002). Next, we describe how to implement this
method upon the European Data Grid.

Keywords: unique sequence, primer design, the Euro-
pean Data Grid

1 Introduction

The genomic sequences are being unveiled on a lot
of target organisms. The development of genetic
engineering accelerates this process. Hence, it has
been indispensable to analyze the whole genomic in-
formation in molecular biology. A great amount of
gene sequences are discovered by the new technol-
ogy and these are being stocked in public and private
databases day after day. Thus, we have been able
to support molecular biological experiments by ana-
lyzing them. One of the traditional biological meth-
ods is Polymerase Chain Reaction (PCR), which is
used broadly and usually in molecular biology, such
as gene therapy, gene diagnosis, DNA sequencing and
gene expression pattern observation. In order to do
successful experiments in PCR, it is important to de-
sign target-specific sequences used as primers from
the genomic information.

On the other hand, it is said that the quantity
of stocked genomic information should double every
8 months. The more the quantity of genetic infor-
mation augments, the more computation power is re-
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quired. Thus we have to develop new methods of an-
alyzing such information efficiently and rapidly. One
of the solutions is to implement and process the algo-
rithm in distributed computing environment. Now,
thanks to the development of the infrastructure of
high-speed networks, it is becoming feasible to de-
ploy the distributed computing environment on the
Internet. One of the projects that realize this type of
computing environment is called the European Data
Grid project (Segal 2000). This project provides the
users with the distributed computing environment to
deal with the problems hard to resolve. Providing the
infrastructure and tools that make large-scale, secure
resource sharing possible and straightforward is the
Grid’s raison d’etre (Foster 2001, Foster 2002).

We have proposed a method to find genuinely
unique sequences on target genes (Kurata 2000). In
order to design the primers that produce a specific
product, the specificity of a primer itself is taken
into consideration. In addition, we have proposed
the method that ensures the specificity of a pair of
primers, namely, the uniqueness of its product length
in PCR (Kurata 2002). In these previous works, the
length of the unique sequences is used as the crite-
rion for selecting optimal sequences. As it were, the
unique sequence whose length is as short as possible
is selected. However, it is possible that the unique
and short sequence consists of partial sequences ex-
isting frequently on the genome. Even if this type of
sequence is used as a primer, the sequence is surely
unique on its target genome but its partial sequences
can frequently hybridize the other sequences. This
method can not properly deal with such sequences.

In this paper, we propose a new way to evaluate
the specificity of sequences. We select a sequence can-
didate by paying attention to the local frequency of
occurrence of its partial sequences. Furthermore, we
describe an implementation of this method onto the
European Data Grid and show the result of comput-
ing experiments upon it.

2 Target specific primer in PCR

In this section, we discuss the condition of the target
specific primer. At first, specificity of sequence itself
as a primer is discussed. Next, specificity of sequence
as a pair of primers is shown.

2.1 Specificity of sequence as a primer itself

In this part, firstly, the condition of proper primer
sequences is shown. Secondly, the condition of unique



sequences is described. Finally, the condition of the
target specific primer is summarized.

A primer must strictly hybridize with a target gene
and avoid hybridizing with non-target genes. The re-
action of hybridization in the 3’-end region influences
most on the total PCR or RT (Griffais 1991). On the
other hand, the start of elongation reaction in PCR
is relatively insensitive to the hybridization reaction
in the 5’-end region.

Primer
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Figure 1: The illustration on the way of commence-
ment in elongation reaction. On the left, a mismatch
occurs in the 5-end region of the sequence. On the
right, a mismatch occurs in the 3’-end region of the
sequence.

Figure 1 illustrates how the elongation reaction
proceeds. On the left, when the partial sequence in
the 3’-end region of the primer hybridizes with a non-
target gene, the elongation reaction begins without
the hybridization reaction in the 5’-end region. On
the contrary, as shown on the right, if the sequence
does not hybridize in the 3’-end region, it is difficult
for the polymerase to start the elongation reaction.
When a mismatch against non-targets occurs on the
sequence near the 3’-end of the primer, the elonga-
tion reaction hardly begins. Only if the sequence
of the 3’-end region of the primer is enough specific,
the correct elongation reaction can proceed efficiently.
The efficiency of hybridization is mainly influenced by
the consecutive region of sequence without mismatch
(Allawi 1997). Therefore, the most important factor
to drive elongation reaction accurately and efficiently
is the uniqueness of the sequence in the 3’-end region.
Hence, we must select the sequence that has a unique
and short sequence in the 3’-end region as an optimal
primer.

We have proposed how to calculate the minimum
length of a unique consecutive sequence (USL) in our
previous work (Hosaka 2001). USL means the min-
imum length of a unique sequence. If the length of
a partial sequence of a gene is beyond the value of
its USL, the sequence becomes unique on the whole
target genome. By means of this method, some short
sequences that exist only once on the entire target
genome can be found. In other words, the uniqueness
of the sequences on the target genome is guaranteed
by this method, unlike the frequency of occurrence
method (Kurata 2000). If the sequence existing more
than twice on the entire target genome is used as a
primer, the specific band is never produced.

The sequence of a target specific primer should
not exist more than twice on the target genomic se-
quence. If a sequence frequently occurring on the tar-
get genome is used as a primer, a lot of unexpected
products are amplified. Namely, the important signal
could be subdued by much noise. Thus, as for the
target specific primer, we claim the following charac-
teristics:

1. The 3’-end sequence of the primer must exist
only once on the whole genome, namely it must
be unique.

2. The unique sequence must be as short as possi-
ble.

2.2 Specificity of sequence as a pair of
primers

In this part, at first, we discuss the condition of PCR
products. Next, the condition of a sequence-pair am-
plifying a unique product in PCR is described.

In PCR, in order to amplify the partial sequence
that we desire, we can use two oligo sequences as a
pair of primers. The partial sequence sandwiched be-
tween one primer and the other is amplified.

forward primer
a non-target gene

reverse primer

Figure 2: The illustration on how PCR works. Both
primers hybridize with a non-target gene.

Figure 2 and 3 illustrate how PCR works. In Fig-
ure 2, the consecutive sequence in the 3’-end region of
a forward primer is matching the partial sequence of a
non-target. That of the reverse primer is also match-
ing the partial sequence of the non-target. On this
condition, both primers possibly hybridize with the
non-target gene and the elongation reaction probably
begins on both sequences. After n cycles of PCR, the
quantity of its wrong product grows by the factor of
2",
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Figure 3: The illustration on how PCR works. one of
the primers hybridizes with a non-target gene.

To the contrary, as shown in Figure 3, when either
forward primer or reverse one is specific, it is diffi-
cult for the polymerase to accomplish the reaction.
When one primer is not matching the non-target,
even if the other primer is matching, the quantity
of its wrong product is proportional to at most 2n
after n-cycle PCR. Thus, in PCR, only when the mis-
hybiridization reaction on both primers takes place,
the wrong product is amplified. Namely, we can say
that the reaction induced by 2 sequences contributes
to the total reaction in PCR. In other words, the elon-
gation reaction in PCR is influenced by the specificity
of 2 sequences. Hence, we must select the sequence
that has a unique and short sequence on either edge
as an optimal sequence.

Besides that, the amplified product can be distin-
guished in length. Even if several regions of target
or non-target genes are amplified at a time, it is still
possible to discern their existence by observing their
product length. In other words, we can distinguish
the specific product from among the others by looking
at their length by means of electrophoresis. Inversely
speaking, it is necessary to circumvent the possibility



of wrong PCR products whose length is the exactly
same as that of the target. Therefore, we must take
into consideration the uniqueness of product length.
In short, the following is required.

1. The edge sequences of a product must be unique.

2. The uniqueness of product length must be taken
into account.

3. These unique sequences must be as short as pos-
sible.

3 Local Frequency of Occurrence (LFO)

In this section, we propose a method by which se-
quence candidates are selected. This method is ap-
plied for selecting a sequence as a primer itself. In
this part, we discuss a problem of some primer design
methods existing now. As one of the solutions, we
introduce local frequency of occurrence and apply it
for primer sequence selection.

First of all, we glance at problems on the sequence
design method that exists up to now. The method
based on frequency of occurrence is shown. Secondly,
the way of finding genuinely unique sequences on a
target genome is discussed. Thirdly, we discuss the
problem brought about by these means. Finally, we
describe how to circumvent this problem and propose
a sequence evaluation method.

3.1 Frequency of Occurrence method (FO)

The following strategy is one of the classical but pop-
ular methods of designing primers. At first, one finds
short sequences whose frequency of occurrence is low,
namely, which occur rarely on the whole genome.
Next, an adequate primer sequence composed of such
short sequences is selected. This method is called
frequency of occurrence method (FO). In FO, how-
ever, an grave discrepancy exists. It is not sure
whether the sequence composed of low frequent se-
quences uniquely exists on the whole genome or not.
In other words, in the above method, the uniqueness
of the primer is not guaranteed.

Let wus consider the
tttegtttgegetaactagegttt-3'. When the window
size of FO is 1, nucleotide ’a’, ’c’, ’g’ and ’t’ happen
3, 5, 5 and 11 times on the genome, respectively.
Now, we make a primer whose length is 3 on the
genome by taking into account the value of FO. The
value of FO is evaluated as follows. For example,
‘act’ consists of ’a’, ’c’ and ’t’, thus, the value of
FO of ’atc’ is 3+5+11 = 19. In the same manner,
the value of FO of ’gcg’ is 5+5+5 = 15. At this
time, the problem of the evaluation based on FO
has occurred. Looking at the value of FO of each
sequence, the value of ’act’ is more than that of
’geg’. If the specificity of the sequences is judged by
the value of FO, it seems that the latter one, 'gcg’,
is superior to the former one, ’act’. However, ’gcg’
occurs twice on the genome, namely, ’gcg’ is not
unique. If this sequence is used in PCR, unexpected
genes are possibly amplified. On the other hand, ’act’
is unique on the genome. In short, the uniqueness of
the sequence can not be ensured on the basis of the
value of FO. Even if the larger window size is used,
the same problem happens. Furthermore, in general,
the size of FO table is proportional to that of hash
table. Hence, the larger the window size is, the more
difficulties in memory we have to deal with.

short genome 5-

3.2 Finding unique sequences

Therefore, we must conceive a method to ensure the
uniqueness of primer. Now, we can take an effec-
tive strategy so as to find unique sequences on the
whole genome. As a method to discover a unique
sequence on the genome, there are some algorithms.
One is the method by using suffix tree (or suffix array)
(Fugen 2001), the other is the method by using radix
sort, which we proposed (Kurata 2002, Hosaka 2001).
In these methods, we can find genuinely unique se-
quences on the entire genome. However, the problem
on how to evaluate the specificity of unique sequences
is left to be solved. In our previous method, we make
use of the length of unique sequences as the crite-
rion of selection. The unique sequence whose length
is as short as possible is selected. In this method,
however, we can not evaluate the specificity of the el-
ements composing the unique sequence. That is to
say, even if a unique sequence is found, it is possible
that a part of the sequence might match many other
parts of the entire genome. Moreover, even if we use
the value of FO as the criterion, this problem can
not be resolved. Let us consider again the genome 5’-
tttegtttgegetaactagegttt-3’. There are sequence ’acta’
and ’tcg’ on the genome. Both of them are unique.
If these sequences are compared in length, ’acta’ is
longer than ’tcg’. Hence, it seems that the sequence
’tcg’ is superior to the sequence ’acta’ based on the
criterion of length. Next, we calculate the value of FO
for each sequence. The value of FO of ’tcg’ is 114545
= 21. On the other hand, the value of FO of ’acta’ is
3+5+11+3 = 22. If the criterion based on the value of
FO is applied to these unique sequences, it seems that
the sequence ’tcg’ is more suitable for a primer than
the sequence ’acta’. However, in PCR, the hybridiza-
tion reaction in the region near the 3’-end of primer is
most important. The partial sequence ’cg’, which ex-
ists in the 3’-end region of 'tcg’, occurs 3 times on the
genome. But the partial sequence ’ta’, which exists
in the 3’-end region of ’acta’, occurs twice. Thus, in
the 3’-end region, it is said that the mis-hybridization
reaction of ’tcg’ happens more frequently than that
of 'acta’. This problem is caused by evaluating the
specificity on the basis of the calculated values of FO
on the whole genome.

3.3 Local Frequency of Occurrence method
(LFO)

In order to avoid the above risk, we propose a method
to calculate the value of Local Frequency of Occur-
rence (LFO) and use it as the criterion. The value
of LFO of a sequence represents the value of FO cal-
culated on the local sequence, not as a whole. In
the following, we explain this method. In hybridiza-
tion reaction, the length of the matching sequence
is the most important factor. On the other hand,
the short sequence frequently existing on the target
genome does not befit a partial sequence of a primer.

Figure 4 illustrates on the length of unique se-
quences and its LFO. Now, let us hash the genome
5’-tttegtttgegetaactagegttt-3’ on the basis of each nu-
cleotide. When it comes to the way of hashing all
the sequences, we discussed it in our previous work
(Kurata 2002) and we explain it in the following sec-
tion.

As shown on the left of this figure, there are 5 se-
quences having the hash-key sequence ’g’ on the en-
tire genome. In the same manner, as shown on the
right, we can find 3 sequences having the other hash-
key sequence 'a’. When we select proper sequences
on the basis of the length of unique sequence as we
proposed formerly, the partial sequence ’tcg’ on the
genome is more suitable for a primer than ’acta’, be-



hash-key
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Figure 4: The illustration on the length of unique
sequences and its local frequency of occurrence. On
the left, 5 sequences having the same hash-key ’g’
exist. The length of the unique sequence on the most
upper part is 3. On the right, 3 sequences having
the same hash-key ’a’ exist. The length of the unique
sequence on the most upper part is 4.

cause the length of 'tcg’ is shorter than that of ’acta’
as a unique sequence. However, when paying atten-
tion to each hash-key, we find that the hash-key ’g’
appears 5 times, on the other hand, the hash-key ’a’
appears 3 times. Even if the sequence ’tcg’ is used
as a primer, the sequence itself is certainly unique.
But judged by the hash-key, this sequence has more
probability of hybridization in the 3’-end region than
the sequence ’acta’ has. In short, we would like to
distinguish these sequences on the basis of the local
frequency of occurrence.

In order to resolve this problem, we propose the
following evaluation method. The length of hash-key
H is defined as |H|. The number of the sequence
existing on the target genome followed by the hash-
key sequence H at the 3’-end, whose total length
is I + |H|, is assigned to |sequence(l; H)|. Namely,
sequence(0; H) represents the hash-key H. For in-
stance, when the hash-key sequence is assigned to ’g’,
atg(0;’g’) =g, atg(1;’g’) = ’tg’ and atg(2;'g’) = ’atg’.

In other words, | represents the position from the
5’-end of the hash-key. Here, we define the following
function.

ul

firo(sequence) = Z log |sequence(i; H)|
=0

ul stands for the unique length of this sequence.
Namely, when the length of this sequence is beyond
this value, it becomes unique on the target genome.
This function is easily implemented into our pro-
posed sorting method (Kurata 2002). As for the im-
plementation, we show it in the following section.
Here, we evaluate the sequences discussed above by
using this function. The value calculated for the
partial sequence ’tcg’ on the genome is fif,(tcg) =
lg| + lcg| + |tcg] = logh + log3 + logl = log15.
he value calculated for the partial sequence ’acta’
is fifo(acta) = |a| + |ta] + |cta] + |acta] = log3 +
log2 +log2 + log1l = log 12. Therefore, if evaluated
by the value based on the above function, the value
of ’acta’ is less than that of 'tcg’, that is to say, the
latter one is evaluated as the more suitable sequence.

4 Algorithm

The goal is to find a unique sequence as short as possi-
ble, which exists only once on the target genes. More-
over, we require that the value of LFO of the unique
sequence should be small. It is computationally de-
manding to naively compare all partial sequences of

the target genes with one another. Hence, we take
the following strategy to find such sequences rapidly.
First of all, the total task is decomposed into small
jobs. The number of the combinations of sequences
to be compared with each other is reduced by hashing
all the genomic information. Each job is allotted to
one of Computing Elements (CEs) on the Data Grid.
Next, an algorithm like radix sort processes the com-
parison among sequences on each computing element.
Finally, all the results are gathered and candidate se-
quences are selected.

Our method is composed of 4 steps, described as
follows: (1) make a Look Up Table (LUT) from the
whole genomic information; (2) arrange the calcula-
tion on the European Data Grid (EDG); (3) calculate
unique sequence length (USL) and local frequency of
occurrence (LFO) by using the algorithm like radix
sort; (4) select the candidate sequences for a primer.

4.1 Construction of LUT

In this part, we describe the way of constructing Look
Up Table(LUT). Firstly, we explain how to make a
LUT for primer itself. Secondly, we describe how to
make a LUT for primer-pair.

4.1.1 LUT for primer itself

First of all, a LUT is made by using the information
of all the target genes.

hash-key
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Figure 5: This illustration shows how to assign a
hash-key sequence on target gene sequences. Each
partial sequence on the targets is allotted to a hash-
key sequence. These hash-key sequences are used as
the 3’-end sequence of a primer. The matching length
from the 5-end of the hash-key sequence is given as
unique length (ul).

The hybridization of the consecutive sequence in
the 3’-end region is the most important in the total
reaction. In other words, the hybridization reaction in
the 3’-end region is more critical than the reaction in
the 5’-end region. Therefore, as shown in Figure 5, we
assign each hash-key sequence to the 3’-end sequence
of a primer. The matching length from the 5-end of
the hash-key sequence is given as unique length (ul).
Now, an outline is given as follows.

Suppose that there is an organism that has [
genes. The gene of the target organism is described
as g;,¢t = 1,...1. The length of each gene is given as
|g;| = m; and the nucleotide of position j from the 5’-
end of gene ¢ is specified as g;(j), g:(j) € {a,t,g,c}.
Now, a LUT for all the positions of all the genes,
ji=1,...,m;,i=1,...,l,is made. Each subsequence
9i(j) ... g1( + h —1) of position j from the 5’-end of
gene 4 is used as the hash-key sequence for LUT (4, 7).
Now, the hash-key sequence is assigned to the 3’-end
region of primer, as shown in Figure 5. The length of
the hash-key sequence is h, so that the size of the 3’-
end region is h. The LUT includes the pointer to the



next position at which the same hash-key sequence
appears. All the positions that have the same hash-
key sequence are quickly found only by searching the
LUT. The size of the LUT is proportional to that of
the genome.

An example of the algorithm in detail is shown as
follows. Let us assume that there is an organism that
has a very short genome ”5’-ttaacaagtcaagtcaagacaa-
3””. Here, the size of hash-key is appointed 2, namely,
h=2.

Position: 0 1 2 3
Sequence: t t a a
LUT :-1-15 1

-

9 10
c
1

_p o
oy~
ot o

4 5
c a
9 1

=

8 0 11 12 13 14 15

Position: 11 12 13 14 15 16 17 18 19 20 21
Sequence: 2 g t ¢ a a g a ¢ a a
LUT : 16 -1 -119 20 -1 -1 -1 -1 -1 -1

Table 1: An example of the LUT for primer itself

The LUT is composed as shown in Table 1. ’-1’
means terminal signal in LUT. If this signal occurs
in LUT, after that, no sequence including the same
hash-key sequence exists. Now, let us find the hash-
key sequence, ’aa’. At first, this sequence appears at
position 2. Next, we can find it at position 5 on the
genomic sequence only by looking at the LUT. The
pointer to the next position is given at the position
2 of the LUT. Similarly, all the positions, 10, 15 and
20, where ’aa’ appears, are found by using the LUT.

4.1.2 LUT for pair of primers

Here, we explain how a LUT for primer-pairs is made
by using the whole genomic information of the tar-
get organism. As described above, the hybridization
of the consecutive sequence in the 3’-end region of a
primer is most important in the total PCR. More-
over, the uniqueness of the product length must be
ensured.

ulB

primer

. primer
inner-sequence

hash-key

Figure 6: This illustration shows how to assign a
hash-key sequence on target gene sequences. The se-
quence composed of both edge sequences of all par-
tial sequences on the targets are allotted to a hash-
key sequence. Namely, The concatenated sequence A
+ B is used as the hash-key sequence. These hash-
key sequences are used as the 3’-end sequence of each
primer. The matching length from the hash-key se-
quence in each direction is given as the unique length
of A (ulA) or the unique length of B (ulB), respec-
tively. The size of ulA + ulB is used as the criterion
similar to the unique length discussed in the previous
section.

Therefore, as shown in Figure 6, we make a hash-
key sequence by concatenating one edge sequence
with the other one on a PCR product when making
LUT. Namely, we use the sequence A + B as a hash-
key. Now, we call the sequence intercalated between
A and B “inner-sequence”. As shown in this figure,

the 3’-end sequence of the forward primer is sequence
A and that of the reverse primer is sequence B. On
one hand, we can select a large value as the length
of inner-sequence in order to amplify a sequence for
cloning and sequencing. On the other hand, we can
select a small value in order to amplify a sequence for
gene expression pattern observation in PCR. Besides
that, when the size of inner-sequence is assigned to
0, we can evaluate the specificity of the probes for
Ligase Chain Reaction (LCR).

The LUT is made as follows. Suppose that there is
an organism that has [ genes. The gene of the target
organism is described as g;,i = 1,...l. The length
of each gene is given as |g;| = m; and the nucleotide
of position j from the 5-end of gene i is specified
as 9:(5), 9:(j) € { at,g,c }. Now, LUT for all the
positions of all the genes, j =1,...,m;,i=1,...,1,is
made. Each subsequence g;(5) - .. g:(j+h—1)g;(j+h+
8)...gi(j+2h+s—1) of position j from the 5-end of
gene 7 is used as the hash-key sequence for LUT (i, 7).
The length of the hash-key sequence is assigned to 2h,
that is, the length of A + B is 2h. The length of the
inner-sequence is s. LUT includes a pointer to the
next position at which the same hash-key sequence
appears. All the positions that have the same hash-
key sequence are quickly found only by searching the
LUT. The size of the LUT is proportional to that of
the target.

An example of the algorithm in detail is
shown as follows. Let us assume that there is
the organism that has a very short genome ”5’-
tgaatgcgaaccccaacgegaataccaacgctaatat-3’”.  Here,
the size of hash-key is appointed 2, h = 2. Namely,
each of the 3’-end sequence of the primer is 2. The
size of inner-sequence is 4, namely, s = 4.

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Sequence: t g a a t g c a a c c c c a a ¢
LUT :-1-19 22-1-1-1-115-1-1-1-1-121-129 -1

Position: 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Sequence: ¢ g a a t a c¢c ¢c a a c¢c g c t a a t a
LUT :-1-127-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

Table 2: An example of the LUT for pair of primers

The LUT is composed as shown in Table 2. ’-1’
means terminal signal in LUT. If this signal occurs in
LUT, after that, no sequence including the same hash-
key sequence exists. Now, let us find the hash-key se-
quence, ’aaaa’, namely sequence ’aa----aa’. Here,
’----? means an arbitrary sequence whose length is
4. At first, this sequence appears at position 3. Next,
we can find it at position 9 on the genomic sequence
only by looking at the LUT. The pointer to the next
position is given at position 3 of the LUT. Similarly,
all the positions, 15, 21 and 27, where ’aa----aa’
appears, are found by using the LUT.

4.2 Deployment on the European Data Grid

The goal of the European Data Grid Project (Segal
2000) is the development of a novel environment to
support globally distributed scientific exploration in-
volving multi-PetaByte datasets. The project is de-
signing and developing middle-ware solutions and
testbeds capable of scaling to handle PetaBytes of
distributed data, tens of thousands of resources (pro-
cessors, disks, etc.), and thousands of simultaneous
users. DataGrid biomedical work package gathers bi-
ologists, computer scientists, physicians and physi-
cists around the common goal of deploying a biomed-
ical grid (Breton 2001) .

We describe the structure of the European Data
Grid (EDG) here. The EDG is mainly composed of
4 computing elements: User Interface (UI), Resource



Figure 7: The illustration on the working flow upon
the Data Grid. UI, RB, CE and SE mean User Inter-
face, Resource Broker, Computing Element and Stor-
age Element, respectively.

Broker(RB), Computer Element(CE) and Storage El-
ement(SE). At first, a user belonging to the EDG can
contact with all the machine through a UI machine
in place. On the UI machine, all the necessary com-
mands to issue jobs upon the EDG are furnished. In
other words, all the users hoping to process their jobs
on the EDG have to use a Ul machine as an entrance
for this environment. Next, all the jobs issued with
the UT are sent to a RB machine. The RB machine
having received the commands from the UI seeks for
available computer resources, that is, CEs, and sched-
ules all the jobs. When the RB machine finds an
available CE, it sends one of the jobs to this CE. The
CE machine processes the received jobs. If the CE
machine is ordered to use some databases, it seeks for
the SE having the requested data and orders them.
Finally, the termination of the calculation is reported
to the UI through the RB and the user can gather all
the results on the UI machine.

In this research, at first, we issue all the jobs
through a UI, as shown in Figure 7. Secondly, the
whole task is decomposed into some smaller tasks on
the basis of the hash-key discussed above. The ma-
chine contacts a RB and each task is distributed to
one of the available CEs. In each CE, the following is
processed.

4.3 Calculation of Unique Sequence Length
(USL) and Local Frequency of Occur-
rence (LFO)

Next, unique sequence length is calculated at all the
positions of the target genes. In addition, as men-
tioned above, the value of local frequency of occur-
rence of each unique sequence is also calculated. We
have already proposed the method to find unique se-
quences on the whole genome (Kurata 2002). Here,
we improve our previously proposed method to be
able to calculate the value of LFO. In this section,
at first, the method of calculating USL and LFO for
primer itself is shown. Next, the calculation method
for a pair of primers is discussed.

4.3.1 Calculation of USL and LFO for primer
itself

Here, the problem is how to calculate the value of
USL and LFO. The method that naively compares
all the sequences with each other spends a great deal
of computation time. Thus, we propose an effective
method to calculate the value of LFO by using an
algorithm based on radix sort.

Now, as shown in Figure 5, let us consider subse-
quence g, (k) - - - i, (4x + h—1) of gene g;, as a hash-
key sequence. The hash-key sequence is assigned to
the sequence of the 3’-end region of primer. Suppose

that the hash-key sequence appears n times on the en-
tire genome as subsequence H = g;, (jk) - - - 9i, (Jr +
h—1) of gene g;,, k={1,...,n}.

Here, the following comparison is done for every
hash-key. In the following, :=’ represents substitu-
tion. [fo represents the value of LFO. Here, unique
length (ul) is the matching length from the 5’-end of
the hash-key. N = {1,...,n} is the set of all the posi-
tions where the same hash-key occurs. R, is a subset
of set N, and r = {a,c,g,t}. r signifies the name of
sorting buckets. Here, before sorting, the following
substitution is executed. si(z) := g;, (Jr — x),k =
{1,...n},z = {1,...Th}. Th means the threshold
where the comparison stops.

Initially, ul := 0,{fo = 0. The following sorting
function is executed.

SORT(N, ul, lfo)
1. wl:=ul +1.

2. If the size of N is 1, then subsequence
sg(ul)...sg(1)H,k € N is a unique sequence,
whose length is ul + h and whose value of LFO
islfo.

3. lfo:=1fo+1og(|N|). |N| represents the size of
N.

4. Initially, R, := ¢ for all the elements of r =
{a,c,g,t}, and the following is done for all the
elements of N, k € N,r = {a,c,g,t}.

(a) If sg(ul) is nucleotide ’a’, then R, := R, Dk.
(b) If sg(ul) is nucleotide 'c’, then R, := R ® k.
(c) If sg(wl) is nucleotide 'g’, then R, := R, ®k.
(d) If sg(ul) is nucleotide ’t’, then Ry := R; D k.

5. If the size of R, is more than 1, then call the
function, SORT (R,,ul,lfo) .

6. If the size of R, is more than 1, then call the
function, SORT (R.,ul,lfo) .

7. If the size of R, is more than 1, then call the
function, SORT (R, ul,lfo) .

8. If the size of R; is more than 1, then call the
function, SORT (R;, ul,lfo) .

The minimum length of a unique sequence and its
value of local frequency of occurrence are calculated
by the above method.

For example, here, we consider the genome 5’-
tttegtttgegetaactagegttt-3’.  Now, the size of hash-
key is 1. Here, let us make a comparison among the
partial sequences including hash-key ’g’. 5 partial se-
quences including ’g’ are found on this genome by us-
ing its LUT. Now, the comparison is executed using
the proposed algorithm as follows. 5 partial sequences
including ’g’ are shown in Table 3.

1 ttteg
tttegtttg

tttegtttgeg
tttegtttgegetaactag
tttegtttgegetaactageg

Table 3: An example of the proposed sorting algo-
rithm: 5 partial sequences including ’g’

Since there are 5 sequences, the initial value of
LFO of these sequences is log(5) = 1.61. At first,
these sequences are sorted on the basis of their char-
acter left to the hash-key sequence ’g’ as shown in
Table 4.



LFO sequence
1] 1.61 tttegtt-t-g
2] 1.61 tttcgtttgegetaact-a-g

ttt-c-g
3| 1.61 tttegtttg-c-g
tttegtttgegetaactag-c-g

Table 4: An example of the proposed sorting algo-
rithm: the sequences sorted on the basis of their char-
acter left to the hash-key sequence ’g’

The sequences that have character 't’ are sorted
in row 1. The sequences that have character ’a’ are
sorted in row 2. Now, there is only one sequence
in row 1 and row 2. Hence, the sequence ’tg’ and
’ag’ are unique. Their final value of LFO is 1.61.
The sequences that have character ’c’ left to the hash-
key are sorted in the bottom row. Since there are 3
sequences in this row, log(3) = 1.10 is added to the
value of LFO of these sequences. Next, the sequences
are sorted in row 3 on the basis of the second character
from the hash-key ’g’. The result is shown in Table
5.

LFO sequence

1] 1.61 tttegtt-t-g
2] 1.61 tttcgtttgegetaact-a-g
3| 271 tt-t-cg
41271 tttegttt-g-cg
tttegtttgegetaacta-g-cg

Table 5: An example of the proposed sorting algo-
rithm: the sequences sorted on the basis of the second
character from the hash-key sequence ’g’

The sequences that have character 't’ are sorted
in row 3. Now, there is only one sequence in row 3.
Hence, the sequence ’tcg’ is unique. Its final value
of LFO is 2.71. The sequences that have character
’g’ are sorted in the bottom row. Since there are 2
sequences in this row, log(2) = 0.69 is added to the
value of LFO of these sequences.

Finally, These sequences are sorted in the same
manner in each row until all the sequences become
unique or ul reaches the given threshold. The result
is shown Table 6

USL | LFO sequence
1 2 1.61 tttegtt-t-g
2 2 1.61 tttegtttgegetaact-a-g
3] 3 2.71 tt-t-cg
4 4 3.40 tttegtt-t-geg
5 4 3.40 | tttcgtttgegetaact-a-geg

Table 6: The result of the example of the proposed
sorting algorithm. USL means the length of unique
sequence. LFO means the value of local frequency of
occurrence.

By means of this, we can calculate the length of
all the unique sequences on the whole genome. Fur-
thermore, we can calculate the value of LFO simulta-
neously.

In the same way, we compare partial sequences
with each other according to each hash-key sequence.
The final results are shown in Table 7.

When looking at Table 7, we can find out that the
unique sequences whose length is short do not always
have small value in LFO. The length of the unique
sequence ’tgc’ is the same as that of ’gct’ Hence, on
the basis of the length of these unique sequence, we

USL LFO sequence
4 2.484910 gcta
2 1.098610 aa
4 2.484910 acta
2 1.609440 tc
3 | 2.708050 tge
3 2.708050 cge
2 1.609440 ac
3 2.708050 agce
3 2.708050 tcg
2 1.609440 tg
4 3.401200 tgeg
2 1.609440 ag
4 3.401200 ageg
4 ] 3.784190 tegt
5 | 5.575950 tegtt
6 | 6.674560 tegttt
3 3.091040 get
3 | 3.091040 act
4 ] 3.784190 gegt
5 5.575950 gegtt
6 | 6.674560 gegttt

Table 7: The final result of the example of the pro-
posed sorting algorithm.

can not distinguish the specificity of ’tgc’ from that
of ’gct’. Moreover, if the value of FO is calculated
for each sequence on condition that the window size
of FO should be 1, similarly, these unique sequences
can not be classified. However, the value of LFO of
the sequence ’tgc’ is smaller than that of ’gct’. Hence,
’tgc’ is superior to ’get’ in our criterion. Furthermore,
the value of LFO of the sequence ’acta’ is smaller
than that of *tgc’. If the specificity of the sequences
is evaluated by their length, ’acta’ should be inferior
to ’tgc’ and ’get’. However, ’acta’ is superior to ’tgc’
and ’gct’ in our criterion.

4.3.2 Calculation of USL and LFO for

primer-pair

Here, the method to calculate USL and LFO for
primer-pair is shown.

Now, as shown in Figure 6, let us consider subse-
quence gik(j) .- -gik(j+h_ 1)g’lk(J+h+S) .- 'gik(j+
2h + s — 1) of gene g;, as a hash-key sequence. The
hash-key sequence is assigned to the sequence of the
3’-end region of primer. Suppose that a hash-key se-
quence, H, appears n times on the genome as subse-
quence gik(j) .- -gik(j+h_ 1)glk(.7+h+5) - g‘lk(J+
2h+s—1) of gene g;,, k={1,...,n}.

Here, the following is done for every hash-key. In

the following, *:=’ represents substitution.
sk(2z—1) = gi(jr — @)
sk(22) = i,k +2h+s—1+2)
E={1,...n}
x={1,...Th}

Th means the threshold where the comparison stops.

Initially, ul := 0,1fo = 0. [ fo represents the value
of LFO. Here, unique length (ul) stands for the total
matching length, ulA + ulB, as shown in Figure 6.
In other words, ulA represents the matching length
from the 5’-end of the hash-key and ulB represents
the matching length from the 3’-end of the hash-key.
N = {1,...,n} is the set of all the positions where
the same hash-key occurs. R, is a subset of set IV,
and r = {a,c,g,t}. r signifies the name of sorting



buckets. Now, the same sorting function as described
in the preceding section, SORT (N, ul,lfo) , is called.

In regard with the sorting method to design a pair
of primers, we have already discussed it in our recent
work (Kurata 2002).

4.4 Sequence selection for primer

Finally, we select the sequences that have the small
value of LFO. A partial sequence whose value of LFO
is small befits a primer candidate. This operation is
executed on the entire target genome.

5 Implementation

In this section, we describe the program executing
the proposed method and its implementation on the
EDG. At first, we describe the computing environ-
ment used in this work. Next, the working flow of the
program is shown.

5.1 Calculation environment

The environment of the European Data Grid was in-
stalled and configured with LCFG server box (Iven
2002). LCFG is one of the standard installation sys-
tems of the Data Grid environment. Once the LCFG
server is installed, it automatically provides all the
client machines with all the provisions to bootstrap.
Moreover, all the client machines are automatically
maintained and configured by the LCFG server. In
this research, the Data Grid environment based on
Globus 2 beta was installed through the LCFG server.
All the main elements, such as User Interface (UI),
Computing Element SCE), Storage Element (SE) and
Working Node (WN) are installed and configured
with this system. For the moment, Redhat Linux
6.2 is supposed to be installed into all the machines
used on the Data Grid environment.

As of the sequence analysis program for selecting
the sequences, it was written in C++. This program
consists of 2 main modules. The first module works
in order to hash the entire target genomic informa-
tion and classify it into some smaller sets of partial
sequences. The second module processes one of the
sets derived from the entire target genomic informa-
tion by the first module. It sorts all the input data
and outputs the length of the unique sequences to-
gether with the value of LFO of them.

In order to implement this program onto the Data
Grid environment, we made use of Job Description
Language (JDL). All the calculation was processed in
the environment of Figure 8.

First of all, we issued all the commands from the
UI machine of Clermont-Ferrand located in France.
The calculation was divided into some jobs. Ev-
ery job, together with needed files, was sent to the
Resource Broker (RB) machine located in the Euro-
pean Organization for Nuclear Research (CERN) in
Switzerland. This machine scheduled and dispersed
all the jobs to available CEs on the Data Grid. Each
CE processed the job received from the RB and re-
turned the result to the UL In this experiment, some
CE machines, which are located in CERN, in the
Rutherford Appleton Laboratory (RAL) in England,
in the Instituto Nazionale di Fisica Nucleare in Italy,
in the National Institute for Nuclear Physics and
High Energy Physics (NIKHEF) in Netherlands and
in Centre de Calcul de Institut National de Physique
Nucleaire et de Physique des Particules (CC-IN2P3)
in France, were used. In other words, all the jobs are
allocated by the RB to these CEs.

CH CERN
e Sllvithzerland
I/ \rXS are
o o ;
NIKHEF \, ’

Netherlands

England
. clrglop / test bed
“.Clermont-Ferrand.- / INFN
“._France .. ! Italy

Figure 8: The illustration on the Data Grid environ-
ment used in this experiment. First of all, all the
tasks are sent to the RB from the UI. Next, the RB
allocates them to the available CEs at that time. At
last, the termination of all the calculation is reported
to the UI and all the results are gathered.

5.2 Working flow

The working flow of the program is shown in Figure

First of all, all the sequences of the target genome
is fetched from a genome database and stored on a Ul
machine. All the sequences are hashed and divided on
the basis of their hash-key on the CE. These sequences
are submitted to a RB and sent to an available CE
assigned by a RB. There exist the sequences that have
the same hash-key in each file. Next, every file is
processed with the proposed sorting method on the
CE. At this stage, the value of USL and LFO of all
the sequences are calculated. These results are sent
back to the UI machine and sorted based on the value
of LFO.

6 Result

In this section, the calculation result on the European
Data Grid is given. Some target specific sequences
selected on the basis of our criterion are shown. Fur-
thermore, the distribution of the value of USL and
LFO of a gene is shown.

6.1 TUnique sequences on FE. coli genome

We tried to design the unique sequences for 4405 open
reading frames (ORFs) of E. coli by using the pro-
posed method. The reverse sequences of all the ORF's
were also taken into consideration. Thus, the calcula-
tion was done for 8810 gene sequences. The length of
the hash-key sequence was assigned to 3. The limit of
the maximum length of unique sequence length was
assigned to 20-mer. The sequences whose length was
beyond this threshold were removed.

Table 8 shows samples of the selected sequences
with our method. These sequences in itself exist
only once on the target ORF sequences and its re-
verse ones. Namely, these sequences are unique on
the whole target. These unique sequences are shown
in order of LFO. As shown in this table, the order of
LFO of these unique sequences does not correspond
to that of their length. That is to say, a short unique
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Figure 9: The illustration on the working flow of our
program. At first, all the sequences of the target are
fetched from a genome database as a file. Second,
this file is sent on the Data Grid through the RB and
all the sequences are hashed and divided into some
smaller files on the basis of their hash-key on a CE.
Third, these sequences are sorted on CEs. At last, all
the results are reported.

sequence does not necessarily have the small value of
LFO.

6.2 Distribution of LFO
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Figure 10: This is an example of the distribution of
USL on the sequence of the ORF, SSB. The axis of
abscissas represents the position from the 5-end of
the sequence. The axis of ordinates represents the
value of USL.

Figure 10 shows an example of the distribution of
USL on the sequence of an ORF. This ORF is the
code region of Single-Strand Binding protein (SSB)
on E. coli genome. The axis of abscissas represents
the position from 5-end of the sequence. The axis
of ordinates represents the value of USL. The partial
sequence whose value of USL is smaller is more desir-
able to be used as the 3’-end sequence of a primer in
our previous criterion. The minimum value of USL is
10. The sequences whose USL is more than Th are
omitted.

LFO sequence
27.696700 | ctgtctag
28.269300 | gttcctag
28.389800 | ggtgtctag
28.962400 | aattcctag
28.962400 | ttttcctag
29.144800 | ccgtectag
29.163000 | acgtctag
29.237100 | cgggtctag
29.256600 | gtacctag
29.374300 | agacctag
29.476900 | acctctag
29.642600 | gcggtctag
30.008100 | ctccctag
30.036500 | agactctag
30.067500 | aggacctag
30.083000 | gagctctag
30.170000 | gcectetag
30.280000 | gtatctag
30.392900 | caggcctag
30.518900 | acgccctag
30.518900 | gtcaccctag
30.531100 | atcggtcctag
30.748300 | aacctagg

Table 8: An example of the selected sequences. These
sequence are unique on the entire target. We ex-
tracted these sequences from the sequences selected
by our method. LFO means local frequency of occur-
rence.

Figure 11 shows an example of the distribution of
the value of LFO on the sequence of the ORF, SSB.
The X axis represents the position from the 5’-end of
the sequence. The Y axis represents the value of LFO
calculated by the proposed method. We can observe
that the order of most values of LFO conforms to that
of USL. On the other hand, the value of USL of the
partial sequence located around position 400 is larger
than that of the partial sequence located around posi-
tion 100. However, the value of LFO of the sequence
located around position 400 is smaller than that of
position 100. Besides that, in terms of the value of
USL, partial sequences having the peak value around
200 exist. However, their values of LFO are not max-
imum. These mean that the unique sequences whose
length is short do not always have the small value of
LFO.

7 Discussion

In our formerly proposed method, the uniqueness of
sequences was guaranteed on the whole target. This
method deduced the minimum length of every unique
sequence on the target and we used the length of the
unique sequences in order to evaluate the specificity
of them. In this work, we improved it to take into
account the rate of occurrence of sequences. In or-
der to realize this improvement, we introduced the
value of local frequency of occurrence (LFO). Hereby,
it was feasible to evaluate the unique sequences that
have the same length as each other and to distinguish
one from another. Moreover, this method calculates
the frequency of occurrence of each sequence locally,
unlike the normal frequency of occurrence method.
Hence, we can say that it is possible to attach impor-
tance to the position of the components by using this
method. We made much of the 3’-end region of the
sequence for primer and described how to realize it.
Hereafter, we will make this method take into con-
sideration single gap and single mismatch in the 5’-
end region. Besides that, we will apply this method
to probe design as well as primer design. Namely, we
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Figure 11: This is an example of the distribution of
LFO on the sequence of the ORF, SSB. The axis of
abscissas represents the position from the 5-end of
the sequence. The axis of ordinates represents the
value of LFO.

are preparing to propose a method not only to con-
sider the hybridization reaction in 3’-end region but
also to take into account the hybridization reaction of
the sequence as a whole.

As for the method to find the unique sequence,
suffix tree (or suffix array) is useful and popular one.
In effect, there are some methods to design optimal
DNA oligo primers by using suffix array (Fugen 2001).
From now on, a large amount of DNA sequences are
to be unveiled more and more. The more the quantity
of genomic information increases, the more the com-
puter power is required. Hence, it will be inevitable
not only to invent a rapid algorithm to analyze the in-
formation but also to develop methods to implement
and process it in distributed computing environment,
such as the Data Grid. In this work, we described
that our method was easy to parallelize and imple-
ment in this environment. As our future work, we
would like to propose a more effective method to find
unique and proper sequences for primers and probes
on the Data Grid. For instance, we would like to de-
velop a method to be able to deal with and analyze all
the data existing in a distributed environment at the
same time. Besides that, we would like to develop the
method to analyze biological important data, while
implementing it on the Data Grid.

The European Data Grid infrastructure is mainly
composed of UI, RB, CE and SE by default for the
time being. It is said that this infrastructure is at
the developing stage now. In this work, we mainly
used only UI, RB and CE in order to resolve the
problem. However, it seems that the quantity of
stocked genomic information should double every 8
months and its rate may accelerate. As the quan-
tity of the genomic information augments, it is being
inescapable to store the information in a distributed
fashion. Moreover, we must develop an effective way
of dealing with such a great deal of information on the
restricted network resource. Hence, we have to inves-
tigate how to process such information using SE, and
how to implement the method upon the EDG.
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