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1 GANIL (DSM-CEA/IN2P3-CNRS), B.P.5027 F14021 Caen cedex, France
2 LPC Caen, (IN2P3-CNRS/ISMRA et Universit6) F14050 Caen cedex, France

Abstract. In this series of lectures we will first review the general theory of phase tran-
sition in the framework of information theory and briefly address some of the well known
mean field solutions of three dimensional problems. The theory of phase transitions in
finite systems will then be discussed, with a special emphasis to the conceptual problems
linked to a thermodynamical description for small, short-lived, open systems as metal
clusters and data samples coming from nuclear collisions. The concept of negative heat
capacity developed in the early seventies in the context of self-gravitating systems will
be reinterpreted in the general framework of convexity anomalies of thermostatistical po-
tentials. The connection with the distribution of the order parameter will lead us to a
definition of first order phase transitions in finite systems based on topology anomalies
of the event distribution in the space of observations. Finally a careful study of the ther-
modynarnical limit will provide a bridge with the standard theory of phase transitions
and show that in a wide class of physical situations the different statistical ensembles are
irreducibly inequivalent.

1 Equilibrium and Information

1.1 States and observables 23]

Modern physics associates to every physical system two different types of o�-
jects: observables that characterize the measurable physical quantities and states
whose knowledge allows to predict the result of experiments. From the mi-
croscopic point of view, single realizations of systems with N degrees of free-
dom are characterized by a pure state (or microstate), that is a wave function,
ITIN), in quantum mechanics or a point in the 2N-dimensional phase space,
s = qjq2,...,qN;P1,P2,.--1pN), with qj and pi the position and momentum of
each degree of freedom, in classical mechanics. If systems are sufficiently com-
plex, the exact state is in general impossible to define and each actual realization
corresponds to a microstate (n) with the probability p('). In such a realistic case,
one rather speaks of mixed states (or macrostates) described the density

1: 10(n)) (n) �,p(n) I or b (s = E 6 (s - s('))
n n

Observables are operators defined on the Hilbert space or classically real
functions of 2N real variables. The information that can be associated to
the system is the ensemble of expectation values of the observables .1i, on the
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state. i.e. the ensemble of observations AW where A(") is the(1�1 = E'p I I
actual result of a measurement on the realization (n). In the quantum case

(,� = pn) (0(n) 1.,�, 1,�(n) = Tr (bj,). Both for pure and mixed states,

if the information on the system is complete at the initial time, this stays true
at any time because the dynamical evolution of states is governed by the de-

terministic Liouville Von Neumann equation at = ft' bj where ft is the

Hamiltonian of the system and where f.,.j is the commutator divided by ih in
quantum mechanics which reduces to the usual Poisson bracket at the classical
limit. However in the case of complex systems, the initial conditions are in gen-
eral incompletely known and an exact solution of the Liouville Von Neumann
equation is out of reach. In general only a small set of pertinent observables is
known at any time which is sufficient to determine the state (i.e. the totality of
the p(n)) because of the complexity of the density operator.

1.2 The Shannon entropy[2,3]

The incompleteness of the available information can be measured through the
lack of information or statistical entropy

= E P(-) In P(n = -Tr (b In b)

n

Let us show within a simple example that the statistical entropy (or Shannon
entropy) indeed measures the lack of information.

Let us consider a system constituted of N identical boxes and an experiment
consisting in putting randomly a ball in a box. The missing information to
know where the ball is depends first on the occupation probability of each box

= Sp(l)'...' p(N)). Let us first consider equiprobable boxes p(' = 11N, Vn.

In this case depends only on the total number of boxes, = S(N).

Let us enumerate some ftmdamental properties of 

The lack of information must grow with the number of possible results
S(Ni > S(N2) V N > N2.

Let us divide the N boxes into N, groups of N2 boxes each, N = NN2. The
experiment now consists in two successive steps, first find out in which group
out of the N equiprobable ones the ball is (which is associated to a lack of
information S(NI) ) and then determine which of the N2 equiprobable boxes
belonging to the group the ball is (associated to a lack of information S(N2)).

The missing information of the two steps experiment is then S(Ni) + S(N2).

The information cannot depend on the number of steps through which it is
collected S (N = S(N -N2 = S(Ni) + S(N2).
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The ensemble of these properties is fulfilled by a logarithmic function S(N)
k In N where k is a constant.

We have just shown that the Shannon entropy coincides for equiprobable
states with the Boltzmann entropy (or microcanonical entropy). Let us now
turn to the more general case in which boxes are not equiprobable. To derive
the associated information let us consider a big number W (eventually going to
infinity) of experiments identical to the one described above. Among these W
experiences, a number N : WIN will lead to the observation of the ball in the
i-th box. This experimental result defines a osterioH a probability pi = N1W
for the i-th box.

Within this result fNi,..., Nk,..., N1vJ, the number of possible configurations
for the box is given by the combinatorial

W! (W - N,)! W!

N,! (W - N,)! N2! (W - N - N2)! Ili Ni!

where the first term represents the number of ways of choosing N, indistinguish-
able objects out of W, and so on. All the events are equiprobable. The entropy
is then

S(S? = k In S = k (n W - In Ni!)

= k(W In W - W - E(Ni In N - N))

= k(W In W - E(Wpi In W + Wpi Inpi))
i

- -kW E pi In pi
i

where we have used the Stirling formula InN! z� NInN - N. The additiv-
ity property introduced above allows to conclude that for a single experiment
the missing information is given by the Shannon entropy S(p(,),...,P (N)

- k E,�, p0n) In p(-).
It may be interesting to know that if the additivity property of the infor-

mation is relaxed, it is possible to construct a non-extensive extension of the
Shannon theory based on the so called q-statistics which has interesting applica-
tions in out of equilibrium situations as in the case of turbulent flows 4 In the
following of these lectures we will limit ourselves to the standard information
kernel introduced above.

1.3 The fundamental postulate of statistical mechanics

The fundamental postulate of statistical mechanics can be expressed as follows
"The statistical distribution of microstates usually called the equilibrium is

the one which maximizes the statistical entropy within the external constraints
(i.e. the pertinent information) imposed to the system".
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Indeed any other distribution would introduce an extra piece of information,

in contrast with the statement that all the available information is given by the

constraint.

It is important to remark that this postulate, though certainly intuitive and

elegant. does not necessarily imply that the theory has any predictive power:

the fact that we have only a limited amount of information on a system does

not necessarily mean that the information contained in the system is objectively

limited. In this series of lectures we shall anyway keep the fundamental postulate

as the only reasonable working hypothesis in a complex system.

The fundamental postulate of statistical mechanics allows to determine the

equilibrium values of the state probabilities p(l). This task is easily accomplished

with the help of the method of Lagrange multipliers.

1.4 The method of Lagrange multipliers[5]

Let us consider the problem of finding an extremurn of a two variables real

function f (x, y) along a curve defined by the relation w(x, y = wo. To this aim

the standard way is to calculate the total differential

d = af dx + af dy
Ox ay

where dx and dy are linked by the relation

&'J aw dx + aw dy = 
ax ay

Expressing dy as a function of dx the differential reads

d = af - aw'ax of )dx
Ox awlOy

Putting df to zero at the point (xO, yo) which fulfills the constraint w(xo, yo)

wo, leads to

aw f J-O'Y = w af J.01YOay ax ax ay
which defines the coordinates xO, yo) of the extremurn.

This same result can be obtained in a simpler way if we introduce a Lagrange

multiplier A and we define the auxiliary function F = f - A(w -wo) that coincides

with the function f on the curve we are interested in. Differentiating F respect

to its two independent variables x and y

Of
dF = -A aw )dx + (af - Aau' )dyax ax ay ay

the two partial derivatives have to go to zero separately at the extremum leading

to a solution (xO (A), yo (A)). This extrernum fulfills the condition
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aw af J-.'YO � aw Of J-01YOay ax 09 ay
which exactly corresponds to the condition above if A is such that w(xo (A),
yo (A)) = wo. The extension to a bigger number of variables and constraints is
straightforward.

To summarize, this method allows to replace the study of a function of non
independent variables to the study of an auxiliary function for which all variables
are independent and the constraints are absorbed by real numbers (Lagrange
multipliers).

1.5 The equilibrium [5]

Let us use this method to maximize the statistical entropy = Tr15 n 15 under

the constraint of a given set of L observations 01) 

This situation corresponds to the L constraints TrbA = A, that has

to be augmented with the extra constraint of the normalization of probability
R15 which can be incorporated as an additional observable Ao = 1. The
auxiliary function is defined as

L

= Trb in b E \jTrbAj
1=0

The variation of Y induced by a variation bb of the density matrix reads

L

by = -T�-6b In b I E AA,

The extremum correspond to by 0, with no restrictions on 6b leading to
the condition In b I 0 AiA = 0. The solution is the density matrix at
equilibrium which is a function of the Lagrange multipliers Al

bo = 1- exp AA, (2)
Z

where we have already taken care of the normalization constraint by introducing
the partition sum

L

Z = Tr exp - AA, (3)
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The link between a constraint 01) (or observation, or extensive variable) and

the associated Lagrange multiplier Al(or thermodynamically conjugated inten-
sive variable) is given by an equation of state

alnZ (4)

aAl

It is also possible to express Al as a function of A) by inverting the equation
of state. Indeed the equilibrium corresponding to the considered constraints is
associated to a value for the statistical entropy

= rbo In bo Al A,) + InZ (5)

This last equation known as a Legendre transform gives the relation between
the entropy and the partition sum and implies for the Lagrange multipliers

Al = as (6)

a(A,�

It should be noticed that while Do and Z are functions of the intensive
variables (Al), the Legendre transform is a function of the associated extensive

variables Ai).

Using es.(2,3,4) te whole thermodynamics of the system can be calculated

if the constraints A,) are known. It is important to remark that this formalism

is completely general in the sense that it can be applied for an arbitrary number
of bodies with no need of a thermodynamical limit (infinite systems), and that
all observables (and not only variables conserved by the dynamics) can play
the role of constraints. Moreover the maximization of entropy as a tool to deal
with the general problem of missing information can be extended in dynamical
situations and has shown to be a fruitful approach in the field of stochastic
quantum transport [6]_

1.6 The usual thermodynamics [5]

The usual ensembles of standard thermodynamics can also be obtained as ap-
plications of this general theory. Let us consider for example the case where

the only constraint is the energy E = Tr (boft = EpE(n) associated

with the Lagrange multiplier 3 The probability of the n-th energy eigenstate
is then po = 1 exp(-OE(n)) while the energy probability distribution readsn -20

p,3(E = W(E) exp(-,8E) where W(E) is the number of states corresponding toZO
an energy E. The Lagrange multiplier has the physical meaning of the inverse
of the temperature T = -1. The relation between the average energy and the
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temperature is given by the equation of state (E = -a,3 In ZO and the Legendre
transform S ((E)) = In Z,3 + 0 E) represents the well known relation between
the canonical entropy and the free energy FT = 0-' In Z,3.

The microcanonical ensemble can also be obtained from this general theory
considering that in the absence of any constraint (except the normalization of
probabilities) all states must be equiprobable. The microcanonical entropy is
then obtained as the expression of the Shannon entropy within the equilibrium
distribution p = 11W(E), S(E) EW1 W` In W` = In W.Z i=

2 Generalities about phase transitions

Generally speaking, for a given value of the control parameters (or intensive
variables) Al, the properties of a substance are univocally defined, i.e. the con-

jugated extensive variables 01) have a unique value unambiguously defined

by the corresponding equation of state For instance the volume occupied by
n moles of an ideal gas at a given pressure P and temperature T is given by
V = nRTIP . In reality we have seen in the previous chapter that extensive
variables, being by definition expectation values of operators, are associated with
a probability distribution unless the system is described by a pure state. The
intuitive expectation that extensive variables at equilibrium have a unique value
therefore means that the probability distribution is narrow and normal, such
that a good approximation can be obtained by replacing the distribution with
its most probable value.

In this case, as we will see in section 21, the Legendre transform gives an
exact mapping between the standard intensive ensembles in which the control
parameter is intensive or equivalently only the average of the extensive variable
is known and the more exotic extensive ensembles where an extensive variable is
controlled event by event, demonstrating the equivalence between the different
statistical ensembles. In the following we will often take as an paradigm of inten-
sive ensembles the canonical ensemble for which the inverse of the temperature
O' (or equivalently the average energy (E�) is controlled while the archetype
of the extensive ensemble will be the microcanonical one for which the energy is
strictly controlled.

The normality of probability distributions is usually assumed on the basis of
the central limit theorem that we will briefly review in section 22. However some
situations exist in which the probability distributions of extensive variables are
abnormal and for example bimodal: in this case two different properties (phase$)
coexist for the same value of the intensive control variable. A first elementary
description of phase coexistence using this intuitive bimodality argument will be
given at the end of section 22.

The topological anomalies of probability distributions and the failure of the
central limit theorem in phase coexistence imply that in a first order phase
transition the different statistical ensembles ae in general not equivalent and
different phenomena can be observed depending on the fact that the controlled
variable is extensive or intensive. This general statement will be developed in
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great detail in chapter 4 and its far reaching consequences will be analyzed in
chapter 6.

2.1 The difference between Laplace and Legendre,

We have seen in the last chapter that the relation between the different ther-
mostatistical potentials is given by the Legendre transform. It is important to
distinguish between transformations within the same statistical ensemble as the
Legendre transform (which gives for instance the link between the canonical
partition sum and the canonical entropy) and transformations between differ-
ent ensembles wich are instead given by non linear integral transforms. Let us
consider energy as the extensive observable and temperature as the conjugated
intensive one. The definition of the canonical partition sum is

Ze = 1: exp(-OE("))
n

where the sum runs over the available eigenstates n of the Hamiltonian. If energy
can be treated as a continuum variable this equation can be written as

00
ZO dE W(E) exp(-OE) (7)

which is nothing but a Laplace transform between the canonical partition sum
and the microcanonical entropy SE = In W(E). If the integrand f (E = W(E) exp(-OE)
is a strongly peaked function the integral can be replaced by the maximum f (f)

Z,3 zt; W(E) exp(-OE) (8)

which can be rewritten as

In ZO �zz Sp - 3E (9)

or introducing the free energy F In Z,9

FT E - TS2

Eq.(9) has the structure of an approximate Legendre transform and shows
that in the saddle point approximation eq.(8) the ensembles differing at the
level of constraints acting on a specific observable (here energy) differ only by
a simple linear transformation. We will see in the next section and in more
details in chapter 6 that however the saddle point approximation eq.(8) can be
highly incorrect close to a phase transition. In particular, when the canonical
distribution of energy is bimodal a unique saddle point approximation becomes
inadequate. In this case eq.(9) cannot be applied and eq.(7) is the only possible
transformation between the different ensembles.

To summarize one should not confuse
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• the link between the thermodynamical potential of the intensive (e.g. log of
canonical partition sum) and of the extensive ensemble (e.g. the microcanoni-
cal entropy) which are always related with a Laplace transform. This Laplace
transform may lead to an approximate Legendre transformation for normal
distributions but we know that this Legendre transformation is wrong if the
distribution is abnormal.

• with the exact Legendre transform between the entropy of the intensive
ensemble and the corresponding thermodynamical potential.

This simply corresponds to the fact that the microcanonical and canonical
entropies can be very different.

2.2 The central limit theorem and phase coexistence

The typical representation of the probability distribution of any generic random
variable depending on a not too small number of degrees of freedom is a Gaussian
distribution. The very general validity of the Gaussian is due to one of the
most important theorems of statistics, the Laplace central limit theorem. Let us
consider an extensive observable E (i.e., energy) that can be written as the sum of
I independent contributions (i.e. the energy of the different particles constituting

the system) E ei , where the ei follow an arbitrary probability distribution
with the unique requirement that the global variance El((e? _ e

E i 't 'i)2)/l
is finite. Then the central limit theorem states that the distribution of E tends
to a Gaussian distribution with a width decreasing with the number of degrees
of freedom

lim (E = 2 1 (E - (E))2 (10)
I-CO P "2,, exp(- 2o,2/1 )

According to the central limit theorem at the thermodynamical limit the
distribution of an extensive variable p(E) tends to a -function, implying as we
have mentioned at the beginning of the chapter that the properties of the system
are univocally defined by the value of the intensive parameter that controls the
asymptotic value of (E) through the appropriate equation of state. Moreover in
most cases a few tens of particles are enough for the Gaussian approximation
to be correct, meaning that the limit appearing in eq.(10 ) can be neglected
in practical applications. Another consequence of the central limit theorem is
that the Laplace transform becomes equivalent to a Legendre transform as we
have discussed in the preceding section, leading to the equivalence of statistical
ensembles.

However a situation can occur in which the probability distribution is bi-
modal and never tends to a Gaussian. Such a situation is called a first order
phase transition. This patent violation of the central limit theorem is due to
the fact that phase transitions are associated to long range correlations and the
independence hypothesis between the different degrees of freedom breaks down.

Let us illustrate the standard picture of phase coexistence within a simple ex-
ample. Consider a molecular system in the canonical ensemble characterized by
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the free energy F = -T In Z = E - TS. As we have demonstrated in section .3
the maximization of the statistical entropy with the energy constraint is equiva-
lent to the minimization of the free energy. At low temperature a minimization
of F is approximately equivalent to a minimization of (E): the equilibrium state
of the system will be given by a compact configuration (a crystal or a liquid)
with free energy FL (A, V). On the other side at high temperature the mini-
mization of F corresponds to a maximization of the canonical entropy, which
will be achieved by a disordered rarefied state (a gas phase) with free energy
FG(A, V). Phase coexistence means that at an intermediate temperature the
two free energy solutions are allowed giving for the total free energy

F (A, V = FL (AL, V) + FG (AG, VG)

where AL, YL (AG, VG) are the fractions of total number of molecules A and
volume V belonging to the ordered (disordered) phase

A=AL+AG V=VL+VG

The equilibrium sharing of A and V is given by the minimization of the free
energy

aF c)FL aFG aF aFL aFG
= 0 = __ - = 

aAL aAL aAG aVL aVL aVG

implying the equality for the intensive variables conjugated to the mass number
and the volume, namely the chemical potential and the pressure

PL = PC ILL = AG

This procedure can be generalized to any statistical ensemble. If we consider
for example the microcanonical ensemble, the absence of constraints means that
the thermostatistical potential is directly the microcanonical entropy

S(A, E, V) = In W(A, E, V) S (AL, EL, VL) S (AG, EG, VG) (12)

with the extra conservation law E EL + EG. The extremization of S respect to
V and A gives again the equality of the chemical potential and pressure for the
two coexisting phases, while the derivative respect to the energy variable gives

T = TG

where we have defined the microcanonical temperature as T-1 = aES in anal-
ogy with the canonical Legendre transform = aE) So (the justification of the
physical meaning of aES as an inverse temperature is postponed to chapter 4_

Equilibrium between the two phases is characterized by the equality of the
temperatures. On the other hand, the conjugated extensive variables are different
in the two phases EL < EG. This means that at the transition temperature
Tt = T = TG the energy is discontinuous at the phase transition (latent heat).

To summarize, in this standard view first order phase transitions are charac-
terized by
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• the presence of two phases in contact

• a discontinuity in (one ore more) first order derivatives of the thermostatis-
tical potential (energy, volume, mass number ... .

To obtain this result we have written the thermostatistical potential as a
simple sum of the contributions of the two phases (eqs.(11,12)). This is true
only if the free energy (or entropy) of the interface between the two phases is
negligible, i.e. for large systems interacting through short range forces.

In the next sections we will illustrate this standard view of first order phase
transitions within an exactly solvable model in one and two dimensions (section
2.3 24) and in three dimensions with the help of the mean field approximation
(chapter 3.

The additivity hypothesis of the thermostatistical potential breaks down for
finite systems and even in the thermodynamical limit if the forces are long
ranged. The far reaching consequences of dropping this approximation will be
developed in chapter 4.

2.3 Isornorphism between Ising and Lattice Gas

Let us consider an ensemble of N classical spins which can take one of the
two values Sk = ±1 on a lattice under the influence of an external magnetic
field h and a constant coupling J between neighboring sites according to the
Hamiltonian

N N

His = -h E Sk - - )7 Sk Si (13)2
k=i kOi

where the second sum extends over closest neighbors.
The Ising model eq.(13) has been originally introduced to give a simple de-

scription of ferromagnetism (i.e. a spontaneous magnetization that some sub-
stances present in the absence of a field at low temperature). In reality the
phenomenon of ferromagnetism is far too complicated to be treated in a satis-
factory way by this oversimplified Hamiltonian; however the fact that the Ising
model is exactly solvable in 1D and 2D and that very accurate numerical solu-
tions exist for the three dimensional case makes this model a paradigm of first
and second order phase transitions. The other appealing side of the Ising model
is its versatility: introduced to explain magnetic phase transitions, it is also well
adapted to describe fluid phase transitions. Indeed we can show that a close link
exists between the Ising Hamiltonian eq.(13) and the Lattice Gas Hamiltonian
which is the simplest modelization of the liquid-gas phase transition

I N 2 E N
HLG - Epknk - - E nknj (14)

2m k=1 2 kOi

In the Lattice Gas model, the same N lattice sites in D dimensions are
characterized by an occupation nk = , 1 and by a D components momentum
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vector Pk- Occupied sites (particles) interact with a constant closest neighbor
coupling .

Because of the transformation nk = (Sk 12 the Ising Hamiltonian HIS
can be mapped into the interaction part H' of the Lattice Gas Hamiltonian
HLG. Indeed let us consider the interaction part of the Lattice Gas partition
sum in the grancanonical ensemble

7i-'= E ..... -,3(Hj' - LA))
LG E exp(

ni=oi nN=Ol

where A = EN nk is the total number of particles and , p are Lagrange multi-k
pliers. The factor multiplied by in the exponential can be written as

.'t E N Ez + 2p N Ez + 4p
HE - uA - - 1: SkS - 4 si - N 8

k*j

where z = 2D is the number of closest neighbors. With the identification J
E/4 and h = ze + 2p) 4, this equation shows that the grancanonical partition
sum of the Lattice Gas interaction hamiltonian is isomorphous to the canonical
partition sum of the Ising model in an external field

,3 (H inl -,uA = OHI + KLC

where K is a constant. This result implies that all results obtained within the
Ising model concerning magnetic transitions can be translated in terms of fluid
transitions and vice-versa. In particular the magnetization m = Ek SO IN is
related to the matter density p = Ck nk IN by m = - .

2.4 Exact solution of the Ising model in ID and D

The Ising model was proposed by Lenz to his student Ising in 1925. The exact
solution of the model in one dimension is given in Ising's thesis.

Let us consider a one dimensional spin chain with periodic boundary condi-
tions (spin ring). The Ising hamiltonian can be written as

N

His E (h5k + JkSk+l)
k=1

and the partition sum results

1 1 N 1

ZIS = E ..... E exp OE (hSk + JSkSki-1)) E 712723 ... 7N1
Sj=-1 5jV=-1 ( k=1 Sj=-1 SN=-l

where we have introduced
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h
7-ij = exp (Si Sj + SiSj

(2

If we consider the -j as the elements of a 2x2 matrix depending upon the two
spins i and sj = ±

T T + r+ -
'r- + T_

where the definition of the r j implies

,r + = exp,3(J + h)

r - = exp O(J - h)

7- - = - + = exp(-OJ),

El T2
then we can write ,=-l rij7jk = k and the partition sum becomes

I N) N N I Q ) N) N

ZIS = E TjN =Tr (T A + Av = A A
sl=-l 1 2 1 Al N oo 1

where Al, Al (Al > A2) are the eigenvalues of the T matrix The problem is
then reduced to an eigenvalue problem

det (T - Al) = ; A 2 _ -r+ + + 7- A (-r +- -r -- = 

After a little algebra we obtain the eigenvalues

2A = exp(OJ) (ch(Oh ± (exp(-4,3J) + sh (�h))'l

and the partition sum

2 2In Zis = N OJ + In (ch(Oh) + (exp(-4,3J) + sh (Oh)) -1 ) )

It is easy to verify that In ZIS is a continuous function with continuous deriv-
atives for all orders: the Ising model in one dimension does not present a phase
transition. In particular the magnetization

1 a In ZIS 1 2 2
- - = sh(3h) (exp(-40J) + sh (h))'!

VO 9h 2

is a continuous monotonic function which is zero at zero field: no spontaneous
magnetization is observed.

The solution of the Ising model in two dimensions[7] is far too complicated
to be developed here. Let us simply give the asymptotic result N oo in the
zero field case
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Fig. 1. Schematic representation of the average magnetization as a unction of the applied
external field for the Ising model in more than one dimension at subcritical (left), critical
(center) and supercritical (right) temperature.

Zis = 2ch (20J) exp 1)v (15)

1 = do In + ( - X2 sin2 2
27r 0 2

X 2 sh (20J)
ch2 (20J)

With the partition sum of eq.(15) the magnetization equation of state can
be computed. It is easy to verify that for temperatures lower than the critical
temperature T = �-' given by sh (2J,3, = the system presents a spontaneous
magnetization at zero field[8]

mo = m(h = > = h2 (20J) (sh2 (20J) 1) 1/8 ___, (T - T) 1/8
sh4 (20J) 0 0C

The equation of state of the Ising model in more than one dimension is
schematically shown in figure 

At subcritical temperatures a discontinuity in magnetization is seen at zero
field, showing that a first order phase transition is taking place in agreement with
the intuitive arguments of the preceding section. For T = Tc the magnetization
goes to zero as a power law (second order phase transition) while the equation
of state is monotonous in the supercritical regime.

3 The mean field approximation

Even for simplified models such as Ising no analytical solution exists for a number
of dimension D > 2 This is the reason why mean field solutions have been
developed. The idea of the mean field approximation is to replace the intractable
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N-body problem with an approximately equivalent analytical one body problem.
Let us illustrate this method on the Ising case. If the Hamiltonian is composed
of one body terms solely

N

Hlb E hkSk (16)
k=1

with hk a generic one body operator, the thermodynamics of the system is solved
in one line. Indeed the partition sum in the canonical ensemble reads

+1 +1 N

Zlb = E ... E exp (-OHlb = H Zk = exp (-Oh) exp (h) )N (17)
$I= 1 SN= 1 k=1

where the last equality holds if hk = h Vk, and is promptly generalized to the
non-local case.

To reduce the Hamiltonian to a one body interaction the correlations among
the different sites have to be neglected such that the interaction on a given
site depends only of the coordinates of the site. This chapter is devoted to the
applications of this approximation to the Ising model (section 31) and its general
consequences for the problem of first order phase transitions (sections 32-3.3).
We will see that an equivalent one body problem can be formulated and the two
body character of the force results in a self-consistency problem for the equations
of state which have to be solved iteratively.

It is important to stress that all mean field approaches are approximations
which, because of the intrinsic lack of correlations., are especially bad in phase
coexistence. In the recent years the enormous progress of computing machines
has allowed the numerical solution of three dimensional models without any
approximation with Monte-Carlo based methods. These exact solutions clearly
show the inherent limitations of mean field approaches and will be discussed in
chapter 4.

3.1 Mean field approximation for the Ising model

The interaction acting on the k-th site in the Ising model eq.(13) is hk = h +
J E, sj, where the sum extends over the first neighbors of site k A one body
term is obtained if the spin of the neighboring sites sj is assumed constant all
over the lattice and equal to the average magnetization sj �� (s = m. In other
words the exact interaction is approximated by the interaction the site would
experience if the spin distribution was uniform. The Ising Hamiltonian can then
be written as a one body Hamiltonian

N N

HmF hk$k+K=-T(h + JZM) Sk + K (18)
k=1 k=1
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within a constant K which has to be determined by imposing that the expecta-
tion value of HMF is equal to the mean field energy

EMF = -hNrn + Ein = N hrn + JZ M 2 (19)
MF 2

where the last equality is obtained by writing the interaction energy as

int i i- - ZM2E = E 1: (Sk Si) � - 1: 1: SO (Sj) J N
2 2 2

k=ljOk k=ljOk

which shows once again that the effect of the mean field approximation is the
neglect of two body correlations. The comparison of eq. 19) with the expectation
value of eq.(18) leads to the definition of the constant K as K = JNzm 2 /2 In
fact this energy correction exactly compensates the double counting of the two-
body interaction due to the introduction of the average interaction of each spin
with all its neighbors. The mean field partition sum as for eq.(17) is factorized
in the product of the individual partition sums of the different sites

ZMF = E ... E exp (-,3(HMF) = Z N (20)
SI= ±1 SN=

where

Z exp, (-,3 (h + Jzm) s + JZrn2 2 exp 13 JZ M2) ch (O (h + Jzm))
2 2

which leads to a self-consistent equation for the magnetization

m = tanh (O (h + Jzm)) (21)

Equation 21) is represented in figure 2 in the subcritical, critical and su-
percritical regime. If the behavior of the equation of state for T > T = Jz is
qualitatively similar to the exact Onsager solution of section 24, in the first order
phase transition regime the mean field solution shows a backbending behavior
with a negative susceptibility X- = ahm region. To understand the physical
meaning of the backbending, the free energy F = O' In ZMF is shown as a
function of magnetization in figure 3 in the h = and h > case. From this
figure one can see that the backbending corresponds to a maximum of the free
energy, i.e. an instability. Indeed the coexistence between the two phases at dif-
ferent magnetization cannot be obtained in a mean field calculation because of
the intrinsic homogeneity hypothesis m = s) = const. The backbending there-
fore reflects the instability of the homogeneous mean field solution with zero
magnetization respect to the separation into two distinct phases at m = ± mo.
At non zero field the magnetization oriented in the direction of the field has the
minimum free energy, therefore will correspond to the unique equilibrium solu-
tion. In the zero field case the two solutions have the same energy. This implies
that every linear combination of these solutions

m(h = 0, T < T = a mo + (1 - a)(-mo) ; < a < (22)
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Fig. 2 Left side: relation between the average magnetization and the magnetic field at
subcritical, critical and supercritical temperature for the three dimensional Ising model in
the mean field approximation. Right side: Maxwell construction modifying the subcritical
magnetization curve.

will have the same free energy; such a linear combination represents the coex-
istence between the two solutions as we have discussed in chapter 2 and cor-
responds to an horizontal straight line in the F - m and in the h - m plane
(tangent construction) as shown in the right part of figure 2 

If the lack of correlations of the mean field is cured by allowing a mixed
phase according to eq. 22), the usual shape of the phase transition is recovered
(discontinuity in the first derivative of the thermodynamical potential).

To conclude this section we would like to comment the difference between
a self consistent approach as the mean field approximation and a genuine one
body Hamiltonian as in eq.(16),(17). We have shown in chapter that the
thermodynamics of a system is completely determined once the partition sum
is known, since all thermodynamical quantities can be calculated as successive
derivatives of In Z . The Hamiltonian entering the mean field approximation of
the partition sum eq. 20) differs from the mean field approximation of the Ising
Hamiltonian because of the constant K which we have been forced to add for
the Hamiltonian to have the correct expectation value. The constant K in the
partition sum represents more than a trivial shift in the energy scale since K
depends on m which in turn is calculated from In Z showing the self-consistent
character of the approach. Following eqs.(16),(17) one could be tempted to define
from the mean field approximation to the Ising Hamiltonian a one body partition
sum as

N

Zib ( 1: exp (-O(h + Jzm)s)
S ±1

and the question arises weather thermostatistical observables can be obtained
from the successive derivatives Of Zib.
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Fig. 3 Mean field free energy as a function of magnetization at zero (upper part) and
positive (lower part) magnetic field, for a supercritical (left) and a subcritical (right)
temperature.

To answer to this question one has to use the formalism of chapter and
explicitly calculate the statistical entropy

SMF pi In pi

(pi (-OH(') - In Zlb

(Hlb) In Zlb

since the probability distribution for the mean field problem reads pi exp (-OH(") IZlb-

The expectation of Hlb is readily calculated as

(Hlb = -N (hm + Jzrn' = hNm + 2Ein, (23)
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The general relation between entropy and free energy -F In ZMF

SMF - EMF finally leads to

In ZMF = In Zb + OE in, (24)MF

Equation 24) shows that because of the two body interaction the partition
sum is different from the one body partition sum even in the mean field approx-
imation. In fact the difference comes from the double counting of the two-body
interaction if the energy is calculated as (Hlb) 

The best way to understand the mean-field approach is to consider mean-field
solutions as a trial state to maximize the entropy completed by the constraints
(S -3 (E)) i.e. to variationally estimate the free energy F = -1 (S -3 (E)).
Then only the mean-field free energy can be considered as a good approximation
of the exact free energy leading to,3F In Zlb - OEZ' which is nothing butF
equation 24).

3.2 Implications for the liquid-gas transition

We have seen in section 23 that the isomorphism between the Ising model and
the Lattice Gas model implies that all physical results concerning magnetic
transitions can be easily translated in the fluid language and applied within
minor modifications to the liquid-gas transition. To this aim the Ising canonical
partition sum Z"', or free energy F = -O' In Z"', has to be transformed
into the Lattice Gas grand-canonical partition sum ZGC or grand potential
S = -' In ZGC. If we only focus on the interaction part of the Lattice Gas
model this leads to

exp (_O ( Uln) pAn,)
exp, (-OSLG) E - LG

n

(n) Zj
n H N Nexp (-O 2

Zj
exp (-OFls) exp 3N - + 

2 2

In the mean field approximation FIS In ZMF is given by eq. 20) giving
for the Lattice Gas grand potential

S? i 2 -' In (2ch (3 (h + Jzm)) - ZJ ja
N 2 2 2

The total number of lattice sites in the Lattice Gas framework represents
the volume of the fluid N = V. The equation of state p av In Z allows to
access the pressure

P= (Zj A jZM2) + -1 In (2ch ( (h + Jzm))) (25)
V 2

-E ZP2 + 0 In
1 P
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T>Tr,
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Fig.4. Isotherms in the pressure versus volume (in cell units b) plane for the three di-
mensional Lattice Gas model in the mean field approximation with a Mawell construction
of the mixed phase. The coexistence zone is also indicated.

where the last equality is obtained using the magnetization equation of state
eq.(21) and the substitutions m = 2p- 1, J = /2. Figure 4 shows some selected
isotherms of the fluid equation of state. At subcritical temperatures T < T a
clear backbending is seen reflecting the instability of the homogeneous mean field
solution respect to the separation into distinct phases as in figure 2 above. Once
again, if a linear interpolation of the liquid and gas volume solutions is imposed,
the usual plateau of the Maxwell construction is recovered. The critical point is
defined as the ending point of the coexistence zone, i.e. the point at which the
first as well as the second derivative of the equation of state are zero. Substituting
in eq. 25) we get p = 12, T = Jz, p = T, (In 2 - 12).

3.3 The Van der Waals equation of state

The Ising model in the mean field approximation reflects the same physics as
the Van der Waals equation of state which describes a classical canonical gas of
N identical molecules in an external pressure field po and volume V interacting
via an attractive two body force. The free enthalpy connected to such a physical
scenario is

3
H = F oV = NT - bpN - TS + pV

2
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Fig. 5. Free energy and isotherms of the Van der Waals equation of state at a subcritical
and supercritical temperature.

Here p = NIV is the density of matter and bpN is the two body interac-
tion energy in the mean field approximation. If we make an explicit use of the
equivalence between ensembles at the macroscopic limit, the entropy can be
calculated in the mean field approximation as an effective one body problem

= In (WNWN) V-Nvo 3S = In W = ln(WWp) = Nin � � + NInT
r P N 2

where the integral over the configuration space is

W N d 3, 0(r3 _ V))N INI = (V - Nvc,)' INI
r

where vo is the volume occupied by each particle, the momentum space integral
gives

W N d'p exp(-p'/2,mT) N = 27rmT)3N/2
P

and we have used the Stirling approximation of the factorials. Using as above
the equation of state p = 0`0V In Z = ovF or the extremurn condition
L9V = we get

NT bN2= �� - - (26)
V - Nvo V

The free energy together with the isotherms are represented in figure 5. The
similarity with the microscopic results from the Ising model is evident. Once
again the volume interval VA < V < VB is unstable in the sense that if we mix
up in linear proportions solutions of type A and of type B, the free enthalpy
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0

P/PC
Fig. 6 Guggenheim's coexistence line in scaled variables obtained from many different
substances.

(H) does not change. This tangent construction is the well known equal area
Maxwell construction since

VB VB

H(VB - H(VA = JVA dV dHldV = po (VB - VA) - 'VA dV p(V = 

The coordinates of the critical point are found from dv pl = d' pl = V
as V = 3NvO, T = 8b/27vo, p = b/27vo. If we introduce the scaled variables

= V/V = TITc, -x = p1p, one can readily verify that the Van der Waals
equation (26)becomes

8-r 37 = T-_-- --
V 1 - �2

with no dependence on b or vo i.e. on the quantities specific of the structure of
the gas.

This feature is preserved in realistic gases for which all thermodynamical
variables can be rescaled according to the critical values leading to the famous
Guggenheim phase diagram 9 (shown in figure 6 namely a unique coexistence
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curve for many different substances which shows the universality character of
phase transitions; this universality feature gives an a posteriori justification of the
use of a schematic oversimplified model as the Ising model to describe complex
and widely different physical phenomena.

3.4 The Landau Model

The simplest functional form of the thermodynamical potential as a function of
the order parameter that contains all the physical situations discussed in the
previous sections is given by

F(m = C + N (a(T)M2 + bM4 - hm) ; a T = ao (T - T) (27)

where h is the intensive variable conjugated to the order parameter m. Note
b > in order to have a free energy bound from below in order to ensure that
an absolute minimum (i.e. an equilibrium) does exist. Equation 27 is known
in the literature as the result of Landau theory of phase transitions[10]. it is
immediate to verify that in the proximity of the critical point T --� T, h + the
order parameter and its derivatives follow a power law behavior m _+ IT, - T i

dm/dh --+ IT, - T where 12, -y = -1 are typical mean-field critical
exponents.

Summarizing the present chapter, the mean field approximation leads to
the definition of phase transitions as universal phenomena with the following
characteristics

• presence of two different phases (i.e. minima of the thermodynamical poten-
tial) that coexist in contact (via a non analyticity or tangent construction
that mixes the two solutions in linear proportions)

• existence of critical points (or second order phase transitions) that corre-
spond to the limit of the coexistence line

• definition of an order parameter (i.e. the extensive observable that allows to
distinguish the two phases) that presents a discontinuity at the (first order)
phase transition.

4 Finite systems: getting more from pushing less

In the preceding sections we have defined a first order phase transition as a dis-
continuity in the first derivative (or order parameter) m of the thermodynamical
potential F as a function of the control parameter. Such a discontinuity can exist
only in the thermodynamical limit since

e this discontinuity corresponds to phase coexistence according to the equation
(see section 22)

F(ce ml + ( - a) M2 = a F(ml) + (I - a) F(M2)

which holds if the free energy per particle is independent of the number of
particles, i.e. if surface can be neglected respect to volume which is only
possible if the volume goes to infinity.
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if the system is finite the partition sum is a sum over a finite number of
configurations. i.e. an analytic function. As a consequence its first order
derivative < m > according to the corresponding equation of state cannot
present discontinuities.

For these reasons, it is often stated that phase transitions are only defined for
infinite systems. Following this viewpoint, finite systems can present only smooth
phase changes (cross-over); to demonstrate the asymptotic existence of a phase
transition a careful study of the behavior of thermostatistical variables with the
size of the system (finite size scaling[11]) has to be performed; in this context,
finite size scaling is also the only way to determine the order of a transition if
one believes that in finite systems all transitions are smooth.

These considerations are based on analyses where the intensive variable as-
sociated with the order parameter is controlled (i.e. the order parameter is only
measured in average). In such a case, indeed the equation of state are always
smooth in finite system. But what happens in other statistical ensembles?

A fundamental theorem in statistical mechanics, the Van Hove theorem,
demonstrated in the next session, guarantees the equivalence between different
statistical ensembles at the thermodynamical limit. (However, it tells nothing
about finite systems except that the theorem cannot be demonstrated). How-
ever, if this equivalence between statistical ensembles is a good approximation
even for finite systems, an experiment where the order parameter is controlled
(e.g. for the Ising model all events in the statistical sample share the same value
of the magnetization) will lead to the same equation of state as the one obtained
when the conjugated field is imposed to the system but the magnetization re-
mains free to fluctuate. Then the sudden jump of the magnetization observed
in infinite systems will be replaced by a smooth variation. If this would be true,
the existence of the transition in the finite system could only be proved through
finite size scaling techniques.

This is in fact not the case.

In the next sections we will show that the Van Hove theorem is violated
in first order phase transitions if the system is finite, and this violation can
persist up to the thermodynamical limit in the case of long range forces. A
consequence of that is that it will be possible to give a rigorous definition of
phase transitions even in finite systems, with the prediction (and in some case
the experimental evidence, see chapters 78) of fancy phenomena as negative
heat capacities, negative compressibilities and negative susceptibilities.

The non-equivalence of statistical ensembles has also important conceptual
consequences. It implies that the value of thermodynamical variables for the very
same system depends on the type of experiment which is performed (i.e. on the
ensemble of constraints which are put on the system), contrary to the standard
thermodynamical vievrpoint that water heated in a kettle is the same as water
put in an oven at the same temperature. This point will be discussed in chapter
6.
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Fig. 7 Schematic representation of the Van Hove theorem demonstration (left) and the
corresponding interparticle interaction

4.1 The Van Hove theorem

Let us consider a system in a volume V for which only the average value of
energy and number of particles is defined (grancanonical ensemble). Let us divide
V = mV + V in m equal boxes separated by a "corridor" of width b larger than
the range of the force such that the interactions among particles in different boxes
can be neglected, (see figure 7 Let us calculate the grand potential f = -T In Z

ZO,. T = E exp (-O (H(' - N(')))
n

where the sum extends over all the possible configurations of the system, H(')
K(-) + U(-) (N(-)) represents the energy (number of particles) of the system
in the configuration (n), and , IL are the associated Lagrange multipliers, the
inverse temperature and the chemical potential respectively. The partition sum
results

Z01, M f d 31V ,fd 31Vp exp (-O (H - N)) (28)E Ni F1 h 3 1vV
]V=O
cc cc

,,IV d 3vr exp (OU) ZN Z, (N, V)
zo (V = E N! fVv k

IV=O N=O

with Zk exp (3p) 2__ ) 1,2 and Z, (N, V) fV d 3N r exp (OU) . This rep-
h2o W_!

resents the well known relation between the grancanonical partition sum ZO, M
and the interaction part of the canonical one Z3(N, V). To calculate Z(N, V)
let us consider introduce the number of particles in the corridor N,

NV) 3N 3(N-A',

Z, (N, f d Irf d r exp (OU)
Ni! (N - N). V

N1=0 -VI
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Let us note the minimum of the two body interaction (see figure 7)- the

potential energy in the corridor satisfies then the inequality Uv, Effi, where

= b/a )3 represents the maximum number of particles interacting with a given

particle. For the total potential energy we can then write

1 N N
U eff + Vij

2 E E
i=Nl+lj=Nl+l

which implies for the partition sum

00 1 VN, ZN 00 L N2 3ZOPM E - 1 k I exp, (- N, OeC) E Zk d N2 r exp (-OU)
NJ =0 Nj! N2=0 V0

exp ZkVle-,3c,) xvvo)

where the last equality stems from the fact that particles interact only within

the same box again because of the short range of the force. Finally we get using
2/3

VI cc M6
M 213

In Z,, (V) k V� + m In Zoi, (V)

Ila Z131 M < kVC 1/3+ In Z,34 MO)
V C

which gives in the thermodynamical limit (keeping m constant) V oo, Vo

00, V -- MO

In Z,. (V)< In Z,3, (Vo)

V V0

On the other side the opposite inequality is trivially true

Z13A M > 311 (O)

since by neglecting the corridor in the integral 28 a positive term in the parti-

tion sum is neglected. In conclusion we have demonstrated that

In Z0, (V) In Z,3p (VO) (29)

V V 00 V0

It is very important to stress that this result is true only in the thermody-

namical limit and for short range interactions. For these specific systems the

implications of eq.(29) can be summarized as follow

e A thermodynamical limit exists for these systems. Indeed if the thermody-

namical potential per unit volume tends to a constant independent of the

volume (or the number of particles) In ZOA (V) / V --+ w the observables dis-

tributions PN (A) will also tend to an asymptotic function

A N
lim PN (A) j5 

N-oc N
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Fig. 8. Schematic representation of the liquid-gas phase transition in the canonical en-
semble for an infinite system (left side) and a finite system (right side).

In the thermodynamical limit ensembles are equivalent. Indeed if 
Z,3,(V)lV for an arbitrary subsystem this implies that reduced exten-
sive variables are intensive, i.e. that the asymptotic distribution 5(A)N has

N
a vanishing width in agreement with the central limit theorem section 22.
Since ensembles differ at the level of fluctuations, this demonstrates the
equivalence between ensembles.

In the next section we will show that the violation of the Van Hove theorem
in finite systems leads to the emergence of new thermodynamical phenomena in
first order phase transitions of mesoscopic systems.

4.2 Convexity anomalies and phase transitions

Let us consider the thermodynamics of a first order phase transition in an exten-
sive ensemble, i.e. in the physical case where the order parameter is a controlled
variable. A schematic representation of the liquid gas phase transition in the
canonical ensemble is given in the left part of figure 8. The mean field solution
for the free energy (dotted line) FAO, V) at a given temperature shows two
minima in the spirit of Landau theory, corresponding to a gas-like solution at
low density (light grey) and a liquid-like solution at high density (dark grey). A
tangent construction (straight line) corresponds to the inclusion in the partition
sum of mixed partitions given by linear combinations of the two solutions; this
linear interpolation is only possible in infinite systems for which we can neglect
the role of the interface (the "corridor" between the two phases); this leads to a
plateau in the conjugated intensive variable t = V/iMo If the system is finite
(right part) the free energy per particle of the liquid friction is higher than in



28 Ph. Chomaz and F. Gulminelli

2.4
_-2.6

2'S
-3swor: A00

-- 3,4
-3,6

0 0.2 04

P r/f M

0

0 100- 206

AV

Fig. 9. Free energy, chemical potential and pressure for a x6x6 Lattice Gas at a sub-
critical temperature. Dashed lines: mean field approximation; symbols: exact results.

the case of the pure liquid solution because of the increased surface tension; as
a result the free energy of the mixed configuration is higher than the tangent
construction, i.e. is a concave function of AO, giving rise to a backbending in the
chemical potential and a negative susceptibility X-1 = 19Aou.

This is illustrated in figures 910 that show the free energy, chemical potential
and pressure obtained from a canonical Monte Carlo simulation of the lattice
gas model in a cubic box of linear dimension L = 6 for different values of the
temperature 12], 13]. The convexity anomaly of the partition sum is in the
particle density p = Ao/L 3 direction which represents the order parameter of
the transition- p can be seen both as a number of particles at fixed volume or as
an inverse number of lattice sites at fixed number of particles. For this reason the
same anomalous backbending presented by the chemical potential is observed in
the p(V) equation of state as shown in figure 11 All isotherms up to the critical
temperature backbend, i.e. show a region of negative compressibility.

In figs. 9 10, 11 the dashed lines represent the mean field approximation dis-
cussed in chapter 3 Not surprisingly, the mean field badly fails in the phase tran-
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Fig. 10. Chemical potential as a function of pressure at different temperatures for a
6x6x6 Lattice Gas. Dashed lines: mean field approximation; symbols: exact results.

sition region while it is close to the exact result for supercritical temperatures. In
particular the Van der Waals loop is still present (see fig.10) at temperatures at
which the two phases have merged into one in the exact calculation. This means
that the critical temperature is overestimated by the mean field approximation
because of its intrinsic lack of fluctuations.

It is important to stress that the physical origin of the backbendings and
loops is completely different in the exact calculation and in the mean field In
the former the system inside coexistence presents inhomogeneous partitions that
are stable equilibrium solutions with negative compressibility and susceptibility,
while in the latter the backbending reflects the instability of the homogeneous
mean field solutions respect to phase separation (tangent constructions).

The same reasoning as in figure can be done for the microcanonical en-
semble as schematically shown in fig.12[14],[15]. If energy is controlled, the ap-
propriate thermostatistical potential is the microcanonical entropy. A first order
phase transition can be viewed as the sudden opening of a new disordered phase
at a certain threshold energy. The number of states of the disordered phase
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Fig. 11. Pressure versus density equations of state for a MA Lattice gas exactly (sym-
bols) and in the mean field approximation (dashed lines). Solid line: coexistence curve.

grows much faster with energy than the one associated to the ordered phase,
and this creates a convex intruder in the total microcanonical entropy. This con-
vexity anomaly cannot be cured by a conventional tangent construction because
of the non negligible surface entropy at the interface between the two phases.
This phenomenon is in fact observed in a Monte Carlo simulation of the Lattice
Gas model in the isobar microcanonical ensemble as shown in fig.13[16],[17]. The
convex intruder implies a backbending in the temperature T-1 = aES and a neg-
ative branch for the heat capacity C` = ET between two divergences. Density
being the order parameter of the liquid gas phase transition, since the number of
particles is fixed in this calculation (Ao = 216) the volume has to increase with
energy to allow the system explore the partitions belonging to the disordered
phase. To this aim, the calculation shown in fig.13 are performed at constant
pressure, where pressure is here defined as the Lagrange multiplier conjugated to
the system volume. In this calculation the system volume is assumed to be the
average cubic radius. The corresponding caloric curves at constant pressure and
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Fig. 12. Schematic representation of a first order phase transition in the microcanonical
ensemble.

constant volume are shown in figure 14 The isobaric curves show a backbending
up to the critical pressure giving a clear definition of the coexistence zone.

To summarize, we have shown through some selected examples that a first
order phase transition in a finite system is associated to a convexity anomaly
in the appropriate thermostatistical potential; the direction of the anomaly in
the space of observables can be defined as the order parameter of the transition
and the conjugated intensive variable shows a backbending in the coexistence
zone; energetic considerations suggest that this backbending transforms into a
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Fig. 13. Entropy, temperature and heat capacity for 216 particles in the microcanonical
Lattice Gas model at a subcritical pressure.

plateau standard first order phase transition) if surfaces are negligible in the
global energetic of the infinite system (c.f.. Van Hove theorem).

In particular in the microcanonical ensemble adding energy to the system
can cause its temperature to decrease and we have intuitively associated the
observation of negative heat capacity with the sudden opening of a disordered
collective channel[18]. To clarify the link between channel openings, phase tran-
sitions and negative heat capacities in the next sections we will consider some
simple analytical equilibrium models that exhibit negative heat capacity.
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4.3 Interacting particles in harmonic potentials: the classical case

To see the link between the opening of a channel and negative heat capacity let
us consider the simple example of A classical particles in two harmonic oscillators
of different frequency WI, W2 such that the particles in the first oscillator interact
all with a constant coupling e, while they are free in the second one. This model
can be seen as a schematic representation of the liquid-gas phase transition at
constant pressure. The Hamiltonian reads

Ai 2
- Pk 2 2

H 2m + 2 kiXk + A1 (30)
i=1,2 k=I

where Ai is the number of particles in the i-th oscillator. The entropy of such
a system is exactly calculable. Indeed the number of states with energy e < E
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accessible to a particle in an harmonic oscillator with frequency = k-/ is

S (E) dxdp 27rE
I E) h hw

where a (E) is the surface in phase space defined by the iso-energy curve p2 /2m +
kx2 /2 = E. Similarly the number of states with energy e < E accessible to A
particles will be given by

2 A
SA (E) - VW�VE)

hw

where V (x) is the volume of an hypersphere in n dimensions with radius x. The
state density W(E = dfIdE results

27r A E A-1
VV� (E) = 

r ) (A - )!

This formula can be generalized to the case of Al (A2) particles in the oscillator
at frequency wl (W2) such that the total sum gives A, i.e. the case 30) with no
interaction, E = 

A A! 2 A 2 A-A,

JA (E) = Y Al! (A - Al)! iwi hW2 V2 A WE) (31)
Al=O

2-7r A E A-1 )A

WA (E) =
( h ) (A - )! wl W2

which is equivalent to a unique oscillator at intermediate frequency, W-1
W- + W1. The entropy of this model S(E) o ln(E) is a regular function of1 2
positive concavity. Eq.(31) shows that the possible existence of the system in
two configurations of different density does not imply a phase transition. How-
ever if we introduce an interaction in the first oscillator ( 4 ) the situation
drastically changes. Indeed in this case to have a total energy E, the energy of
the Al A2 independent particles that enters the hypersphere volume has to be
E - EA 2 and the sum in eq.(31) becomes

A A! Wl )A-Al 2)

WAe (E) = E - WA" (E - Al (32)
Al=O Al! (A - Al)! 2

If the second oscillator is sufficiently soft the microcanonical entropy presents
a convex intruder leading to a backbending of the caloric curve and negative heat
capacity as shown in figure 15. The same anomaly observed in the density of
states is present in the average kinetic energy (dashed line in figure 15) showing
that the convex intruder corresponds indeed to a physical cooling of the system
(see section 46 for a deeper discussion on this subject).
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Fig. 15. Temperature and heat capacity for the classical two oscillator model in the
subcritical regime. Full curves: derivatives of the entropy. Dashed urve: average kinetic
energy per degree of freedom.
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4.4 Interacting particles in harmonic potentials: the quantum case

In the classical model we have studied a back bending in the caloric curve appears
evident. However, one may worry about the generality of such a statement.
Do such anomalies also exist in quantum systems or is this definition of phase
transition restricted to classical systems? In order to address this question we
can solve the quantum analog of the model of section 43. Let us consider again
A particles which can jump from one harmonic oscillator to another. In the first
one all particles strongly interact while in the second one they are free. The
curvature of the second well plays the role of a confining potential i. e. of a
pressure. The corresponding Hamiltonian reads

&J Al (A2 2 )
W, - Ato + 2 (&2 A2 (33)

2 2

with the operators

A

6ii. (aa+) (34)
n=1

A

Ai 6i (35)
n=l

where in is the harmonic well occupied by the particle i. Using this Hamiltonian
we can compute the level density and its associated entropy. To simplify the
calculation we have chosen wl, W2 and to be commensurable, W = wl1A and

= wilp. Then, we get the energy

2 2) ,a + N21' _ Aot - Al
ElE = N - Al + (Atot - Al /A (36)

2 2

In a harmonic oscillator the number of states associated with N quanta car-

ried by Al particles is N, i so that for the double oscillator system this
( Al - I

corresponds to

WAt.t (E) Atot N, 1� (N2 -

Al Q 1) �At.t - Al 1)

Then, we can compute the temperature and the associated heat capacity (see

figure 16). We observe that the system indeed presents an anomaly in the cur-

vature of the entropy. Back-bending and negative heat capacities automatically

follow.

Rom this analytical example of the occurrence of a negative heat capacity,

we can come to the following conclusions:

1. negative heat capacity is not an artifact of imperfect numerical simulations:

a C < system can be thermodynamically stable.
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2. the existence of two different kinds of states for a system appears as a phase
coexistence only if their respective level densities are sufficiently different
(for instance particles interacting only in the low energy phase ( > 0) and
a much higher volume POW2 large) available for the high energy phase) so
that their addition presents a concavity anomaly.

3. if the average energy of the two phases is not the same (i.e. energy is an
order parameter) a finite isolated system in equilibrium at phase coexistence
presents a negative heat capacity.

4.5 Surface tension and negative heat capacity

We have seen that C < is a generic feature of finite systems at coexistence and
is expected to isappear at the thermodynamical limit (at least if the interactions
are short-ranged, see chapter 5). One can ask how much this behavior is confined
to the microscopic world: how small a system has to be for the convex intruder to
be sizeable? To answer to this question let us consider the macroscopic analytical
example of a liquid drop in equilibrium with its vapor[19].

The bulk free energy of an incompressible liquid can be parametrized in
the spirit of the Landau theory as F = Fo + Nk(v - 2 /2 where k is the
compressibility, v the reduced volume v = VIN = p-1 and vo the saturation
point. For a finite liquid drop one needs to introduce an additional term coming
from the surface tension a leading to the free energy per particle of the drop
f = fo+k(v -VO)2 12+osN-1 /3 where the surface coefficient s = SN -2/3 . The

free energy of the vapor can be analytically calculated under the approximation
that the vapor is an ideal classical monatomic gas. For N indistinguishable non
interacting particles in a volume V we have Z zNIN! with the single particle
partition sum

3 p2 V 32
Z = V Id pexp(-O-

T3 2m 20rt2

which finally gives for the free energy per particle

f = Tlnv - 3TlnT+K
2

The free energies of the two phases are schematically shown in figure 17.

Phase coexistence implies the equality between the two partial pressures f =

i9vfG which gives the usual tangent construction (dashed line). The finiteness

of the system appears in the constraint of mass conservation. As we increase v

we dive inside coexistence with an increased proportion of the vapor fraction

respect to the liquid fraction; this leads to an overall increase of the free energy

of the drop and a consequent increase of the slope of the tangent construction

as a function of v. The net result is a convexity anomaly of the free energy. i.e. a

negative compressibility. The backbending in the p(v) equation of state can be

analytically calculated using the Clapeyron equation

dp �Ah

dT (VG - VL) T



Phase T�ransitions in finite systems 39

liquid

vapor
N

IN-
V

Fig. 17. Schematic representation of the free energy of a liquid drop of different sizes
(parabolic curves) in equilibrium with its vapor.

where the enthalpy of vaporization per particle is given by Ah = 6h - 3cVL /r,
cis the surface energy coefficient and r is the drop radius. Assuming the bulk
vaporization enthalpy �Aho as well as the specific volume of the rop VL as
constant, the Clapeyron equation can be directly integrated giving

3cVL
P = Pbulk ep ( rT )

which grows as the drop radius decreases (and consequently the specific volume
increases) showing that the compressibility is negative at coexistence even for
macroscopic droplets, while the plateau is recovered in the bulk limit.

This schematic example shows that the convexity anomalies associated to
first order phase transitions can be relevant even on a mesoscopic scale. An
interesting consequence of that is that the value of physical observables can be
drastically different in the different ensembles still at a mesoscopic scale. As
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an example, a caloric curve is always by definition monotonic in the canonical
ensembles while we have seen that temperature can decrease for increasing ex-
citation if the system is isolated. Of course the quantity called temperature is
not defined in the same way in the two ensembles; as long as ensembles are not
equivalent and aE In W we can wonder weather aE In W still represents the
physical temperature of the system: does the anomaly that we have analytically
recognized in the density of states really imply that pumping energy out of a
system heats it up, or is it rather a mathematical curiosity? This question, ad-
dressed in the next section, can of course be generalized to any intensive variable
conjugated to an order parameter in a generic first order phase transition.

4.6 What is temperature?

We all know that the second law of thermodynamics states that temperature
measures the increase rate of entropy, dS = dQIT where Q is the (disordered)
thermal energy we have called E in these lectures. Let us show that the rate of
entropy is indeed the response of a thermometer loosely coupled to the system
under study. In such a case loosely coupled means that the states of the total
system are the independent tensorial products of the states of the thermometer

times the one of the system. Moreover, the total energy is also simply the sum
of the two partial energies.

>From a macroscopic point of view, the equilibrium between the system
and the thermometer requires the total entropy Stt = Sy, + Sthem to be
a maximum under the constraint of the total energy Etot = Esys + Ethe,,.,,.

The definition T` = dSIdE leads then to the equality of temperatures for the
system and the thermometer Tsys Ttherm in agreement with the zeroth's law
of thermodynamics.

However we have also seen in the first chapter that starting from the same
Shannon information kernel many different entropies exist according to the dif-
ferent constraints that define the equilibrium under study. The various entropies
only converge toward a unique quantity at the thermodynamical limit if this
latter exists. On the other side the quantity that backbends is only the micro-
canonical temperature T` = d In WIdE. We therefore ask the question weather
a physical thermometer applied to an isolated system measures the microcanon-
ical temperature, i.e. weather the negative heat capacity discussed above is a
real measurable physical phenomenon. A thermometer by definition loosely in-
teracts with the system. This means that if a thermometer (of energy Eth,,,)

is put into a system (of energy Ev,), Eth,,,, and Ecan be considered as in-
dependent variables. The ensemble of system plus thermometer is isolated with
a total energy Et,,t, therefore the equiprobability of microstates and the factor-
ization of the Hilbert space into the system and thermometer parts, leads to the
equilibrium probability distribution for the thermometer energy

PE,.t (Eth = Wth(Eth)W.y.(Etot - Eth) (37)

Wtot (Etot)



Phase Iansitions in finite systems 41

where Wth (Wy,) is the number of states of the thermometer (system) and
where Wt,,t(Ett = f dEthWth(Eth)W.ys(Etot - Eth) is the number of states
of the total system (thermometer system). Temperature is then defined as
the response of the thermometer in the most probable state; if we maximize the
probability 37) we get

d In Wth = d In Wy, (38)

dEth dEYS

which shows that the quantity shared at the most probable energy partition is
indeed the microcanonical temperature. This result is not in contradiction with
the standard idea that for a thermostat, the physical temperature is the intensive
variable conjugated to the energy, i.e. the (inverse of the) Lagrange multiplier.
Indeed if we consider a thermometer inside a thermal bath its most probable
energetic state will be given by the maximum of the canonical distribution of
energies

P(Eth = Wth (Eth) exp(-OEth)/Z,3

which gives an energy Pth such that OE In Wth (rth = -
Equation 37) shows that from a microscopic point of view the temperature

is indeed an ensemble property: the properties of a thermometer fluctuate from
event to event. Only at the thermodynamical limit (for both the system and the
thermometer) the fluctuations will be reduced to zero and the distribution of
thermometer responses to a unique value.

An example of thermometer is given by the kinetic energy: indeed for a classi-
cal system eq. 37) holds with Ey = Ep.t and Eth = Eki.. Eq. 38) then implies
that the most probable kinetic energy measures the microcanonical temperature.

5 A typical finite system: the explosion of a supernova

In the previous chapter we have shown that negative heat capacities system-
atically occur in first order phase transitions of finite systems when energy is
an order parameter. From an historical point of view however, the problemat-
ics linked to negative heat capacity has started in the early seventies in a very
different context, namely as a specificity of self-gravitating systerns. Indeed a
star that has exhausted its nucleax fuel radiates (i.e. loses energy) and heats up
because of the gravitational contraction, i.e. behaves as a negative heat capacity
system. Such a thermodynamical interpretation of the last steps of stellar evo-
lution was considered as a triviality by the astronomers and as a absurdity by
thermodynamicists. Let us summarize the two opposite arguments here.

e The astronomers' point of view. If we consider an isolated system with a
potential energy oc r-', the virial theorem states

2Ekin + nEpot 0 (39)

In the case of the gravitational potential n 1 and we get for N particles
Et,,t = -Ekin = -312NT which implies C -312N < showing that a
self-gravitating object has always C < .
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The thermodynamicists' point of view. For a generic equilibrated system in
the canonical ensemble

2 d < E > 02 >)2 > 
= -0 � = �(E- < E (40)

do

1. showing that the heat capacity corresponds to the energy fluctuation which
cannot be negative.

In the following sections we will show that both statements are incorrect, and
that negative heat capacity in macroscopic self-gravitating systems is a physical
equilibrium phenomenon exactly equivalent to the first order phase transitions
in filidte systems studied in the last chapter. Indeed a mesoscopic boiling droplet
and an collapsing (or exploding) star are very similar in the sense that in both
cases the size of the system is comparable to the range of the force.

5.1 C < in self-gravitating systems and the gravothermal
catastrophe

The confusion arising from the two contradictory arguments about the sign of the
heat capacity was increased by the famous gravothermal catastrophe predicted
first by Antonov[201 from the study of the extrema of the microcanonical entropy
of a self-gravitating object in the mean field approximation as a function of the
one body matter density. The one body Shannon entropy reads

= - I d 3 rd 3P f (-F*, V) In f (71, V)

The microcanonical equilibrium can be found as usual by maximizing the entropy
in a fixed volume V under the particle number and energy constraint (see chapter

0 = dS - adN -dE

N = d3rd3 f T�, V)

3 3 2 Gm 2 3 3 3 3p, f f
E = d rd P- f (TI, V) Id rd pd r'd

2,m 2 -F, f� I

The result is a self-consistent equation for the equilibrium one body matter
density p(-�' = f d3p f 71, V) that can be solved to give the density contrast

plp, between the center and the surface of the box. The result is that the
density contrast is an increasing function of the volume. Figure 18 shows an
exact calculation of this problem for the case of identical hard spheres[21]. For
extremely large volumes plp > 709 the extremum of the entropy is a minimum
meaning that no equilibrium solution exists in this case (Antonov gravothermal
catastrophe). This result looks particularly strange since the instability provoked
by the gravitational potential does not appear when the box is too small (and
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Fig. 18. Microcanonical heat capacity as a function of the density contrast for hard
spheres with gravitational interactions from ref.[21].

the interaction energy is strong) but when the box is too large (and the inter-
action energy is loose). Moreover for intermediate boxes 32.2 < pc1p < 709
the extremum is a maximum i.e. the solution is stable, but the heat capacity
contains a pole and a negative branch, which traditionally was associated to an
instability (see chapter 3.

5.2 Solution of the Antonov paradox

The disagreement between the gravothermal catastrophe and eq.(40) clearly im-
plies that the Van Hove theorem (see section 41) is violated. This can only
be due to the long range of the force. The incoherence with the virial theorem
eq.(39) can be explained by considering that if we are dealing with N particles
the density of states (see section 43)

3N12

W C d 3N r E- �jj�
f ij rij

diverges unless a short range cut-off and a constraining potential (or boundary
condition) are introduced. This means that the virial theorem has to be cor-
rected for the short range repulsion and for the boundary condition. A schematic
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modelization of this problem has been proposed by W. Thirring as a constant
interaction among all particles inside a volume < V and no interaction out-
side[22]. This model is equivalent to the two coupled harmonic oscillator problem
proposed in section 43. The finite liquid drop of section 43 is now an infinite
star. while the saturated vapor corresponds to the star atmosphere. As for the
model 43, for the two boxes model a C < is found 22) whenever the difference
between the two volumes is important, i.e. for big total volumes in agreement
with the Lynden-Bell result[211. Following the reasoning of chapter 4 we can
then associate the C < regime to a phase coexistence between the star and
its atmosphere that stabilizes the stellar nuclear plant, and the gravothermal
catastrophe to a first order phase transition when the nuclear fuel is exhausted.

If we consider the generic case for the interaction in the dense phase E =
EN-' we can study the effect of the range of the force on the heat capacity
in the thermodynamical limit. The resulting caloric curves are given in figure
19[22] . In agreement with chapter 4 we can see that the negative heat capacity
disappears at the thermodynamical limit for short range interactions (- = )
but all ranges - > lead to a backbending that is preserved when N + oc,
i.e. this phenomenon is not specific of the gravitational interaction. We can also
understand why in the short range case the same phenomenology appears in self-
gravitating macroscopic system, as long as the range of the force is comparable
with the linear dimension of the system.

5.3 Thermal contact between C < systems

Phase coexistence in standard macroscopic thermodynamics is a trivial phenom-
enon: the tangent construction implies that the thermodynamical properties of
phase coexistence are completely determined by the properties of the correspond-
ing pure phases. On the other hand if surfaces cannot be neglected respect to
bulk properties (i.e. if the system is finite or the interaction is long range) new
unexpected phenomena peculiar to the coexistence phase appear, as negative
compressibility or negative heat capacity. The peculiar thermodynamical prop-
erties of the coexistence phase can be better understood if we consider in some
detail the problem of thermal contact between C < systems.

Let us consider a system with C < in thermal contact with a second
system with a heat capacity C2. Let us distinguish some different cases.

1. If C < no equilibrium is possible between the two systems. Indeed if
T > T energy will be transferred from system 2) to system (1) and system
(2) will get even hotter wle (1) becomes even cooler. This implies that it
is not possible to divide a C < system into two parts each with C < in
other words C < systems are not extensive.

2. A thermal equilibrium is possible if the C < system is in contact with a
C > system small enough such that C2 < IC, I In this case the temper-
ature increase of the initially slightly hotter system (1) is compensated by
system 2) which has positive heat capacity and receives energy, and there-
fore increases its temperature more rapidly; a final equilibrium state will
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Fig. 19. Caloric curves in the subcritical regime for different ranges of the interaction
from ref.[22].

then be achieved with Tq > max Tj, T2) In particular if the two systems
are independent we can write for the microcanonical distribution of energy
El In PE (El) = Si (El) S2 (E2 - St,,t (E) where E = El E2. The sta-
bility condition (i.e. the curvature of In P around the extrema) can then be
written as

d2 St.t
<0 (41)

dE2 2' Cl C2

where T = = T is the equilibrium temperature (the microcarionical
temperature associated with the most probable energy partition). This is
the case of a living star: the central part has C < the surface has
C > , the global system (or coexistence phase) has C = C + C < and
is stable since the core transfers energy to the atmosphere in the form of
radiation. The gravothermal catastrophe occurs when C = (see figure 18)
when the gravitational contraction cannot be stopped by nuclear reactions
leading to the whole well known phenomenology of stellar collapse[23].

3. A C < system cannot reach thermal equilibrium with a thermostat. Indeed
if (1) is much smaller than 2) eq.(41) is violated and the total entropy is
a minimum. This implies that a negative heat capacity is impossible in the
canonical ensemble coherently with eq.(40): the C < system in contact
with a thermal bath stops to hesitate between the two coexisting phases and
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jumps to its stable equilibrium state, i.e. makes a phase transition. These
considerations allow to gain an intuitive understanding of the fact that the
C < of a boiling liquid drop (see chapter 4 transforms into a plateau
when a water kettle is put on a gas cooker in the macroscopic world. Indeed
any microscopic portion of the boiling portion once isolated would appear
as a microcanonical C < system; the thermal contact with the rest of the
system (which can be considered a thermostat because of the short range of
the force) forces the stable C < system to choose between the liquid and
the gas solution giving rise to the Maxwell construction.

All we have discussed in this chapter has been presented in the early seventies;
it may be surprising then that negative heat capacity has not been recognized
at this time as a general paradigm of phase coexistence in non-exterisive (finite
or infinite) systems. Indeed it is only in the recent years, following the success of
the experimental application of these ideas to mesoscopic systems (see chapters 7
and 8) that these concepts have been developed further. The conceptual difficulty
of accepting a stable equilibrium with negative heat capacity is due to different
reasons.

First. the inhomogeneity of the star makes it difficult to consider it as a
single th ermodynamical object; following the reasoning of chapter 4 we however
understand that on the contrary this inhomogeneity is an essential feature of the
thermodynamics of coexisting phases.

Moreover the fact that the energy exchange between the star and the at-
mosphere consists in radiation (taking their energy from nuclear reactions) makes
the problem an out of equilibrium transport problem.

Most important, the fact that it is not possible to define a canonical equi-
librium. for a C < system means that the validity itself of such an equilibrium
is not easy to understand: how can one speak of temperature in the absence of
thermal contact, and what is in this case the meaning of a temperature decrease
with increasing energy? We have already discussed (and solved!) the problem of
the physical meaning of the microcanonical temperature in section 45; let us just
recall here that if a C < cannot be put in contact with a thermostat, on the
other hand a thermometer put in a C < system is perfectly well defined, and
measures the microcarionical temperature. This is the case 2 of the discussion
above (with C < and C2 < IC, )

6 Abnormal topology of event distributions

In most textbooks the equivalence between the different statistical ensembles
is either postulated or demonstrated at the thermodynamical limit through the
Van Hove theorem (see section 41) 

In the previous chapters we have shown that ensembles may not be equiv-
alent. For finite systems, two ensembles which put different constraints on the
fluctuations of the order parameter lead to very different equations of states close
to a first order phase transition. As an example the microcanonical heat capacity
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may diverge to become negative while the canonical one remains always positive
and finite (see sections 42 43) In chapter we have moreover seen that such
inequivalences may survive at the thermodynamical limit for systems involving
long range forces.

In this chapter we will try to formalize all these findings looking at the gen-
eral properties of the order parameter distribution. This will allow us to propose
a definition of phase transitions in finite systems also for intensive ensembles
(i.e. ensembles where the order parameter is not controlled on an event by event
basis based on topology anomalies of the event distribution in the space of ob-
servations. We will show in the next sections that this generalizes the definitions
based on the curvature anomalies of thermostatistical potentials presented in
chapter 4 Such a definition gives a clear understanding of the physical meaning
of an order parameter as the best variable to sepaxate the two maxima of the
distribution, and can be directly used experimentally (see chapters 78).

In section 66 we will come back to the problem of the thermodynamical
limit. If the order parameter is sufficiently collective the anomaly represented by
the phase transition may survive until the infinite volume and infinite number
limit. According to the specific properties of the Hamiltonian we will then work
out a sufficient condition for the finite size phase transition to become the one
known in the bulk.

6.1 Negative heat capacity and bimodal energy distributions

Let us first concentrate on finite systems. To begin we will consider the specific
example of the microcanonical and the canonical ensemble characterized by the
energy E and the temperature 3-1 respectively.

In section 45 we have shown that the extreme of the probability distribution
in the canonical ensemble

Po (E = exp (S(E - E - log Zo)

are given by the equation

T-' =,9ES RO) (42)

If this extremurn is unique, we can perform a saddle point approximation around
the most probable energy Po leading to the average energy

2

(E)o dEEe- 2C g (E - E) (43)

3 X4 +... -with g (X = CO C3X + C4 If Fo is symmetric, (E) Eo and T (<

E > =.0 meaning that the microcanonical caloric curve T(E) exactly coincides
with the canonical one '((E)). If the distribution is not symmetric some cor-
rective terms arise E)1 = Eo + bo, where bo f dx xexp(-x'12C)�o(x)

3C3v'2-7rC5 + ... with �o the series of the odd terms of go. However, the shift 
is in most cases small so that when Fo has a unique maximum the ensembles
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are almost equivalent even for a finite system. The same approximation can be
applied to the partition sum, which is linked to the entropy by an exact Laplace
transform

Z)3 dE W(E)e-OE

leading to

ZO W(< E >e-,3<E>

which corresponds to a simple linear transformation between the thermodynam-
ical potentials, i.e. an approximate Legendre transform

In Zo ;z:� In W(< E > - < E >

As we have already mentioned in section 21, this expression has not to
be mixed up with the true (and exact) Legendre transform In Z, = S,9 (< E >
) -, < E > which gives the relation between the partition sum and the Shannon
entropy within the canonical ensemble.

However in first order phase transitions P3 has a characteristic bimodal shape
_(1) -(2)

(see section 22) 24-26] with two maxima E3 E,3 that can be associated with

the two phases and a minimum P(O). These three solutions of Eq.(42) imply
a backbending for the microcanonical caloric curve. Indeed a minimum of P3
corresponds to a convexit of the entropy according to In P = d2 n W. Ay E E
single saddle point approximation is not valid in this case; however it is always

= M(1)p(l) + M(2)p(2) with P(') mono-modal normalizedpossible to write PO 0 '3 0 0 0
_Mprobability distribution peaked at E I The canonical mean energy is then the

weighted average of the two energies

(1)p(l) + n_(2)-(2)
(E), = fi', 0 13 EO (44)

_M Mwith ffim = MW f dEP(')(E)E1E0 2f the last equality holding for sym-0 0 0
metric distributions P(i ). Since only one mean energy is associated with a given)3
temperatures-', the canonical caloric curve is monotonous. In particular in the
backbending region the mean energy is an interpolation between the two ener-

_(1) -(2)
gies EO Eo associated with the considered , the weighting factor being the

probability of each phase fin(i)0
If instead of looking at the average (E),3 we look at the most probable energy

E,3 this (unusual) canonical caloric curve is almost identical to the microcanon-
ical one (see eq. 42)) up to the transition temperature 3�-' for which the two
components of P (E) have the same height. At this point the most probable
energy jumps from the low to the high energy branch of the microcanonical
caloric curve. The most probable canonical energy is still a monotonic curve but
it presents a plateau at N 1 which is equivalent to the Maxwell construction
since
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Fig. 20. Canonic thermodynamics of 216 particles in the isobar Lattice Gas model. Upper
part: energy distributions for different temperatures. Lower part: caloric curve from the
average and the most probable energy.
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Fig. 21. Event distribution in the energy versus magnetization plane for a 6x6x6 Ising
model with zero field at a subcritical, critical and supercritical temperature.

-(2)

2) dE (p(2)
S(F( S(r(1) = E (45)13 0 T 0 0

Therefore, the difference between the canonical and microcanonical caloric
curves remains when one is looking at the most probable energy instead of the
average. The connection between the canonical energy distribution and the
microcanonical equation of state is presented for the three dimensional lattice gas
model in figure 20. The bimodality of the canonical energy distribution as well as
the discontinuity in the most probable energy value are definitions of the phase
transition exactly equivalent to the convexity anomaly of the entropy discussed
in chapter 4 and clearly defined even for very small system 216 particles are
considered for the calculation of figure 20).

6.2 Convexity anomalies and bimodal probability distributions

This discussion can be generalized to any couple of extensive/intensive ensemble.
Figure 21 shows the example of the Ising model at zero field. The bimodal
structure in the m direction corresponds to a negative susceptibility in a constant
magnetization ensemble. In this case the projection on the energy as does not
show anomalies the microcanonical heat capacity remains positive and the
energy is not an order parameter. At T, the distribution presents a curvature
anomaly only on the low energy side respect to the maximum. Therefore at
this point the curvature passes through zero signalling a second order phase
transition. Since in finite systems the canonical distribution for any 3, h (p)

allows a complete exploration of the microcanonical entropy surface (in the limit
of the total number of events analyzed), the whole microcanonical phase diagram
can in principle be drawn from any single canonical temperature using the fact
that the distribution is in fact the entropy

S(E) 109 P3,h= (E, M) In ZOh=O + 3E.
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As an example the croissant shape of the distribution at T, not only defines the
critical energy e, and magnetization mc of the second order phase transition but
also allows to infer the coexistence line where the first order phase transition
takes place. Indeed a constant energy cut of the distribution below e, directly
represents the entropy as a function of magnetization and has a bimodal shape.

6.3 Liquid gas phase transition and volume fluctuations

Let us now take the example of the liquid-gas phase transition in a system of n
particles for which the volume is not controlled on an event by event basis but
is at best known in average. In such a case, we can define an observable b, as a
measure of the size of the system; for example the cubic radius f3 = 47Ej P3n 2

where the sum runs over all the particles Then a Lagrange multiplier Av has
to be introduced which has the dimension of a pressure divided by a temperature.
In a canonical ensemble with an inverse temperature we can define different
distributions which are illustrated in Fig. 22 A complete information is contained
in the distribution P\, (e v = V (e v Z - exp - ,3e + Av) since events are
sorted according to the two thermodynamical variables, e and v. This leads to the
density of states W (e, v) with a volume v and an energy e. One can see that in
the first order phase transition region the probability distribution is bimodal. In
the spirit of the principal component analysis we can look for an order parameter
(� = xft+y'� which provides the best separation of the two phases. A projection
of the event on this order parameter axis is also shown in Fig.22. One can see
a clear separation of the two phases. On the other hand if we cannot measure
both the volume v and the energy e we are left either with

P,,\, (e = W,\, (e) Z�' exp(-Oe)

giving access to the microcanonical partition sum WN. (e) at constant A, or with
the probability

P3,\, (v) = Zo (v) Z,;�, exp(-,\,,v)

leading to the isochore canonical partition sum 20 (v). Since both probability

distribution P\, (e) and P,\, (v) are bimodal the associated partition sum do

have anomalous concavity intruders i.e. negative heat capacity as well as nega-

tive compressibility.

As a general statement, we can define a first order phase transition for any

number of particles as a bimodality in the probability distribution of an arbitrary

observable-, any observable that allows to separate the two maxima of the event

distribution can then be considered as an order parameter.

6.4 A mesoscopic example: negative magnetic susceptibility

To better explore the connection between the distribution of the order parameter

and the equation of state, let us consider the Ising model (see section 23 at
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Fig. 22. Event distribution in the volume versus energy plane for 216 particles in the
isobar canonical Lattice Gas model and projection over the two axes. Bottom right:
projection of the distribution over the direction separating at best the two distributions.

fixed magnetization. The partition sum can be written as

Z3 (,M =f dE W(E, m) exp(-OE)

where m = _lv slN is the magnetization. As shown in figure 23 the phase tran-i
sition is signalled by a backbending of the equation of state �(M) a, In O
(m) that replaces the discontinuity in the equation of state < m > h) of the
standard Ising model with partition sum

Z,3h dmdE W(E, m) exp(-O(E + mNh))
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Fig. 23. Left side: magnetization distribution in a x6x6 Ising model at a subcritical
temperature for three different values of the external field. Right side: equation of state
for Ising and for the constant magnetization ensemble (backbending curve).

Note that in the case of this specific model finite size correction are particularly
small and an almost perfect jump is observed already for a 3D lattice size of
linear dimension L = 6.

This same information concerning a negative magnetic susceptibility can be
obtained by looking at the magnetization distribution of the standard Ising
model with zero field

P,h (M) = ' f dE W(E, m) exp(-O(E+mNh)) "3 exp(-OmNh) 46)
Z,3h Z,3h

>Frorn equation 46) we can see that d' In NOh d2n In Z This shows
that a minimum in the magnetization distribution (left part of fig.23) implies a
convexity anomaly in the constant magnetization partition sum (right part of
fig.23) i.e. a negative magnetic susceptibility for mesoscopic ferromagnets sorted
in constant magnetization bins.

6.5 First order phase transitions and bifurcations

Another way to understand a first order phase transition is to relate it with
a bifurcation. Let us for example look at the grancanonical lattice gas model
at the critical chemical potential and let us look at the mass distribution as a
function of the temperature (see figure 24). Above the critical temperature the
mass distribution is normal but at the critical temperature it bifurcates into a
bimodal distribution with two peaks:

• the gas one at low mass, i.e. low density,
• and the liquid phase at high mass.

This sudden bifurcation is typical of a phase transition.
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Fig. 24. Mass distribution as a function of the system temperature for the grancanonical
lattice gas model.

6.6 The thermodynamical limit and the Yang Lee theorem

The definition of phase transition proposed in section 61 can be applied to a
wide range of situations even out of equilibrium[27] and can be directly imple-
mented on experimental data (see chapter 78). However it is clear that not all
topological anomalies will survive up to the bulk limit and give rise to a conven-
tional thermodynamical phase transition. The transition between two isomeric
states, the breaking of a Cooper pair, ionization are all examples of state changes
that do not lead to discontinuities in the bulk limit, i.e. do not converge to a
thermodynamical first order phase transition. It is therefore of extreme interest
to study the thermodynamical limit of the order parameter distributions. Since
we have seen that the different statistical ensembles are in general not equiva-
lent, the thermodynamical limit has to be considered separately for the intensive
(say, canonical) and extensive (say, microcanonical) ensemble.

The thermodynamical limit can be expressed as the fact that the thermody-
namical potentials per particle converge when the number of particles N goes to
infinity fN = -1 log Z,31N - ,3 and SN (e = S(E)IN --+ (e) where e =

EIN. Let us also introduce the reduced probability PN,,3 (e = PO(N, E) )IIN

which then converges towards an asymptotic distribution PNO (e) -� f (e) where
,zz� p,3 e))NP,3 (e = exp §(e - Oe + 1,3). Since PO N, E) , one can see that when

p,3 (e) is normal the relative energy fluctuation in P3 (N, E) is suppressed by a

factor 11.\/N. At the thermodynamical limit Po reduces to a -function and the
ensemble equivalence is recovered (see section 22). To analyze the thermody-
namical limit of a first order phase transition (bimodal PN,�3 (e)), let us introduce
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as before 3�"t the temperature for which the two maxima Of PN,,3 (e) have the

same height. For a first order phase transitionoT converges to a fixed point

1 M --+ E('). For all temperature loweras well as the two maximum energies eN,,3
1(higher) than O�- only the low (high) energy peak will survive at the thermo-

dynamical limit since the difference of the two maximum probabilities will be

raised to the power N. Therefore, below ) and above E (2) the canonical caloric
curve coincides with the microcanonical one in the thermodynamical limit. In
the canonical ensemble the temperature _ 1 corresponds to a discontinuity in

the state energy irrespective of the behavior of the entropy between EM and0
E (2) A more rigorous demonstration can be done with the help of the Yang Lee
unit circle theorem 26].

The Yang Lee theorem 28] considers the distribution of the zeros of the
partition sum Zo in the complex plane. Under very general conditions it is
possible to demonstrate[28] that the zeros form a line that cuts across the real
axis with a density increasing with the number of particles of the system, leading
to a vanishing imaginary part for N -+ oc, i.e. a first order phase transition
at a definite (real) temperature. The partition sum for a complex parameter
, = 3 + i77 is nothing but the Laplace transform of the probability distribution
P3c, (e) for a temperature parameter 30 29,30]

Z = f deZo. P. (e) = f de p (e) e-i77e

In order to study the thermodynamical limit (when it exists), if p,3 (e) is monomodal
we can use a saddle point approximation around the maximum eo giving Z3.
e0g(EO) , with

00 (e) = log po (e - 77e + 72C (e) 2 log 27rC(e)
2

where C` = 2 logp,3,, (e). However, if Wac, (e) has a curvature anomaly it exists
a range of for which the equation a, log(W,3,, (e) - - = has three
solutions el, e2 and e3 . Two of these extrema are maxima so that we can use a
double saddle point approximation which will be valid close to thermodynamical
limit[29]

Z Oo(ei + eoo(e3e = 2eO+ cosh

where 2 = 0 (el) 0,3 (e3) and 20- = 0,3 (el) - 0,3 (e3). The zeros of Z30 )3
then correspond to 0- = i (2n + 1) 7r. The imaginary part is given by 

2 (2n + 1) 7r/ (e3 - el) while for the real part we should solve the equation 
0. In particular, close to the real axis this equation defines a which can be taken
as 3. If the bimodal structure persists when the number of particles goes to in-
finity, the loci of zeros corresponds to a line perpendicular to the real axis with
a uniform distribution as expected for a first order phase transition.

This demonstrates the link of the curvature anomalies of thermodynamical
potentials which are equivalent to bimodalities of probability distribution with
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the usual definition of first order phase transitions when the thermodynamical
limit is reached.

6.7 The death of thermodynamics

Let us now investigate the more general situation when the system size goes to
infinity even if the Van Hove theorem do not apply. The microcanonical caloric
curve in the phase transition region may either converge towards the Maxwell
construction or keep a backbending behavior, since a negative heat capacity
system can be thermodynamically stable even in the thermodynamical limit if it
is isolated (see chapter 5). In particular we have shown in chapter that if the
interaction is long ranged the topological anomaly leading to the convex intruder
in the entropy is not cured by increasing the number of particles[21],[31],[32].

Within our approach based on the topology of the probability distribution
of observables 26] we have just shown that ensemble inequivalence arises from
fluctuations of the order parameter. Ensembles putting different constraints on
the fluctuations of the order parameter leads to different thermodynamics. In the
case of phase transitions with non-zero latent heat the total energy usually plays
the role of an order parameter except in the microcanonical ensemble. Therefore,
the microcanonical ensemble which forbids energy fluctuation is expected to
presents a different thermodynamics than the other (canonical) ensembles. This
different behavior may remain at the thermodynamical limit depending upon the
specific properties of the considered system. In such a case, it may happen that
the energy of a subsystem may become an order parameter when the total energy
is constrained by a conservation law or a microcanonical sorting. This frequently
occurs for Hamiltonians containing a kinetic energy contribution: if the kinetic
heat capacity is large enough we will now show that the kinetic energy becomes
an order parameter in the microcanonical ensemble. This is almost a paradox
since in any other ensembles in which no total energy conservation is imposed
the kinetic energy has a trivial perfect gas behavior while in the microcanonical
ensemble it becomes an order parameter with the specific bimodal structure
at the phase transition. Then, the microcanonical caloric curve presents at the
thermodynamical limit a temperature jump in complete disagreement with the
canonical ensemble.

Let us consider a finite system for which the Hamiltonian can be sepa-
rated into two components E = El E2, that are statistically independent
(W (El E2 = W (El) W2 (E2)) and such that the associated degrees of freedom
scale in the same way with the number of particles; we will also consider the
case where = log WI has no anomaly while S2 = log W2 presents a convex in-
truder which is preserved at the thermodynamical limit V --+ o, N - o with
NIV = st). Typical examples of El are given by the kinetic energy for a clas-
sical system with velocity independent interactions. For other similar one-body
operators see ref. 31] .

The probability to get a partial energy Elwhen the total energy is E is given
by
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PE (El) = exp (Si (El) S2 (E - El) - S (E)) (47)

The extremum of PE (El) is obtained for the partitioning of the total energy
E between the kinetic and potential components that equalizes the two par-
tial temperatures , - = aE, (l) = aE� S2 (E - El = T2 1 If Plis unique,
PE (El) is mono-modal and we can use a saddle point approximation around this

E
solution to compute the entropy S (E) = log f . dEl exp, (Si (El) S2 (E - El))
At the lowest order, the entropy is simply additive so that the microcanonical

temperature of the global systemaES(E = T1 is the one of the most prob-
able energy partition. Therefore, the most probable partial energy El acts as
a microcanonical thermometer. If Flis always unique, the kinetic thermometer
in the backbending region will follow the whole decrease of temperature as the
total energy increases. Therefore, the total caloric curve will present the same
anomaly as the potential one.

If conversely the partial energy distribution is double humped then the

equality of the partial temperatures admits three solutions one of them F(O) be-I
1 -2 a2 S T)ing a minimum. At this point the partial heat capacities C = TI E I

and C�-' = -T 2 aE2, S2 (E - (O)) fulfill the relation1

C- + q- < (48)1

This happens when the potential heat capacity is negative and the kinetic energy
is large enough (C > -C2) to act as an approximate heat bath: the partial
energy distribution PE (El) in the microcanonical ensemble is then bimodal as
the total energy distribution P3 (E) in the canonical ensemble. The bimodality
of PE (El) implies that the kinetic energy is an order parameter of the transition
in the microcanonical ensemble. In this case, performing a double saddle point
approximation around the two maxima leads to a microcanonical temperature
given by a weighted average of the two estimations from the two maxima of the
kinetic energy distribution

T=aES(E = 7;(I)O,(, IT(l) + 5(2)0,(2 IT (2) (49)

P (1) O (1) + j5(2)Or(2)

(TWwhere T(') T, I are the kinetic temperatures calculated at the two max-

ima, 15(i) PE(E(')) are the probabilities of the two peaks and o') their1
widths. At the thermodynamical limit eq.(48) reads -1 + C_ 1 < 0, with c1 2
liMN-,,c CIN If this condition is fulfilled the probability distribution P3(E)
presents two maxima for all finite sizes and only the highest peak survives at

N = oc. Let Et be the energy at which PE, F(l)) = pE, (p(2) ). Because of

eq. 49) at the thermodynamical limit the caloric curve will follow the high (low)
energy maximum of PE (El) for all energies below (above) Et; there will be a
temperature jump at the transition energy Et.
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Fig. 25. Left panels: temperature as a function of the potential energy E2 (full lines) and
of the kinetic energy E - E2 (dot-dashed lines) for two model equation of states of classical
systems showing a first order phase transition. Symbols: temperatures extracted from the
most probable kinetic energy thermometer from eq.(5). Right panels: total caloric curves
(symbols) corresponding to the left panels and thermodynamical limit of e.(7) (dashed
lines).

This patent violation of ensemble equivalence means that, contrary to the
physical intuition based on macro-systems, the equations of state are expected
to explicitly depend on the characteristics of the considered ensemble of events
i.e. the state variables: the fluctuating observables and the conserved quantities
imposed by the dynamics or by the sorting variables used in the data analysis.
This implies the impossibility to define a unique thermodynamics, i.e. a unique
EoS, for systems undergoing a first order phase transition.

Let us illustrate the above results with two examples for a classical gas
of interacting particles. For the kinetic energy contribution we have SI E =
cl ln(EIN)N with a constant kinetic heat capacity per particle c = 32. For
the potential part we will take two polynomial parametrizations of the interac-
tion caloric curve presenting a back bending which are displayed in the left part
of figure 25. If the decrease of the partial temperature T2(E2) is steeper than
-2/3 (figure 25a ) 211 eq.(48) is verified and the kinetic caloriccurve TE-EI)
(dot-dashed line) crosses the potential one T2(E2) (full line) in three different
points for all values of the total energy lying inside the coexistence region. The
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Fig. 26. Canonical event distributions in the potential versus kinetic energy plane (left
panels) and total versus kinetic energy plane (right panels) at the transition temperature
for the two model equations of state of figure 1. The inserts show two constant total
energy cuts of the distributions.

resulting caloric curve for the whole system is shown in figure b (symbols) to-
gether with the thermodynamical limit (lines) evaluated from the double saddle
point approximation 49). In this case one observes a temperature jump at the
transition energy. If the temperature decrease is smoother (figure 25c) the shape
of the interaction caloric curve is preserved at the thermodynamical limit (figure
25d).

The occurrence of a temperature jump in the thermodynamical limit is easily
spotted by looking at the bidimensional canonical event distribution P (El, E2)
in the partial energies plane. This density of states is just the product of the
independent kinetic and potential canonical probabilities as shown in the left
part of figure 26 for the two model equation of states of figure 25 at the transition
temperature = t. In order to discuss the microcanonical ensemble one has to
introduce the total energy E = El E2. Keeping E and El as variables instead
of (El, E2) is nothing but a simple coordinate change with unit Jacobian. Thus
we can look at the canonical distribution as a function of E and El, P(E, El) c
exp Si (El) exp S2 (E - El) exp(-,M) which is shown in the right part of figure
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Fig. 27. Left bottom: a schematic picture of the experimental set-up. Left top: ilustration
of the shift of the cluster internal energy distribution by the photons' energy leading
to a measurable distribution of evaporated fragments. Right: the observed correlation
between the temperature of the Helium bath and the fragmentation pattern induced by
the absorption of several photons. The "accident" at a given temperature indicates the
melting point 33].

26. The deformation of the event distribution induced by the microcanonical
constraint does not cause a topological difference between our two model cases;
this explains why both converge to the Maxwell construction for N -+ oo in the
canonical ensemble. If we now study the microcanonical ensemble we have to look
at constant energy cuts of P3(E, El) leading to the microcanonical distribution
PE (El) within a normalization constant. If the anomaly in the potential equation
of state is sufficiently important, the distortion of events is such that one can
still see the two phases coexist even after a sorting in energy as shown in the
same figure 26 for two cuts of P9 (E, El) at an energy close to the transition
energy.

7 Observables: melting of metallic clusters 33]

In the year 2000 the first experimental signature of a back bending caloric curve
has been reported in the melting of metallic clusters. The experiment is rather
simple. The clusters are first produced and selected. Then the clusters get ther-
malized in the melting temperature region in an helium heat bath. After ther-
malization they are further excited by a laser beam absorbing several photons,
thanks to the plasmon. vibration. The average energy is then such that clusters
have time to evaporate atoms within the experiment time scale. The number of
evaporated atoms provides a measure of the cluster excitation energy. Since the
photon energy is fixed, this is a measure of the excitation energy at the exit of
the heat bath. Changing the temperature the thermal excitation changes and the
distribution of evaporated atoms is shifted. The obtained bidimensional. pictures
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experimental results. The observed pattern (last row) is only compatible with the ex-
istence of a bimodal energy distribution. Right side: enlarged diagram indicating the
presence of a bimodality wich looks like a sudent jump in the energy distribution. 33].

of the number of evaporated atoms as a function of the oven temperature clearly
show an anomaly corresponding to the melting point. (see figure 27).

Instead of looking for a back bending of the microcanonical caloric curve the
authors of reference 33] have tried to observe the associated bimodal canoni-
cal energy distribution. Since the number of evaporated atoms is a measure of
the cluster excitation energy before the photons' absorption, this distribution
is a measure of the canonical distribution of excitation energy. The difference
between a back bending and a monotonous caloric curve is that the energy dis-
tribution has a bi-modal or a mono-modal shape (see chapter 6. This induces a
modification of the fragmentation pattern. The only difficulty is that the system
may absorb different numbers of photons. Therefore one observe replicas of the
same distribution every hv. The trick is thus to correctly tune the laser energy
so that it will not blur the jump. On can see in figure28 that the observed pat-
tern is only compatible with a negative heat capacity system. The results can be
interpreted if one assumes a 10 degree decrease of the temperature at the phase

transition energy.
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8.2 Negative heat capacities and abnormal fluctuations

At the same time of the observation of negative heat capacity in the melting
transition (see chapter 7 a C < signal has also been reported for the nuclear
multifragmentation transition using the fluctuations of the energy partition 34].

The investigation method 35] can be easily explained for a classical fluid
and tested in the framework of the lattice-gas model. The total energy E of
the considered system can be decomposed into two independent components, its
kinetic and potential energy: E = Ek + Ep. In a microcanonical ensemble with
a total energy E the total degeneracy factor W (E = exp (S (E)) is thus simply
given by the folding product of the individual degeneracy factors W (Ei =
exp (Si Ei)) of the two subsystems i = k, p. One can then define for the total
system as well as for the two subsystems the microcanonical temperatures T
and the associated heat capacities C. If we now look at the kinetic energy
distribution when the total energy is E we get

Pk' (Ek = exp (Sk (Ek) + S, (E - Ek - S (E)) (50)

Using Eq.(50) we directly get that the most probable partitioning of the total
energy E between the potential and kinetic components is characterized by a
unique microcanonical temperature T = Tk (.8-- = Tp (E - BE) . Therefore thek k
most probable kinetic energy BE can be used as a microcanonical thermometerk
as shown in Figure 30 Using a Gaussian approximation for P E(Ek) the kinetick
energy variance can be calculated as 35]

01 2 = 2 CkCP (51)
k Ck + Cp

where Ck and Cp are the microcanonical heat capacities calculated for the most
probable energy partition.

As shown in Figure 30 when Cp diverges and then becomes negative, a 2k
remains positive but overcomes the canonical expectation a = 2Ck. Thisk
anomalously large kinetic energy fluctuation is a signature of the first order
phase transition. Equation (51) can be inverted to extract from the observed
fluctuations the heat capacity

T2C2
C Ck + Cp k (52)

T2C - 2
k

Figure 30 shows that the heat capacity extracted from the kinetic energy fluc-
tuations is in very good agreement with the exact one. This means that kinetic
energy fluctuations are an experimentally accessible measure of the heat capac-
ity which allows to sign divergences and negative branches characteristic of the
phase transition.

8.3 Experimental results

The negative heat capacity signal of a phase transition has been looked for in
experiments. In such a case an easy splitting of the energy is between the thermal
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Fig. 30. Left part: the schematic distribution of partial energy for a fixed total energy.
Right: the comparison of the various measurements (dots) with the exact results of the
lattice-gas model (lines).

excitation and agitation on one side and the partition Q-value plus the Coulomb
interaction on the other side. The expected canonical prediction can be inferred
from the relation between the average kinetic energy and the temperature since
this provides Ck. Figures 31 and 32 show the first experimental results of a fluc-
tuation overcoming the canonical expectation with the corresponding deduced
heat capacity for excited nuclei in the gold mass range 34].

It is important to know that these measurements need a very sophisticated
and accurate technique to correctly reconstruct the configurational energy fluc-
tuations at the time of fragment formation. These reconstructions often need
hypotheses such as the volume of the freeze-out and the origin of emitted parti-
cles. Additional measurements to control these hypotheses have to be performed.
However, kinetic energy fluctuations are a very promising way to infer thermo-
dynamical properties and to signal phase transitions.
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