
HAL Id: in2p3-00020040
https://in2p3.hal.science/in2p3-00020040v2

Submitted on 17 Jul 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Athena data dictionary and description language
A. Bazan, T. Bouedo, P. Ghez, M. Marino, C. Tull

To cite this version:
A. Bazan, T. Bouedo, P. Ghez, M. Marino, C. Tull. The Athena data dictionary and description
language. International Conference on Computing in High Energy and Nuclear Physics CHEP 2003,
Mar 2003, La Jolla, United States. �in2p3-00020040v2�

https://in2p3.hal.science/in2p3-00020040v2
https://hal.archives-ouvertes.fr


LAPP-TECH-2003-03 
May 2003 

 
 
 
 
 
 
 
 
 

The Athena Data Dictionary and Description Language 
 
 
 
 

Alain Bazan, Thierry Bouedo, Philippe Ghez 

LAPP-IN2P3-CNRS, BP. 110, F-74941 Annecy-le-Vieux Cedex 

 

Massimo Marino, Craig Tull 

LBNL, Berkeley CA 94720, USA 

 
 
 
 
 
 
 
 
 
 
 
 
 

Presented at Computing in High Energy and Nuclear Physics 
La Jolla (USA), March 24-28, 2003 

 
 

 
 



Computing in High Energy and Nuclear Physics , La Jolla, California , March 24-28, 2003 1

MOJT010

The Athena Data Dictionary and Description Language
Alain Bazan, Thierry Bouedo, Philippe Ghez
LAPP, Annecy-le-Vieux, FRANCE

Massimo Marino, Craig Tull
LBNL, Berkeley, USA

Athena is the ATLAS off-line software framework, based upon the GAUDI architecture from LHCb. As part of ATLAS'
continuing efforts to enhance and customise the architecture to meet our needs, we have developed a data object description
tool suite and service for Athena. The aim is to provide a set of tools to describe, manage, integrate and use the Event Data
Model at a design level according to the concepts of the Athena framework (use of patterns, relationships, ...). Moreover, to
ensure stability and reusability this must be fully independent from the implementation details. After an extensive investigation
into the many options, we have developed a language grammar based upon a description language (IDL, ODL) to provide
support for object integration in Athena. We have then developed a compiler front end based upon this language grammar,
JavaCC, and a Java Reflection API-like interface. We have then used these tools to develop several compiler back ends which
meet specific needs in ATLAS such as automatic generation of object converters, and data object scripting interfaces. We
present here details of our work and experience to date on the Athena Definition Language and Athena Data Dictionary.

1. INTRODUCTION

This document describes in brief the development and
implementation of an "ATLAS Data Dictionary" (ADD) in
the Athena Architecture. For full details see:[1].
Athena is the ATLAS off-line software framework, based
upon the GAUDI architecture from LHCb. As part of
ATLAS' continuing efforts to enhance and customise the
architecture to meet needs of the users, we have developed
a data object description tool suite and service for Athena.
The term “data dictionary” is being used in ATLAS to
cover several related, but distinct concepts and techniques.
Each of these concepts plays a different set of roles in an
architecture dependent upon a data dictionary. We
categorise these concepts into three general topics:

• Introspection/Reflection/Object
Description/Run-Time Typing: This refers to
objects in program memory with the ability to
describe themselves in a programmatic way through
a public API such that they can be manipulated
without a priori knowledge of the specific
class/type of the object.

•  Code Generation: This refers to a process of
generating code for performing a specific task from
a generic description/input file.

•  Self-Describing External Data Representation
(e.g. Data Files): This refers to external data
representations (e.g. file formats, on-wire data

formats) which contain metadata describing the
payload of the data file, etc...

2. ADVANTAGE OF A DATA DICTIONARY

The data dictionary is a description of the objects to a
high abstraction level.

These tool avoid tedious integration of objects to the
framework, concentrate the object development only on
his behaviour and provide the objects with all the
mechanism of conversion between transient and persistent
stores . At run time it gives access to transient objects
allowing debugging, visualisation, use scripting... These
description allows re-use of the objects already present in
the dictionary, the management of the evolution of the
described objects and provides information on persistent
objects and collections without loading them in transient
store.

3. LANGUAGE AND TOOLS

3.1. Choice

One of the most visible implementation decisions of a
DD for Athena is the choice of the computer language
used in the dictionary. Declarative computer languages are
widely used tools in the CS and IT communities. A list of

C++ IDL JAVA ODL DDL XML
Machine Independence No Yes Yes Yes Yes Yes
Programming Language Independence No Yes No Yes No Yes
Open-Source/Free Parsers Available Yes Yes Yes Yes No ?
Object Behavior Definable Yes Yes Yes Yes Yes ?
Object State Definable Yes Yes Yes Yes Yes ?
Public/Private Member Yes No Yes No Yes ?
Persistency No No Yes No Yes ?
Use of Predefined Types Yes Yes Yes Yes Yes ?
Use of External (Undefined) Types No No No No No ?

Table 3: ADL candidate feature comparison



2 Computing in High Energy and Nuclear Physics , La Jolla, California , March 24-28, 2003

MOJT010

choices considered and associated tools available to parse
the language is shown in the comparison’s Table 3:

After an extensive investigation into the many options,
we concluded that none of the language candidates fully
matched ATLAS requirements, and that some compromise
and/or language extension would be required.

We settled on and developed a language grammar based
upon a proper subset of IDL 2.0 extended to provide
support for object persistency and complex inter-object
relationships.

The included extensions are:
ODL keyword to express bi-directional relationships:

relationship
keyword to express persistency: persistent
keyword to support opaque objects: extern
keyword to declare objects of Athena: DataObject,

ContainedObject, CollectionObject keyword to manage
the visibility of the objects attributes: private

We called this extended proper subset of IDL: ADL for
Athena Description Language. Such a declarative language
helps separating objects’ interfaces and behaviours from
their implementations, isolating users of a system from
implementation details, facilitating technology migration,
and easing software development by eliminating tedious
and error-prone rote programming.

Moreover, the choice of ADL because of its explicit
independence of programming languages makes future
possible evolution more feasible.

3.2. Tools

Code generation tools are parser-based tools which
process the ADL. With the choice of a real computer
language as the basis of the Data Dictionary, it becomes
imperative that a real parser be used to compile the DD
language and realise the DD functionality. Experience has
shown that multiple back-ends (emitters) for the parser are
necessary. The reality of a possible evolution of ADL
suggests that the compiler front-end should be replaceable.

We chose JavaCC (the Java Compiler Compiler) as the
parser for our compiler front end for the following
reasons:

• Large number of languages supported (34
grammars from Ada to XML)

• Widely used & actively supported and developed
• Easily extended grammar
• Platform independence

Of all the tools considered and evaluated, JavaCC was the
only one which supported all of the candidate languages.
This made it particularly attractive in that a change in
ADL language does not imply a change in parser.

4. DESIGN

4.1. From description to utilisation

The high-level design of the code generator is a standard
2-tier design. An ADL object description is fed into the
Compiler Front End (CFE) consisting of the JavaCC
generated parser (from the ADL Grammar). The parser
produces an Abstract Syntax Tree using the JJTree
package. A standard visitor pattern class walks the AST
and fills an in-memory representation of the object
description (the Meta-Object Representation). Multiple
Compiler Back Ends (CBEs) use the information stored in
the Meta-Object Representation to generate code for use in
the Athena framework.

4.2. Meta-model

The Meta-Object Representation is a set of classes
implementing a Java Reflection-like API and which
insulates the writers of the compiler back-ends (CBEs)
from the details of the JJTree AST. The static class
diagram including the Meta-Object Representation design
is shown in Figure 4.2.

Compiler Front EndCompiler Front End

ADL ADL 
ParserParser
JavaCCJavaCC

Back
End

BackBack
EndEnd

Back
End

BackBack
EndEnd

Back
End

BackBack
EndEnd

CodeCode

Cxx,Java,...Cxx,Java,...

CodeCode

Cxx,Java,...Cxx,Java,...

CodeCode
Cxx,Java,...Cxx,Java,...

ADL ADL 
AnalyzerAnalyzer

SourceSource
ADLADL

Meta ObjetMeta Objet
RepresentationRepresentation



Computing in High Energy and Nuclear Physics , La Jolla, California , March 24-28, 2003 3

MOJT010

Figure 4.2 UML static class diagram

5. FUNCTIONALITIES

5.1. Code generation

The last code for the ATLAS data dictionary was
released at the end of November 2002. Included in this
release was the full ADL JavaCC grammar and generated
parser, the JJTree-based visitor and Meta-Object
Representation classes, and three compiler back ends. The
following use cases diagram shows how to generate code:

Although it is easy to write a new back-end as needed, the
three following Compiler Back Ends are provided today:

 • Data Object CBE: Generates C++ classes for user
data objects with: ATLAS defined Constructors and
Destructors, Single and Multiple Inheritance, Private Data
Members & Accessor/Mutator Methods, Public Method
Functions (beyond accessors/mutators), Interobject
Associations, STL Support, and user written extensions.

• Converter CBE: Generates Athena converters for
persistency using Objectivity Conversion service or ROOT
conversion service.

• Scripting CBE: Provides a Python interface allowing
limited access to, and control of data objects at the
command line (see CHEP'01 paper 3-064). The three back
ends work together or independently to provide needed
Athena functionalities.

5.2. Dynamic interaction

Another main functionality of the Athena Data
Dictionary is to dynamically manage the described objects.
It answers the use cases as shown in the following
diagram:

This functionality is mainly based on an
Introspection/Reflection mechanism allowing connections
between object’s description and object’s instance at run-
time. This refers to objects in program memory with the
ability to describe themselves in a programmatic way
through a public API such that they can be manipulated
without a priori knowledge of the specific class/type of the
object.

1 0..*

0..*

1

0..* 1

0..*

1

0..*

0..*

0..* 0..1

0..*

0..*

InterfaceDefinition

AttributeDefinition1

OperationDefinition ParameterDefinition

GenObject

RelationDefinition ElementaryDefinition

TypeDefinition

StructureDefinition

Choose the back-end

configure the back-end

compile & generate code

user

call method on a described object

find object description

access attributes of a described object

delete described object

create described objectfind described object

browse described objects

user



4 Computing in High Energy and Nuclear Physics , La Jolla, California , March 24-28, 2003

MOJT010

This functionality should integrated and used in Athena
according to the sequence shown in the figure 5.3.

The sequence goes through the following steps:
1. Creation of the object by the algorithm
2. Registration to the transient store and the data

dictionary service
3. Access to the object description by the interactive part

of the framework
4. Access to the object through the data dictionary

service and the introspection module

6. CONCLUSION

The data dictionary-based code generators have been
successfully used by some ATLAS collaborators, and
three tutorials were given in June 2001, March 2002 and
May 2002 based upon a Liquid Argon reconstruction data

model. Integration in Athena has also been done by
writing CMT fragments and Automatic ClassID
generation. Connected to the ADL, a module has been
developed for the Together case tool to generate
graphically ADL code [2]. Moreover, a large amount of
documentation (user guide, language reference manual,
pocket guide, examples, FAQ,…) has been produce to
provide user support.

Nevertheless, although this data dictionary project was
answering the Atlas requirements, it has been abandon.
This implies to ask ourselves about the reasons to draw
lessons from that:

• Are people really ready to concentrate there efforts
at the design level using an high level description
language, independent of the implementation?

• Has this tool taken place too late in the Athena
framework while a lot of C++ code was already
written? (connected feedback: reverse engineering
is not miraculous!).

• Has this project been politically killed at the birth of
the LCG?

References

[1] A. Bazan, T. Bouedo, P.Ghez, M.Marino, C.E.Tull,
“Athena Web site - Dictionary”,
http://atlas.web.cern.ch/Atlas/GROUPS/
SOFTWARE/OO/architecture/DataDictionary/.

[2] M.Marino “Extending the code generation
capabilities of the Together CASE tool to support
Data Definition languages”, 2003 Computing in
High Energy and Nuclear Physics (CHEP03), La
Jolla, CA, USA, 2003

ADL Object Descriptions
RepositoryRepository

ADL Object Descriptions
RepositoryRepository

•
CreationCreation

Transient
Event Store

Algorithm

DescriptionDescription

IntrospectionIntrospection
ModuleModule

AccessAccess

AccessAccess

RegistrationRegistration

RegistrationRegistration
ADLADL

ObjectObjectAccess interfaceAccess interface
SERVICESSERVICES

Registered objects  list
Object description
Method invocation

Data member consultation

•Data Dictionary
Service

CreationCreation

Transient
Event Store

Algorithm

DescriptionDescription

IntrospectionIntrospection
ModuleModule

AccessAccess

Access interfaceAccess interface
SERVICESSERVICES

Registered objects  list
Object description
Method invocation

Data member consultation

BrowserBrowserScriptingScripting

AccessAccess

RegistrationRegistration

RegistrationRegistration
ADLADL

ObjectObject

•
CreationCreation

Transient
Event Store

Algorithm

DescriptionDescription

IntrospectionIntrospection
ModuleModule

AccessAccess

AccessAccess

RegistrationRegistration

RegistrationRegistration
ADLADL

ObjectObjectAccess interfaceAccess interface
SERVICESSERVICES

Registered objects  list
Object description
Method invocation

Data member consultation

•Data Dictionary
Service

CreationCreation

Transient
Event Store

Algorithm

DescriptionDescription

IntrospectionIntrospection
ModuleModule

AccessAccess

Access interfaceAccess interface
SERVICESSERVICES

Registered objects  list
Object description
Method invocation

Data member consultation

BrowserBrowserScriptingScripting

AccessAccess

RegistrationRegistration

RegistrationRegistration
ADLADL

ObjectObject

Figure 5.3 Dynamic interaction




