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S. Snyder,68 S. Söldner-Rembold,41 X. Song,49 Y. Song,72 L. Sonnenschein,58 A. Sopczak,39 M. Sosebee,72

K. Soustruznik,8 M. Souza,2 B. Spurlock,72 N.R. Stanton,55 J. Stark,13 J. Steele,56 G. Steinbrück,65 K. Stevenson,51

V. Stolin,34 A. Stone,48 D.A. Stoyanova,36 J. Strandberg,38 M.A. Strang,72 M. Strauss,70 R. Ströhmer,24
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We present a measurement of theW boson pair-production cross section in pp̄ collisions at a center-
of-mass energy of

√
s = 1.96 TeV. The data, collected with the Run II DØ detector, correspond

to an integrated luminosity of 224–252 pb−1 depending on the final state (e+e−, e±µ∓ or µ+µ−).
We observe 25 candidates with a background expectation of 8.1 ± 0.6(stat) ± 0.6(syst) ± 0.5(lum)
events. The probability for an upward fluctuation of the background to produce the observed signal
is 2.3 × 10−7, equivalent to 5.2 standard deviations. The measurement yields a cross section of
13.8+4.3

−3.8(stat)
+1.2

−0.9(syst)± 0.9(lum) pb, in agreement with predictions from the standard model.

PACS numbers: 13.38.Be, 14.70.Fm

The measurement of the W boson pair-production
cross section σpp̄→W+W− offers a good opportunity to
test the non-Abelian structure of the standard model
(SM). Furthermore, this measurement is sensitive to new
phenomena since anomalous trilinear couplings [1] or

the production and decay of new particles such as the
Higgs boson [2] would enhance the rate of W boson
pair-production. The next-to-leading order (NLO) cal-
culations for σpp̄→W+W− [3] predict a cross section of
12.0–13.5 pb at

√
s = 1.96 TeV. The CDF Collaboration
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reported evidence for W boson pair-production, based
on 108 pb−1 of data collected in Run I of the Fermilab
Tevatron Collider at

√
s = 1.8 TeV, with a cross section

σpp̄→W+W− = 10.2+6.3
−5.1(stat)± 1.6(syst) pb [4].

In this Letter we present a measurement of theW+W−

production cross section in leptonic final states pp̄ →
W+W− → ℓ+νℓ−ν̄ (ℓ = e, µ). We use data collected
between April 2002 and March 2004 in pp̄ collisions at√
s = 1.96 TeV of Run II of the Tevatron Collider. The

integrated luminosities are 252±16 pb−1, 235±15 pb−1,
and 224± 15 pb−1 for the e+e−, e±µ∓, and µ+µ− chan-
nels, respectively. The differences in the integrated lumi-
nosities for various channels are primarily due to different
trigger conditions.
We briefly describe the main components of the DØ

Run II detector [5] important to this analysis. The
central tracking system consists of a silicon microstrip
tracker (SMT) and a central fiber tracker (CFT), both
located within a 2.0 T axial magnetic field. The SMT
strips have a typical pitch of 50–80 µm, and the design
is optimized for tracking and vertexing over the pseu-
dorapidity range |η| < 3, where η = − ln (tan θ

2
) with

polar angle θ. The system has a six-barrel longitudinal
structure, each with a set of four silicon layers arranged
axially around the beam pipe, interspersed with sixteen
radial disks. The CFT has eight thin coaxial barrels,
each supporting two doublets of overlapping scintillating
fibers of 0.835 mm diameter, one doublet parallel to the
beam axis, the other alternating by ±3◦ relative to the
beam axis.
A liquid-argon/uranium calorimeter surrounds the

central tracking system and consists of a central calorime-
ter (CC) covering to |η| ≈ 1.1, and two end calorimeters
(EC) extending coverage for |η| < 4.2, all housed in sep-
arate cryostats [6]. Scintillators between the CC and EC
cryostats provide sampling of showers for 1.1 < |η| < 1.4.
The muon system is located outside the calorimeters

and consists of a layer of tracking detectors and scintilla-
tion trigger counters inside toroid magnets which provide
a 1.8 T magnetic field, followed by two similar layers be-
hind each toroid. Tracking in the muon system for |η| < 1
relies on 10 cm wide drift tubes [6], while 1 cm mini-drift
tubes are used for 1 < |η| < 2 [7].
The W+W− → ℓ+νℓ−ν̄ candidates are selected by

triggering on single or di-lepton events using a three level
trigger system. The first trigger level uses hardware to
select electron candidates based on energy deposition in
the electromagnetic part of the calorimeter and selects
muon candidates formed by hits in two layers of the muon
scintillator system. Digital signal processors in the sec-
ond trigger level form muon track candidate segments
defined by hits in the muon drift chambers and scintilla-
tors. At the third level, software algorithms running on a
computing farm and exploiting the full event information
are used to make the final selection of events which are
recorded for offline analysis.

In the further offline analysis electrons are identified by
electromagnetic showers in the calorimeter. These show-
ers are chosen by comparing the longitudinal and trans-
verse shower profiles to those of simulated electrons. The
showers must be isolated, deposit most of their energy in
the electromagnetic part of the calorimeter, and pass a
likelihood criterion that includes a spatial track match
and, in the CC region, an E/p requirement, where E is
the energy of the calorimeter cluster and p is the momen-
tum of the track. All electrons are required to be in the
pseudorapidity range |η| < 3.0. The transverse momen-
tum measurement of the electrons is based on calorimeter
cell energy information.
Muon tracks are reconstructed from hits in the wire

chambers and scintillators in the muon system and must
match a track in the central tracker. To select isolated
muons, the scalar sum of the transverse momentum of all
tracks other than that of the muon in a cone of R = 0.5
around the muon track must be less than 4 GeV, where
R =

√

(∆φ)2 + (∆η)2 and φ is the azimuthal angle.
Muon detection is restricted to the coverage of the muon
system |η| < 2.0. Muons from cosmic rays are rejected by
requiring a timing criterion on the hits in the scintillator
layers as well as applying restrictions on the position of
the muon track with respect to the primary vertex.
The decay of two W bosons into electrons or muons

results in three different final states e+e− +X (ee chan-
nel), e±µ∓+X (eµ channel), and µ+µ−+X (µµ channel),
each of which consists of two oppositely charged isolated
high transverse momentum, pT , leptons and large miss-
ing transverse energy, E/T , due to the escaping neutri-
nos. The selection criteria for each channel were chosen
to maximize the the expected signal significance, while
keeping high efficiency for WW production.
In all three channels, two leptons originating from the

same vertex are required to be of opposite charge, and
must have pT > 20 GeV for the leading lepton and pT
> 15 GeV for the trailing one. Figure 1 shows the
good agreement between data and Monte Carlo (MC)
in E/T distributions for the ee channel (a), the µµ chan-
nel (c) and the eµ channel (e) after applying the lepton
transverse momentum cuts. In all cases, the background
is largely dominated by Z/γ∗ production which is sup-
pressed by requiring the E/T to be greater than 30 GeV,
40 GeV, and 20 GeV in the ee, µµ, and eµ channels,
respectively. The different cut values among the three
channels are due to the different momentum resolution
of electrons and muons.
In the ee channel, additional cuts are applied to

further reduce the Z/γ∗ background and other back-
grounds. The minimal transverse mass mmin

T =
min(me1

T ,me2
T ) must exceed 60 GeV, where mT =

√

2E/T p
e
T (1 − cos∆φ(peT , E/T )). Events are removed if the

invariant di-electron mass is between 76 and 106 GeV.
Events are also removed if the E/T has a large contribution
from the mismeasurement of jet energy, using the follow-
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ing procedure. The fluctuation in the measurement of jet
energy in the transverse plane can be approximated by
∆Ejet ·sin θjet where ∆Ejet is proportional to

√
Ejet. The

opening angle ∆φ (jet, E/T ) between this projected energy
fluctuation and the missing transverse energy provides
a measure of the contribution of the jet to the missing
transverse energy. The scaled missing transverse energy
defined as

E/ScT =
E/T

√

∑

jets (∆Ejet · sin θjet · cos∆φ (jet, E/T ))
2

(1)

is required to be greater than 15. Finally, to suppress
the background from tt̄ production, the scalar sum of
the transverse energies of all jets with Ejet

T > 20 GeV
and |η| < 2.5, HT , is required to be less than 50 GeV.
Figure 1(b) shows the E/T distribution after the final se-
lection without applying the E/T criterion for the ee chan-
nel, and Fig. 2(a) shows the distribution of the minimal
transverse mass after applying all selection criteria ex-
cept the cut on the minimal transverse mass. Six events
remain in the ee data sample after all of these cuts are
applied.
For the µµ channel, to further reduce the Z/γ∗ back-

ground, only events with an invariant di-muon mass be-
tween 20 and 80 GeV are retained. Since the momentum
resolution is worsening for high pT tracks, an additional
constrained fit is performed to reject events compatible
with Z boson production. The opening angle between
the two muons in the transverse plane is required to be
∆φµµ < 2.4. Finally, requiring HT < 100 GeV removes
the remaining background from tt̄ events. Figure 1(d)
shows the E/T distribution after the final selection with-
out applying the E/T criterion for the µµ channel. Four
events are observed in the µµ data sample after applica-
tion of all selection criteria.
In the eµ channel, to suppress the WZ and ZZ back-

ground, events are rejected if a third lepton is found
and the invariant mass of two leptons of the same fla-
vor and opposite charge is in the range from 61 to
121 GeV. To remove background from multijet produc-
tion and Z/γ∗ → ττ events, the minimal transverse mass
mmin

T = min(me
T ,m

µ
T ) must exceed 20 GeV. The remain-

ing Z/γ∗ → ττ events are suppressed by removing events

with E/
Sc

T < 15. Requiring HT < 50 GeV rejects most of
the tt̄ events. To remove W + γ events in which photons
convert to electron-positron pairs, at least three hits in
the silicon tracker are required for the electron track if
the transverse mass determined from the muon and E/T is
consistent with theW boson transverse mass. Figure 1(f)
shows the E/T distribution after the final selection with-
out applying the E/T criterion for the eµ channel, whereas
Fig. 2(b) shows the distribution of the minimal transverse
mass after applying all selection criteria except the cut
on the minimal transverse mass. Fifteen events survive
the final selection criteria in the eµ data sample.
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FIG. 1: Distribution of the missing transverse energy E/
T

after applying the initial transverse momentum cuts in the (a)
ee, (c) µµ, and (e) eµ channel. Figures (b), (d), and (f) show
the E/

T
distributions after the final selection except for the

E/
T
criterion for the ee, µµ, and eµ channel, respectively. The

arrows indicate the cut values. QCD contribution is negligible
in Figs. (c) and (d).

The efficiency for WW signal events to pass the ac-
ceptance and kinematic criteria is determined using the
pythia 6.2 [8] event generator followed by a detailed
geant-based [9] simulation of the DØ detector. All trig-
ger and reconstruction efficiencies are derived from the
data. For the ee channel, the overall detection efficiency
is (8.76± 0.13)%. The overall efficiencies for the µµ and
eµ channels are (6.22± 0.15)% and (15.40± 0.20)%, re-
spectively. Using an NLO cross section of 13.5 pb [3] and
branching fractions B of 0.1072±0.0016 for W → eν and
0.1057±0.0022 for W → µν [10], the expected number of
events for the pair production of W bosons combined for
all three channels is 16.6±0.1(stat)±0.6(syst)±1.1(lum)
events, where the statistical error is given by the statis-
tics of the MC sample. The signal breakdown for the
three channels is given by the first line of Table I.

Background contributions from Z/γ∗, W+jet/γ, tt̄,
WZ and ZZ events are estimated using the pythia event
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FIG. 2: Distribution of the minimal transverse mass mmin
T

after applying all selection criteria except the cut on mmin
T for

the (a) ee and the (b) eµ channel. The arrows indicate the
cut values.

generator. In addition, W+jet/γ contributions are veri-
fied using alpgen [11]. All events are processed through
the full detector simulation. The background due to mul-
tijet production, when a jet is misidentified as an elec-
tron, is determined from the data using a sample of like-
sign di-lepton events with inverted lepton quality cuts
(called QCD background in Figs. 1 and 2).

For the normalization of Z/γ∗ and W+jet/γ events,
the NNLO cross sections from Ref. [12] are used. The
cross section times branching ratio of Z/γ∗ production
in the invariant mass region 60GeV< mℓℓ< 130GeV is
σ × B = 254 pb. For inclusive W boson production
with decays into a single lepton flavor state, this value
is σ × B = 2717 pb. The NLO WZ and ZZ produc-
tion cross section values are taken from Ref. [3] with
σ ×B = 0.014 pb for WZ and σ ×B = 0.002 pb for ZZ
production with decay into a single lepton flavor state.
The calculations of Ref. [13] are used for tt̄ production
with σ×B = 0.076 pb with single flavor lepton decays of
both W bosons. A summary of the background contri-
butions together with signal expectations and events ob-
served in the data after the final selection for the individ-
ual channels is shown in Table I. The total background
sum is 8.1± 0.6(stat)± 0.6(syst)± 0.5(lum) events. The
eµ channel has both the highest signal efficiency and best
signal-to-background ratio. There is good agreement be-
tween the number of events observed in the data and the
sum of the expectations from WW production and the
various backgrounds in all three channels.

Systematic uncertainties that affect the WW produc-
tion cross section measurement are listed in Table II. In
these estimates, parameters are varied within ±1σ of the
respective theoretical or experimental errors. Sources
such as the trigger efficiency, electron and muon iden-
tification (ID) efficiencies, jet energy scale (JES), elec-
tron and muon momentum resolution, branching fraction
B(W → ℓν), cross section calculation of Z/γ∗ and tt̄
events, and the determination of W+jet/γ background
contribute to the systematic uncertainty. The pythia

Monte Carlo tends to underestimate jet multiplicities,

TABLE I: Number of signal and background events expected
and number of events observed after all selections are ap-
plied for the three channels. Only statistical uncertainties are
given.

Process ee eµ µµ
WW signal 3.42± 0.05 11.10 ± 0.10 2.10± 0.05
Z/γ∗ → ee 0.20± 0.06 — —
Z/γ∗ → µµ — 0.28 ± 0.09 1.60± 0.40
Z/γ∗ → ττ < 0.01 0.0 ± 0.1 < 0.01
tt̄ 0.18± 0.02 0.34 ± 0.03 0.09± 0.01
WZ 0.33± 0.17 0.38 ± 0.02 0.15± 0.08
ZZ 0.19± 0.06 0.02 ± 0.02 0.10± 0.04
W+jet/γ 1.40± 0.07 2.72 ± 0.07 0.01± 0.01
Multijet < 0.05 0.07 ± 0.07 < 0.05
Background sum 2.30± 0.21 3.81 ± 0.17 1.95± 0.41
Data 6 15 4

TABLE II: Systematic uncertainties for the ee, eµ, and µµ
channels.

Source Change in the WW cross section (%)
ee eµ µµ

Trigger, ID +4.7 −4.6 +3.9 −3.8 +6.2 −5.8
JES +3.2 −3.2 +1.6 −1.2 +7.2 −4.8
µ resolution − − +4.7 −2.2 +10.0 −4.1
e resolution +4.6 −2.9 +1.3 −1.1 − −
B(W → ℓν) +4.4 −3.9 +5.3 −4.6 +4.3 −4.1
σ(Z/γ∗, tt̄) +0.9 −0.7 +0.4 −0.4 +3.2 −3.2
W+jet/γ +4.0 −4.0 +3.0 −3.0 − −
Re-weighting +4.3 −4.4 − − +1.5 −1.5
Total +10.3 −9.5 +8.9 −7.3 +14.9 −10.1

since a parton-shower approach is used for initial and
final state radiation instead of the full matrix element.
To compensate for this underestimation, events are re-
weighted in the MC to reproduce the jet multiplici-
ties seen in the data. The systematic uncertainty for
this approach is determined from a measurement of the
WW production cross section with and without the re-
weighting. The total systematic uncertainties are given
in Table II. The uncertainty on the luminosity measure-
ment is 6.5%.

The cross section for W boson pair production is es-
timated using a likelihood method [14, 15] with Poisson
statistics. The cross section for each channel σpp̄→W+W−

is given by

σpp̄→W+W− =
Nobs −Nbg
∫

Ldt ·B · ǫ , (2)

where Nobs is the number of observed events, Nbg is the
expected background,

∫

Ldt is the integrated luminosity,
B is the branching fraction for W → ℓν, and ǫ is the
efficiency for the signal. The likelihood for Nobs events
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in the data is given by

L(σpp̄→W+W− , Nobs, Nbg,
∫

Ldt, B, ǫ) =
NNobs

Nobs!
e−N ,

(3)
where N is the number of signal and background events:

N = σpp̄→W+W− · B ·
∫

Ldt · ǫ +Nbg . (4)

The cross section σpp̄→W+W− is estimated by minimiz-
ing −2 lnL(σpp̄→W+W− , Nobs, Nbg,

∫

Ldt, B, ǫ). To com-
bine the channels, the individual likelihood functions are
multiplied. As a final result, the combined cross section
for WW production at a center-of-mass energy of

√
s =

1.96 TeV is

σpp̄→W+W− = 13.8+4.3
−3.8(stat)

+1.2
−0.9(syst)± 0.9(lum) pb.

(5)
This value is in good agreement with the NLO calculation
prediction of 12.0–13.5 pb at

√
s = 1.96 TeV [3].

The significance for the signal observation can be esti-
mated using the likelihood ratio method [16]. The con-
fidence levels for a background only hypothesis, CLB, is
obtained using the background expectation and the num-
ber of events observed as input. The signal significance
is extracted from 1 − CLB. The probability of an up-
ward fluctuation of the background is 2.3× 10−7, which
corresponds to 5.2 standard deviations for a Gaussian
probability distribution.
To conclude, we have measured the W boson pair pro-

duction cross section in pp̄ collisions at
√
s = 1.96 TeV.

We observe 25 events in the data, corresponding to inte-
grated luminosities of 224–252 pb−1 depending on the
final state, with a background expectation from non-
WW processes of 8.1 ± 0.6(stat) ± 0.6(syst) ± 0.5(lum)
events. The expectation for SM pair production of W
bosons in our data sample is 16.6±0.1(stat)±0.6(syst)±
1.1(lum) events. We obtain a production cross section
of σpp̄→W+W− = 13.8+4.3

−3.8(stat)
+1.2
−0.9(syst)± 0.9(lum) pb,

consistent with the NLO prediction. The probability that
the observed events are caused by a fluctuation of the
background is 2.3× 10−7, corresponding to 5.2 standard
deviations.
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