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On the double and triple-humped fission barriers
and half-lives of actinide elements

C. Bonilla, G. Royer

Abstract

The deformation barriers standing in the quasi-molecular shape

path have been determined in the actinide region within a macroscopic-

microscopic energy derived from a generalized liquid drop model, the

algebraic droplet model shell corrections and analytic expressions for

the pairing energies. Double and triple-humped fission barriers ap-

pear. The second barrier corresponds to the transition from one-body

shapes to two touching ellipsoids. The third minimum and third peak,

when they exist, come from shell rearrangements in the deformed frag-

ment. The shape of the other almost magic one is close to the sphere.

The barrier heights agree with the experimental results, the energy of

the second minimum being a little too high. The predicted half-lives

follow the experimental data trend.

1 Introduction

The possibility of transmutation of nuclear waste and of production of en-
ergy by accelerator-driven systems is under consideration. The knowledge
of all the nuclear reactions which constitute a non negligible part of the re-
action cross section is needed [1]. Different codes are under construction or
improvement (Fluka, Gnash, Talys,..) and accurate potential barriers must
be calculated rapidly, particularly in the actinide region, to predict or firstly
to reproduce the mass and charge distributions governing the fission cross
sections [2]. Furthermore, new precise measurements renew also interest in
investigating the multiple-humped barriers of the actinide nuclei and heaviest
elements. The analysis of the fission probability and of the angular distribu-
tion of the fission fragments support the presence of hyperdeformed states
in a deep third well in several Th and U isotopes [3, 4, 5] confirming the
pioneering work of Blons et al [6] in 231,233Th. The observed strongly en-
hanced low energy α decay in some heavy actinide nuclei is also explained
by transition from a third hyperdeformed minimum and the possibility that
the third minimum is the true ground state of very heavy and perhaps super-
heavy nuclei is even also advocated [7]. In medium mass nuclei some signs of
hyperdeformed rotational bands have been found, but no discrete HD level
has been identified [8, 9].
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By adding at the macroscopic liquid drop model energy of elongated one-
body shapes an oscillatory microscopic contribution, the Strutinsky’s method
[10] generated double-humped barriers allowing to predict and explain the
fission isomer characteristics. Myers and Swiatecki [11] proposed analytic
formulae in the same objective of taking into account the shell and pairing
energies. Later on, the asymmetric two-center shell model [12], Hartree-Fock-
Bogoliubov [13] and relativistic mean field theories [14] have also allowed to
reproduce double-humped barriers. The heights of the inner and asymmetric
outer fission barriers are almost constant (5-6 MeV) from Th to Am isotopes
[15, 16]. It is a severe test for the theoretical models. In the actinide region
the third hyperdeformed minimum was predicted by Möller et al [17] and by
recent theoretical approaches [18, 19, 20].

It has been previously shown within a Generalized Liquid Drop Model
taking into account both the proximity energy between close opposite sur-
faces, the asymmetry and an accurate radius that most of the symmetric
and asymmetric fission [21, 22], α and light nucleus emissions [23, 24] and
super and highly deformed state data [25] can also be reproduced in the
fusiolike shape path. The purpose of this work is, within this GLDM, to
go beyond the two separated sphere approximation by taking into account
the ellipsoidal deformations of the two different fission fragments and their
associated shell and pairing energies, investigating all the possible mass and
charge asymmetries.

2 Potential energy

The total energy of a deformed nucleus is the sum of the macroscopic GLDM
energy, the shell correction energy and the pairing energy. The GLDM energy
is given by [26]

E = EV + ES + EC + Eprox + Erot, (1)

where the different terms are respectively the volume, surface, Coulomb,
nuclear proximity and rotational energies.

All along the deformation path the nuclear proximity energy term Eprox

allows to take into account the effects of the attractive nuclear forces between
nucleons facing each other across a neck in the case of a deformed one-body
shape or across a gap in the case of two separated fragments. This is not
a small correction in the quasi-molecular shape path. For example, at the
contact point between two spherical Kr and Ba nuclei the proximity energy
reaches −43 MeV.

Eprox(r) = 2γ
∫

Φ [D(r, h)/b] 2πhdh. (2)

2



r is the distance between the mass centres. h is the transverse distance
varying from the neck radius to the height of the neck border. D is the
distance between the opposite surfaces and b the surface width. Φ is the
proximity function and γ the surface parameter.

2.1 One-body-shapes

For one-body shapes, the first three contributions are given by

EV = −15.494(1 − 1.8I2)A MeV, (3)

ES = 17.9439(1 − 2.6I2)A2/3 S

4πR2
0

MeV, (4)

EC = 0.6e2(Z2/R0)BC . (5)

BC is the Coulomb shape dependent function, S is the surface and I is the
relative neutron excess [26].

BC = 0.5
∫

(V (θ)/V0)(R(θ)/R0)
3 sin θdθ, (6)

where V (θ) is the electrostatic potential at the surface and V0 the surface
potential of the sphere.
The radius R0 of the compound nucleus is defined as:

R0 = (1.28A1/3 − 0.76 + 0.8A−1/3) fm. (7)

which leads, for example, to R0 = 5.3 fm and r0 = 1.15 fm for 98Zr and
R0 = 7.5 fm and r0 = 1.18 fm for 255Fm. The radius of the two fragments is
calculated assuming volume conservation.

As in previous works, the one-body shape sequence is described within
two joined elliptic lemniscatoids which allow to simulate the development of
a deep neck in compact and little elongated shapes with spherical ends (see
Fig. 1). The proximity energy is maximized in this deformation path.

2.2 Two separated ellipsoids

For two-body shapes, the coaxial ellipsoidal deformations have been consid-
ered [27] (see Fig. 2). The system configuration depends on two parameters
: the ratios si (i = 1, 2) between the transverse semi-axis ai and the radial
semi-axis ci of the two different fragments.

ai = Ris
1/3
i and ci = Ris

−2/3
i . (8)
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Figure 1: Selected shape sequence to simulate the one-body shape evolution.

Figure 2: Two coaxial ellipsoid configuration describing the two-body shape
part of the fission barrier. The fission axis is the common axis of revolution.

The prolate deformation is characterized by s ≤ 1 and the related eccen-
tricity is written as e2 = 1−s2 while in the oblate case s ≥ 1 and e2 = 1−s−2.
The volume and surface energies are EV12

= EV1
+EV2

and ES12
= ES1

+ES2
.

In the prolate case, the relative surface energy reads

BSi =
(1 − e2

i )
1/3

2

[

1 +
sin−1(ei)

ei(1 − e2
i )

1/2

]

(9)

and in the oblate case

BSi =
(1 + ǫ2

i )
1/3

2

[

1 +
ln(ǫi + (1 + ǫ2

i )
1/2)

ǫi(1 + ǫ2
i )

1/2

]

ǫ2
i = s2

i − 1. (10)

The Coulomb self-energy of the spheroid i is

EC,self =
3e2Z2

i Bci

5Ri
. (11)
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The relative self-energy is, in the prolate case

BCi =
(1 − e2

i )
1/3

2ei
ln

1 + ei

1 − ei
(12)

and, in the oblate case

BCi =
(1 + ǫ2

i )
1/3

ǫi
tan−1ǫi. (13)

The Coulomb interaction energy between the two fragments reads

EC,int =
e2Z1Z2

r
[s(λ1) + s(λ2) − 1 + S(λ1, λ2)] λ2

i =
c2
i − a2

i

r2
, (14)

r being, as before, the distance between the two mass centres.
In the prolate case, s(λi) is expressed as

s(λi) =
3

4
(

1

λi
−

1

λ3
i

)ln(
1 + λi

1 − λi
) +

3

2λ2
i

, (15)

while, for the oblate shapes,

s(λi) =
3

2
(

1

ωi
+

1

ω3
i

)tan−1ωi −
3

2ω2
i

ω2
i = −λ2

i . (16)

S(λ1, λ2) can be represented in the form of a two-fold summation

S(λ1, λ2) =
∞
∑

j=1

∞
∑

k=1

3

(2j + 1)(2j + 3)

3

(2k + 1)(2k + 3)

(2j + 2k)!

(2j)!(2k)!
λ2j

1 λ2k
2 . (17)

3 Shell energy

The shell corrections for a deformed nucleus have been determined within
the algebraic formulae given in the Droplet Model [28] with slightly different
values of the parameters.

Eshell = Esphere
shell (1 − 2.6θ2)e−0.9θ2

. (18)

The shell corrections for a spherical nucleus are

Esphere
shell = 5.8

[

(F (N) + F (Z))/(0.5A)2/3 − 0.26A1/3
]

MeV, (19)

where, for Mi−1 < X < Mi,

F (X) = qi(X − Mi−1) − 0.6(X5/3 − M
5/3
i−1). (20)
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Mi are the magic numbers and

qi = 0.6(M
5/3
i − M

5/3
i−1)/(Mi − Mi−1). (21)

The selected highest proton magic number is 114 while, for the two highest
neutron magic numbers, the values 126 and 184 have been retained.

θ2 = (δR)2/a2. (22)

The distortion θa is the root mean square of the deviation of the nuclear
surface from the sphere, a quantity which incorporates indiscriminately all
types of deformation. The range a has been chosen to be 0.32r0.
For the two-body shapes, the total shell energy is the sum of the shell cor-
rections for each deformed fragment.

4 Pairing energy

The pairing energy has been calculated with the following expressions.
For odd Z, odd N and N=Z nuclei

EPairing = 4.8/N1/3 + 4.8/Z1/3 − 6.6/A2/3 + 30/A. (23)

For odd Z, odd N and N 6= Z nuclei

EPairing = 4.8/N1/3 + 4.8/Z1/3 − 6.6/A2/3. (24)

For odd Z, even N nuclei

EPairing = 4.8/Z1/3. (25)

For even Z, odd N nuclei

EPairing = 4.8/N1/3. (26)

For even Z, even N nuclei
EPairing = 0. (27)

5 Potential barriers

The dependence of the potential barriers on the shape sequence and introduc-
tion of the microscopic corrections is displayed in Fig. 3 for an asymmetric
fission path of the 230Th nucleus. The shell effects generate the slightly de-
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Figure 3: Asymmetric fission barrier of a 230Th nucleus emitting a doubly
magic nucleus 132Sn. The dashed and dashed-dotted curves give the energy
within the two-sphere approximation for the two-body shapes without and
with shell corrections around the original sphere while the dotted and solid
lines include the ellipsoidal deformations without and with shell energies. r
is the distance between mass centres.

7



formed ground state and contribute to the formation of the first peak. The
proximity energy flattens the potential energy curve and will explain the
formation of a deep second minimum for heaviest nuclei. The shell effects
are attenuated at these large deformations. In the exit channel correspond-
ing to the two-sphere approximation the top of the barrier (r = 12.6 fm on
this example) is reached after the rupture of the matter bridge between the
two spherical fragments (r = 11.4 fm). Then, the top corresponds to two
separated spherical fragments maintained in unstable equilibrium by the bal-
ance between the attractive nuclear forces and the repulsive Coulomb ones.
In this path, the introduction of the shell and pairing effects for two-body
shapes is not sufficient to reproduce accurately the experimental data on the
fission barrier heights of actinide nuclei. The transition between one-body
and two-body shapes is less smooth when the ellipsoidal deformations of the
fragments and the proximity energy are taken into account. It corresponds
to the passage (at r = 11 fm for 230Th) from a one-body shape with spherical
ends and a deep neck to two touching ellipsoidal fragments, one or both of
them being slightly oblate. The barrier height is reduced by several MeV.
The introduction of the shell effects still lowers the second peak and shifts it
to an inner position (r = 10.3 fm here). It even leads to a third minimum
and third peak in this asymmetric decay path. A plateau appears also at
larger distances around 10 MeV below the ground state. It is due to the end
of the contact between the two fragments and the persistence of the prolate
deformation of the lightest fragment. The end of the plateau corresponds
to the rapid transition from prolate to oblate shapes for the non-magical
fragment and the vanishing of the proximity energy. This second fragment
returns to a prolate shape when the interaction Coulomb energy is smaller.

The potential barriers for the 232,235,238U, 238,240,243Pu, 243,244Am, 243Cm,
250Bk and 250Cf nuclei are shown in Fig. 4 to 7. It is important to men-
tion that to obtain these barriers the only input parameters are A1, Z1, A2

and Z2 and that the calculations are very rapid on an usual computer and,
consequently, can be integrated in a more general and complex code.

For a given mass asymmetry, the charge asymmetry which minimizes the
deformation energy has been selected. The proximity energy and the at-
tenuated microscopic effects are responsible for the formation of a second
one-body shape minimum. The heights of the two peaks generally increase
with the asymmetry but the shell and pairing corrections induce strong vari-
ations from this global behaviour. Their main effect is to favour, for the U,
Pu, Am and Cm isotopes, an asymmetric path where one fragment is close to
the doubly magic number 132

50 Sn nucleus, and, consequently, keeps an almost
spherical shape. This effect is less pronounced for 243Cm and 250Cf since for
nuclei with Z ∼ 100 the symmetric fission gives fragments with a charge of
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around 50. For these nuclei a symmetric and an asymmetric exit channels
are compared on the lower part of the Figures 6 and 7. A third minimum and
third peak appear in the asymmetric decay path. There is no third barrier in
the symmetric deformation path. The origin of the third peak is investigated
in section VI.

The calculated and experimental energies of the maxima and minima of
the fission barriers are compared in table 1. The choice of the most probable
fission path is difficult for some isotopes since there is a true degenerescence
in energy between several paths of the multi-dimensional potential surfaces,
particularly for the heaviest elements where the symmetric path seems more
probable. There is a very good agreement between the experimental and
theoretical heights Ea and Eb of the two peaks. The predicted value of the
second minimum energy is a little too high. Two reasons may be advanced
to explain this difference. Firstly, the shell energy may be underestimated
at this large deformation. Secondly, the shape sequence may introduce too
rapidly the asymmetry, which would lead to an undervaluation of the proxim-
ity energy. The still sparse data for the third barrier are correctly reproduced.
For the heaviest nuclei the external barrier disappears since the attractive
proximity forces can no more compensate for the repulsive Coulomb forces.
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fragment.
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Table 1. Comparison between theoretical and experimental [15, 6, 16, 4]
barrier characteristics for actinide nuclei. Ea, Eb and Ec are the first, second
and third peak heights while EII and EIII are the energies of the second and
third potential minima relatively to the ground state energy (in MeV).

6 Third barrier

The origin of the existence of the third well in the asymmetric decay path is
examined now (see Fig. 8). The dashed line represents the potential for two
touching ellipsoids when the one-body shape is still energetically favoured.
The second peak (but first on the figure) corresponds to the point where these
touching ellipsoids begin to give the lowest energy. The heaviest fragment
is a magic nucleus. It therefore preserves its almost spherical shape. The
non magic fragment was born in an oblate shape (s ∼ 1.4), due to the small
distance between the mass centres at this step. When this distance increases,
the ratio s decreases, because of the proximity energy which tends to keep
close the two tips of the fragments. Thus, the lightest fragment remaining
in contact with the other spherical fragment approaches the spherical shape
and its shell energy increases to reach a maximum which is at the origin
of the third peak and which corresponds to two touching different spheres.
Before reaching this third peak a third minimum appears. Its shape is hy-
perdeformed and asymmetric in agreement with the experimental data [4].
Later on, the proximity forces maintain the two fragments in contact and
the shape of the smallest one evolves to prolate shapes (s < 1) and the shell
corrections decrease. The third barrier appears only in the asymmetric de-
cay path and for some specific nuclei. In the symmetric mass exit path, the
proximity and Coulomb energies counterbalance the smallest shell effects and
induce an asymmetric shape, the two fragments remain in contact but one
fragment is oblate while the other one is prolate. With increasing distance
between the mass centres the two nuclei become prolate.

The dependence of the fission barrier heights and profiles on the asym-
metry for the 231,233Th and 234,236U nuclei, for which experimental data on
the third barrier exist, are given in Fig. 9 and 10. The position of the second
peak in the symmetric decay path corresponds to the position of the third
peak in the asymmetric deformation path. Clearly the magicity of some Sn
isotopes plays the main role.
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7 Half-lives

Within this asymmetric fission model the decay constant is simply given by
λ = ν0P . The assault frequency ν0 has been taken as ν0 = 1020 s−1. The
barrier penetrability P is calculated within the action integral

P = exp[−
2

h̄

∫ rout

rin

√

2B(r)(E(r) − Eg.s)dr]. (28)

The inertia B(r) is related to the reduced mass by

B(r) = µ[1 + 24exp(−3.25(r − Rsph)/R0)] (29)

where Rsph is the distance between the mass centres of the future fragments
in the initial sphere, Rsph/R0 = 0.75 in the symmetric case.
The inertia depends on the internal structure of the system. A large amount
of internal reorganization occuring at level crossings raises the inertia. For
shapes near the ground state the inertia is expected to be considerably above
the irrotational flow value. For shapes remaining a long time highly deformed
the reduced mass is reached asymptotically. The selected phenomenological
inertia B(r) adjusted to reproduce the experimental data is compared with
other previous semi-empirical inertia in Fig. 11. Its value is slightly higher
at the beginning of the fission process. It reaches more rapidly the reduced
mass value for elongated shapes.
The partial half-life is finally obtained by T1/2 = ln2

λ
.

15



6 7 8 9 10 11 12

−3

−2

−1

0

1

2

3

4

5

r (fm)

E
 (

M
eV

)

231

 90
Th −>132

 50
Sn + 99

 40
Zr

231

 90
Th −>116

 45
Rh + 115

 45
Rh

120 125 130 135 140 145 150 155

4

5

6

7

8

9

10

11

12

A (heaviest)

E
 (

M
eV

)

231
 90

Th

6 7 8 9 10 11 12
−4

−3

−2

−1

0

1

2

3

4

5

r (fm)

E
 (

M
eV

)

233

 90
Th −>132

 50
Sn + 101

 40
Zr

233

 90
Th −>117

 45
Rh + 116

 45
Rh

120 125 130 135 140 145 150 155

5

6

7

8

9

10

11

12

13

A (heaviest)

E
 (

M
eV

)

233
 90

Th
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Figure 11: Comparison between different selected semi-empirical inertia B(r).
The dashed line corresponds to the inertia proposed in ref. [29] while the
dashed and dotted curve and dotted line give respectively the inertia pro-
posed in ref. [30] for elongated shapes and for compact and creviced shapes.
The values obtained from the formula (29) are given by the solid line.
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The experimental spontaneous fission half-lives and theoretical predic-
tions for the supposed most probable exit channels are compared in Table
2. The half-lives corresponding to several paths are given for 243Cm, 250Cf,
256Fm and 256No. Except for the ligthest U isotopes, there is a correct agree-
ment with the experimental data on 20 orders of magnitude. The half-lives
vary regularly for close exit channels of a same nucleus.

Reaction T1/2,exp(s) T1/2,theo(s)
232
92 U → 134

52 Te +98
40 Zr 2.5 × 1021 3.6 × 1016

234
92 U → 131

50 Sn +103
42 Mo 4.7 × 1023 8 × 1019

235
92 U → 131

50 Sn +104
42 Mo 3.1 × 1026 7.7 × 1023

236
92 U → 132

50 Sn +104
42 Mo 7.8 × 1023 1.0 × 1022

238
92 U → 132

50 Sn +106
42 Mo 2.6 × 1023 5.3 × 1022

238
94 Pu → 130

50 Sn +108
44 Ru 1.5 × 1018 2.6 × 1019

239
94 Pu → 130

50 Sn +109
44 Ru 2.5 × 1023 4.8 × 1022

240
94 Pu → 130

50 Sn +110
44 Ru 3.7 × 1018 4.8 × 1019

243
95 Am → 133

51 Sb +110
44 Ru 6.3 × 1021 1.1 × 1023

243
96 Cm → 130

50 Sn +113
46 Pd 1.7 × 1019 3 × 1021

243
96 Cm → 122

48 Cd +121
48 Cd 1.7 × 1019 1.6 × 1018

245
96 Cm → 130

50 Sn +115
46 Pd 4.4 × 1019 3 × 1020

248
96 Cm → 130

50 Sn +118
46 Pd 1.3 × 1014 7.7 × 1015

250
98 Cf → 125

49 In +125
49 In 5.2 × 1011 1.9 × 109

250
98 Cf → 132

52 Te +118
46 Pd 5.2 × 1011 1.2 × 1010

250
98 Cf → 140

55 Cs +110
43 Tc 5.2 × 1011 4.9 × 1011

255
99 Es → 128

50 Sn +127
49 In 8.4 × 1010 8 × 109

256
100Fm → 128

50 Sn +128
50 Sn 1.0 × 104 45

256
100Fm → 121

47 Ag +135
53 I 1.0 × 104 82

256
102No → 128

51 Sb +128
51 Sb 110 0.9 × 10−2

256
102No → 116

46 Pd +140
56 Ba 110 0.3 × 10−1

Table 2. Comparison between experimental [16] and theoretical
spontaneous fission half-lives of actinide nuclei.

8 Summary and conclusion

Double and triple-humped fission barriers appear for the actinide elements
in the quasi-molecular shape path within a macroscopic-microscopic defor-
mation energy derived from a generalized liquid drop model and analytic
expressions for the shell and pairing energies. The second peak corresponds
to the transition from one-body shapes to two touching ellipsoids. The third
barrier appears only in the asymmetric decay path and for some specific nu-
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clei. Then, the heaviest fragment is almost a magic nucleus and it preserves
its shape close to the sphere. The other fragment evolves from an oblate
ellipsoid to a prolate one and the third peak corresponds to the maximum of
the shell effects in the non magic fragment and, consequently, to two touching
different spheres. The barrier heights agree with the experimental results for
the double and triple-humped fission barriers, the energy of the second mini-
mum being a little too high. The predicted half-lives follow the experimental
data trend.
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