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Abstract

The Extreme Universe Space Observatory (EUSO) project is aimed to
detect from space the Extensive Air Showers (EAS) produced by Ultra High

Energy Cosmic Rays (UHECR) when entering the Earth’s atmosphere, by the use
of a telescope located on the International Space Station. The secondary particles

in the shower produce fluorescence and Cherenkov light by interacting with the air
molecules. The atmosphere influences the development and the detection of the

EAS, and it is mandatory to know its characteristics at the place and time an EAS
develops. Here we report on various aspects of basic atmospheric properties which

can have a noticeable influence on the light production in the EAS and the light
transport to the detector. By basic properties we mean pressure, temperature

and composition as a function of altitude, geographical location and date. Since

the EUSO telescope will be installed on the ISS, which has a revolution time of
92 minutes on an orbit inclined by 51.6 degrees, these global characteristics of

atmosphere in the field of view of EUSO will change minute by minute. This
variability with time and location and the consequences on the light production,

transport and detection are emphasized.

1. Introduction

The “Extreme Universe Space Observatory - EUSO” will be the first Space

mission dedicated to the Ultra High Energy Cosmic Rays (UHECR) and Neutrinos
detection using the Earth’s atmosphere as a huge detector. The aim of this note

is to present some aspects of atmospheric parameters relevant for the study of the
Extended Air Showers (EAS) produced by the UHECR.

2. Atmospheric Models

The US Standard Atmosphere 1976 models [1] are commonly used in the

atmosphere community. Based on rocket and satellite data and perfect gas theory,
the profiles of atmospheric densities, pressure, temperature are provided from sea
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level to 1000 km. The altitude resolution varies from 0.05 km at low altitudes
to 5 km at high altitudes. The U.S. Standard Atmosphere Supplements includes

tables of atmospheric parameters for five northern latitudes (15, 30, 45, 60, 75),
for summer and winter conditions. The grid in latitude, longitude and time may

be not precise enough for our purpose: using US Standard Atmosphere values
as inputs, whatever the space-time location of the shower is, can lead to large

systematic errors, in the UHECR energy determination or particle identification.
As far as we are concerned by the global properties and profiles such as

pressure, temperature and the number densities of the main constituents, it seems

better to use the empirical models recommended by the Committee for Space
Research (COSPAR). These models are implemented with recent data and are

based on the COSPAR International Reference Atmosphere CIRA-86, merged
with the Mass-Spectrometer-Incoherent- Scatter (MSIS) model for the upper part

of atmosphere. These empirical atmosphere models provide the profiles of the
main constituents and properties from ground to 1000 km; it is based on 40 years

of data of various types and is continuously updated. Neutral densities are given
within a latitude, longitude and date grid, which can be easily accommodated to

the EUSO trajectory for simulation purpose. Comparisons between US-Standard
and NRLMISE-00 Model 2001 [2] density profiles from ground to 20 km have

been performed, in order to check that the profiles of the US standard models can
be reproduced with the data from NRLMSISE; the results show that profiles are

consistent within 2.5% at all altitudes.

3. Nitrogen Number Density and Fluorescence Yield

The N2 density is the most determinant parameter for the fluorescence

yield. At ground level around earth and at a given date, it varies with the lati-
tude: it is higher at the poles than near the equator. A longitudinal modulation

also exists due to local time variation with respect to the sun. Considering the
trajectory of the station, the variation of the nitrogen density can reach ∼10% in

the EUSO field of view in a very short time.
During one day, the ISS performes fifteen rotations around the globe. In

Fig. 1., the variation of the N2 density at sea level is shown versus time corre-

sponding to the ISS trajectory. Along the one day path of ISS around the earth
(upper-left), the molecular nitrogen density varies according to the location, ex-

hibiting an oscillating behaviour (upper-right); the maxima are for northern lat-
itudes (in winter in this case), the smaller maxima for southern locations. The

minima are for equatorial latitudes. One observes a longitudinal modulation for
the maxima, while attenuated for southern locations; equatorial values do not

exhibit strong variations with longitude. The amplitude of variations exceeds
10%. However since observations by EUSO will take place only at night, the vari-

ations expressed as a function of the local solar time (LST) (lower-left) show a
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Nitrogen Number Density along ISS
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Fig. 1. Left: four plots showing the variation of the N2 density (at sea level) versus
time corresponding to the ISS trajectory (see text for details) Right: top : Atmo-
sphere density as a function of altitude for 3 latitudes compatible with ISS trajec-
tory; bottom: photon yield per metre as a function of altitude for the 3 locations
using dry atmospheres and EUSO wavelength bandwidth.

smaller amplitude when limited by LST=0 + 4. At last the detailed variations for

one revolution (92 minutes) as a function of time (lower-right) reveals the rapid

variation with a 23 minutes period corresponding to of a revolution.
A complete calculation linking the fluorescence yield to the nitrogen den-

sity is in progress but not yet available. In order to give an idea of the influence of
such variations on fluorescence yield, the photon yield as a function of altitude is

presented on the right part of Fig. 1. for 3 locations corresponding to a maximum
(south and north) and to a minimum (equator).

4. Atmospheric Mass Density and Primary Cosmic Ray Identification

The shower reconstruction is affected by the variations of the atmospheric
conditions. This can lead to a misidentification of primary cosmic ray through

Xmax determination: a proton-like shower in winter can simulate a Fe-like shower
in summer at a given place, as it has been illustrated by a study performed for

the Auger observatory [3]. The same effect is expected to occur within less than
46 minutes which is the mean duration of a EUSO night counting time.

The shower development profile depends on the nature and energy of the
incident particle and on the development of the shower according to the effective

atmosphere encountered. Proton and Fe impinging at 60 degrees were simulated
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Fig. 2. EAS profiles as a function of altitude (see text for details).

and showers developed at different locations along the trajectory corresponding

to one night of ISS flight. Atmospheric profiles of mass density and temperature
where obtained from NRLMISE-00 for January 1st at night for 3 different real-

istic locations along ISS trajectory. Light yield profile was fixed for the different

atmospheres and light transmission coefficient was fixed to 1. The results are
shown in Fig. 2. On the upper left plot, the mass density profiles for the 3 chosen

locations, normalized to US Standard profile are shown. For each location a sam-
ple of 10 showers with an energy of 5.1019 at zenith angle of 60 degrees are shown

superimposed as a function of altitude in kilometer in upper-right (protons) and
lower-left (Iron). The usual representation of showers in grammage is affected

by the transformation to altitude. One can see on the lower-right plot that a
situation where proton and Fe are overlapping, giving the same Xmax, may exist.

Since the showers are almost identical, the degeneracy cannot be resolved.

5. Conclusions

To be able to reconstruct the events detected by EUSO with a good ac-

curacy, a good knowlegde of atmospheric conditions in the field of view of the
telescope on board the ISS is mandatory.
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