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The production of J/Ψ mesons in central collisions of heavy nuclei is investigated as a function of
collision energy. Two contributions are considered simultaneously: early (hard) production coupled
with subsequent suppression in a Quark-Gluon Plasma, as well as thermal recombination of primor-
dially produced c and c̄ quarks at the hadronization transition. Whereas the former still constitutes
the major fraction of the observed J/Ψ abundance at SpS energies, the latter dominates the yield
at RHIC. The resulting excitation function for the number of J/Ψ’s over open charm pairs exhibits
nontrivial structure around

√
s ≃ 30 AGeV, evolving into a significant rise towards maximal RHIC

energy. We study this feature within different (thermal) scenarios for J/Ψ suppression, including
parton-induced quasifree destruction as a novel mechanism.

A promising probe for hot and dense QCD matter
as created in the early phases of heavy-ion reactions is
the abundance of J/Ψ mesons, measured via their de-
cay branching into dilepton final states. Their produc-
tion is expected to be significantly reduced in the case of
Quark-Gluon Plasma (QGP) formation in sufficiently en-
ergetic collisions of large nuclei. In such a picture, J/Ψ
mesons are exclusively formed primordially (i.e., upon
first impact of the colliding nucleons), and subsequently
dissociated by (i) nuclear absorption, (ii) parton-induced
destruction in a QGP [1] and/or Debye screening [2], and
(iii) inelastic scattering on “comoving” hadrons in the fi-
nal hadron gas phase of the reaction. The identification
of the plasma effect thus requires a reliable knowledge of
both (i) and (iii). Nuclear absorption is appreciable and
has been thoroughly investigated in p-A and light-ion re-
actions, whereas the impact of hadronic interactions is
not yet well under control, although its net effect seems
to be rather moderate, see, e.g., Refs. [3–7]. Within this
framework the data of the NA50 collaboration at the SpS
have been interpreted as evidence for QGP formation in
the most central Pb(158 AGeV)-Pb collisions [8].

Recently, an alternative view of J/Ψ production in
heavy-ion reactions has been put forward. Prompted by
the observation that the J/Ψ yield per charged hadron
is remarkably constant as a function of impact param-
eter, it has been argued in Ref. [9] that all J/Ψ’s are
created statistically at the hadronization transition. The
deduced temperature of T ≃ 175 MeV is well in line with
the so-called chemical freeze-out of light hadron produc-
tion [10–12]. However, no reference is made to an under-
lying mechanism for cc̄ creation. In a somewhat different
approach, Braun-Munzinger and Stachel have extended
their thermal model analysis [10] to include (open and
hidden) charm hadrons [13] (see Ref. [14] for an update
of this analysis). Together with the (dynamically well
justified) proposition that cc̄ pairs at SpS energies are
exclusively produced primordially, the J/Ψ abundance
in sufficiently central Pb-Pb collisions can be accounted
for by statistical recombination of c and c̄ quarks at the
earlier inferred hadro-chemical freeze-out without intro-
duction of new parameters. In a subsequent analysis [15],

this approach was reiterated using a more complete set
of charmed hadrons and enforcing exact (local) charm
conservation within a canonical-ensemble treatment. Re-
quiring to reproduce the NA50 measurements for J/Ψ
production, an open-charm enhancement factor of ∼ 3

relative to N
4/3

p times the value in N -N collisions was
deduced for central Pb-Pb collisions (Np: number of par-
ticipant nucleons). This coincides with the enhancement
needed to explain the NA50 intermediate-mass region
(IMR) dilepton spectra solely in terms of increased open-
charm production∗. As first pointed out in Ref. [13],
the application of the thermal production framework to
RHIC energies could in fact lead to an enhancement
of J/Ψ’s over its primordial production rate (see also
Ref. [18]).

One of the main assumptions in the thermal model
analyses is that primordial production of J/Ψ’s is absent,
i.e., they either do not form or are fully suppressed before
the hadronization transition. Under SpS conditions with
supposedly rather short plasma lifetimes of 1-2 fm/c, this
assertion is, however, not easily realized. In this article
we therefore attempt a combined description of thermal
and primordial production, the latter being subjected to
nuclear absorption and plasma dissociation in an expand-
ing fireball model around midrapidities. The focus will
be on central Pb-Pb (Au-Au) collisions at varying CMS
energy, covering the SpS and RHIC regime. We fix the
participant number at Np ≃ 360 (corresponding to an
impact parameter b ≃ 1.5 fm) to avoid complications as-
sociated with transverse-energy fluctuations in the most
central collisions [19–21]. Also, cc̄ pairs will be allowed
to coalesce into charmonium states only over a limited
range of rapidities.

Let us start by discussing our implementation of the
contribution from primordial production and subsequent

∗In this paper we adopt a scenario without any “anoma-
lous” open-charm enhancement, attributing the NA50 IMR
dilepton excess to thermal radiation [16,17].
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suppression. As in Ref. [13], we assume that the pro-
duction of cc̄ pairs entirely occurs in primary (hard)
nucleon-nucleon collisions (secondary creation in a par-
tonic medium has been shown to be negligible even at
full RHIC energy [22]). In free space a certain fraction
FΨ of these pairs combines into a final number Ndir

J/Ψ
of

directly produced J/Ψ mesons (FΨ ≃ 2.5% in the SpS
energy regime [23]). In a heavy-ion environment, the
first phase of suppression is characterized by interactions
of the (pre-resonant) bound state with interpenetrating
nucleons. It leads to a rather well understood (Np1Np2)

α

suppression of the cross section with α = 0.92 ± 0.01 as
inferred from p-A and A-B reactions with light projectile
nuclei (see also Ref. [24]). This factor equally applies to
other charmonium states (χc, Ψ′), which contribute via
their decay branchings into J/Ψ + X final states (“feed-
down”). We model this so-called nuclear absorption us-
ing a Glauber model with a phenomenological constant
cross section σΨN ≃ 5.8 mb [25].

In the second phase of suppression – the QGP – char-
monium destruction has been discussed in both static
screening-type pictures as well as dynamical ones via in-
elastic collisions with partons, most notably the QCD
analogue of photo-dissociation, g + J/Ψ → cc̄ [1,26].
Within an expanding fireball model (see below) we fol-
low the dynamical picture, accounting, however, for a
reduced J/Ψ binding energy. The dissociation rate is
calculated from

Γdiss =
∑

i=q,g

∞
∫

kmin

d3k

(2π)3
f i(k; T ) σdiss(s) (1)

with kmin denoting the minimal on-shell momentum of a
quark or gluon from the heat bath necessary to dissolve
an in-medium charmonium bound state into a (free) cc̄
pair. The binding is characterized by a temperature-
dependent dissociation energy Ediss taken from Ref. [27]
using a Debye screening mass m2

D = g2T 2 with a typical
g ≃ 1.7; this entails Ediss(T = 180MeV) ≃ 220 MeV,
dropping to ≃ 100 MeV at T = 240 MeV but crossing
zero only around TDebye ≃ 400 MeV. With such a de-
crease in the J/Ψ binding energy, the break-up kinemat-
ics render the photo-dissociation process increasingly in-
efficient. For a loosely bound charmonium state, a more
important mechanism turns out to be given by inelastic
parton scattering, g(q, q̄)+J/Ψ → g(q, q̄)+c+c̄. We eval-
uate the respective cross sections in quasifree approxima-
tion using leading-order QCD [28] for gc → gc (qc → qc)
and the appropriate break-up kinematics. In addition to
a gluon screening mass, thermal quasiparticle masses for
light quarks (m2

u,d = g2T 2/6, m2
s = m2

0
+ g2T 2/6) and

gluons (m2
g = g2T 2/2) [29] are included. The resulting

dissociation times, τdiss = Γ−1

diss, are shown in Fig. 1 and
compared to calculations with a constant break-up cross
section of 1.5 mb, as well as to the photo-dissociation
mechanism without medium effects in the J/Ψ bound
state energy (as it has been employed in the literature
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FIG. 1. Dissociation times for a J/Ψ in a QGP as a func-
tion of temperature. The full curve corresponds to the lead-
ing-order QCD process for quasifree g, q + c → g, q + c scat-
tering with in-medium J/Ψ bound state energy. The dashed
curve represents a constant cross-section σdiss = 1.5 mb and
the dotted curve results from photo-dissociation, gJ/Ψ → cc̄,
assuming the vacuum dissociation energy.

before). At temperatures relevant for SpS conditions,
the quasifree dissociation process (full line) is more ef-
ficient than photo-dissociation (dotted line). At higher
temperatures, it becomes less efficient due to an increas-
ing gluon screening mass which suppresses the t-channel
exchange graphs for g(q, q̄) + J/Ψ → g(q, q̄) + c + c̄.

The temperature (time) dependence of the dissociation
rate has to be coupled with a model for the space-time
evolution of the reaction dynamics. To facilitate the cal-
culations we here employ a thermal fireball description
in line with earlier analyses of dilepton radiation at both
SpS [16,30] and RHIC [31]. Let us briefly recall its es-
sential elements. After initial impact of two colliding Au
(or Pb) nuclei the system is assumed to be thermalized
after a formation time τ0. Thereafter, the fireball un-
dergoes isentropic expansion characterized by conserved
entropy and (net) baryon number which defines a ther-
modynamic trajectory in the µB − T plane of the phase
diagram. Above the critical temperature Tc a (quasipar-
ticle) QGP equation of state is used, and a resonance
hadron gas one below. The transition is modeled by a
standard mixed phase construction [32],

S/V (t) = fsHG(Tc) + (1 − f)sQGP (Tc) , (2)

justified for a sufficiently sharp increase of the entropy
density around Tc (f : fraction of matter in the hadronic
phase, sHG (sQGP ): entropy density in the hadronic
(plasma) phase). S denotes the total entropy in the con-
sidered rapidity interval, and V (t) the time dependent
volume therein, which we simulate by two fireballs with
cylindrical expansion as
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V (t) = 2

(

z0 + vzt + az
t2

2

)

π

(

r⊥ + a⊥

t2

2

)2

. (3)

The parameters {vz, az, a⊥} are adjusted to finally ob-
served flow velocities in connection with total fireball
lifetimes of around 15 fm/c. The

√
s-dependence of the

collisions is constructed as follows: the formation time τ0

is taken to be ∼ 1 fm/c at SpS and ∼ 1

3
fm/c at full RHIC

energy (with a powerlike interpolation in
√

s), resulting
in initial temperatures of T0 ≃ 205 MeV and 390 MeV,
respectively. We assume the transition temperature Tc to
smoothly increase from Tc = 170 MeV at

√
s = 17.3 GeV

to Tc = 180 MeV at
√

s = 200 GeV (with approxi-
mately constant critical entropy density in the hadronic
phase). SpS and first RHIC data (at

√
s = 56 GeV and

130 GeV) on total multiplicities [33] and p̄/p, Λ̄/Λ ra-
tios [34] are used to estimate the total entropy as well
as baryon and strange-quark chemical potentials. This
description of the collision gives results consistent with
hydrodynamical calculations, e.g., a pure QGP lifetime
of ∼ 1.5 fm/c (3.5 fm/c) at SpS (RHIC), and a mixed
phase until ∼ 5 fm/c (7.5 fm/c). The QGP suppres-
sion factor SQGP of J/Ψ mesons follows from integrating
the dissociation rate over the space-time evolution. The
resulting direct yields per central collision (including nu-
clear absorption) are listed in Tab. I.

The second source of charmonium states originates
from thermal production at hadronization†. The under-
lying picture [13] is a statistical coalescence of c and c̄
quarks at Tc. In thermal models, hadron production is
determined by the available phase space at Tc. The total
number of particle species j then is

Nj =
djV

2π2

∞
∫

0

p2dp



exp





√

p2 + m2

j − µj

T



 ± 1





−1

,

(4)

where dj denotes the degeneracy factor, µj the pertinent
chemical potential, µj = BjµB + sjµs + cjµc, and V
the hadronic fireball volume at Tc. Since at CERN-SpS
Ncc̄ ≪ 1, exact charm conservation is enforced within
a canonical-ensemble treatment (see, e.g., Refs. [35,36]).
We include all known charmed hadrons [37] and fix the
number Ndir

cc̄ of cc̄ pairs from primordial NN collisions
in our restricted rapidity range as given by PYTHIA
computations [38] upscaled by an empirical K factor,

†In principle, J/Ψ formation can also occur above Tc [18]
through the reverse of the dissociation process, i.e., cc̄g →
J/Ψg; however, due to the smallness of the J/Ψ binding en-
ergy in the plasma, implying large formation times, we neglect
formation above Tc, thus possibly underestimating thermal
production somewhat.

K ≃ 5 [39]. This necessitates the introduction of a fu-
gacity γc = γc̄ for charm and anticharm quarks according
to

Ndir
cc̄ =

1

2
γcNopen

I1 (γcNopen)

I0 (γcNopen)
+ γ2

c Nhidden, (5)

where Nopen (Nhidden) denotes the thermal abundance of
open (hidden) charm hadrons (I0,1 are modified Bessel
functions). Hence, the total contribution to statistical
J/Ψ production (including strong and electromagnetic
feeddown) follows as 〈J/Ψ〉 = γ2

c N tot
J/Ψ

, cf. Tab. I for se-

lected collision energies.

√
s [GeV] 17.3 56 130 200

SQGP 0.66 0.50 0.33 0.23

Ndir
J/Ψ

[10−3] 0.45 2.41 3.68 3.25

Ndir
cc̄ 0.17 2.34 7.53 10.86

γc 0.82 2.46 4.85 5.62
〈J/Ψ〉 [10−3] 0.16 4.31 27.30 45.22

TABLE I. Direct and statistical production of J/Ψ’s per
central collision (Np = 360) at various cm energies in a fixed
rapidity window covered by two fireballs. Ndir

J/Ψ
: number

of primordial J/Ψ’s remaining after nuclear absorption and
plasma suppression (SQGP ). γc: charm quark fugacity de-
duced from (5) based on Ndir

cc̄ primordial cc̄ pairs. 〈J/Ψ〉:
number of statistically produced J/Ψ’s .

Combining the two sources of J/Ψ’s (the suppressed
direct as well as the statistical (or thermal) production),
we calculate excitation functions from SpS to RHIC en-
ergies. Fig. 2 displays the ratio of the observed number
of J/Ψ’s over the primordially produced one. The ther-
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FIG. 2. Ratio of the number of observed J/Ψ’s over
the number of primordially produced ones (full curve) in
a two-fireball model around midrapidity. The dashed
(dash-dotted) curve corresponds to the J/Ψ yield from sta-
tistical coalescence at hadronization (direct production with
nuclear absorption and QGP suppression).
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mal source accounts for one fourth of the yield at SpS,
but dominates at higher energies implying a possible J/Ψ
enhancement at RHIC [13,18].

In anticipation of open-charm measurements at both
RHIC and SpS [40], one can make closer contact to ob-
servables by plotting the ratio of the final number of
J/Ψ’s over the primordial number of cc̄ pairs, cf. Fig.
3. This ratio exhibits a minimum for

√
s ≃ 30 GeV when

0 50 100 150 200
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N
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=360

FIG. 3. Ratio of the number of observed J/Ψ’s over the
number of primordial cc̄ pairs (full curve) in a two-fireball
model around midrapidity. The dashed (dash-dotted) curve
shows the statistical contribution (direct production with nu-
clear and QGP suppression) to this ratio. The band enclosed
by the dotted lines reflects the uncertainty on the initial charm
and J/Ψ production as explained in the text.

the thermal and direct contributions are about equal. A
similar minimum stucture has been found in Ref. [41],
where, however, the J/Ψ yield at all energies was entirely
attributed to statistical production.

The largest sensitivity in our calculation is attached
to primordial cc̄ production as indicated by the band en-
closed by the dotted lines in Fig. 3. The lower limit
is estimated from next-to-leading order pQCD calcula-
tions [42] in connection with a lower bound in J/Ψ pro-
duction from available data (supplemented by a phe-
nomenological fit at higher energies [43]). The upper
limit is obtained from a PYTHIA calculation for cc̄ pro-
duction using GRV-HO structure functions (which tends
to give the largest yield towards RHIC energies) in con-
nection with J/Ψ production from Ref. [23]. We also
checked that there is only moderate sensitivity to vari-
ations in the hadronization temperature: decreasing Tc

to 170 MeV at
√

s = 200 GeV (with an accompanying
increase in the hadronization volume, but at fixed Ncc̄)
entails a 10% larger yield of thermal J/Ψ’s (the decrease
in the thermal density is overcompensated by the increase
in volume and, more importantly, by the higher charm-
quark fugacities). Within the uncertainties the plotted

ratio persists to exhibit a very different behavior (i.e., an
increase with CMS energy) from the one expected in the
standard scenario of J/Ψ suppression.

Finally, we investigate the sensitivity of the mini-
mum structure with respect to different QGP suppression
mechanisms. Upon replacing the quasifree destruction
process by the gluon photo-dissociation process shown
in Fig. 1 (dotted line), we observe a slight overall in-
crease in the yield without significant alteration of the
shape. Thirdly, in a more extreme scenario based on
Debye-screening, we assume J/Ψ mesons to be entirely
suppressed if they are formed in a region with initial en-
ergy density ǫ0(r) > ǫDebye (along the lines of Ref. [44]).
Within the Glauber model, the spatial distribution of
primordial J/Ψ’s is inferred from the nuclear thickness
function TAB(r) (characterizing the number of N -N col-
lisions), whereas the energy-density profile is taken to be
proportional to the density of participants in the trans-
verse plane. We fix ǫDebye to obtain a suppression con-
sistent with the NA50 data at

√
s = 17.3 GeV (translat-

ing into TDebye ≃ 220 MeV). As expected, the pertinent
excitation function exhibits a stronger suppression pat-
tern with increasing

√
s, generating a more pronounced

minimum structure (at similar position) in the ratios
NJ/Ψ/Ndir

J/Ψ
and NJ/Ψ/Ndir

cc̄ than found with dynamical

dissociation processes, cf. Fig. 4.
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FIG. 4. Comparison of Debye-screening (dashed curves),
photo-dissociation (dotted curves) and quasifree dissoci-
ation (full curves) of J/Ψ’s in a thermalized QGP at
various collision energies, combined with thermal produc-
tion. Photo-dissociation (with vacuum J/Ψ binding en-
ergy) gives results very similar to quasifree suppression (with
in-medium Ediss) whereas Debye screening induces stronger
suppression reflected in a more pronounced minimum around√

s = 30 GeV.

In summary, we have proposed a “combined” approach
to evaluate J/Ψ yields in heavy-ion collisions which in-
cludes (i) a direct contribution of prompt J/Ψ’s sub-
ject to nuclear and Quark-Gluon Plasma absorption and,
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(ii) a thermal contribution of J/Ψ’s emerging from re-
combination of c and c̄ quarks at hadronization. The
employed framework is consistent with earlier calcula-
tions of thermal dilepton spectra; in particular, no en-
hancement in open-charm production has been invoked.
The resulting J/Ψ excitation function exhibits a transi-
tion from mostly primordial to dominantly thermal pro-
duction when going from SpS to RHIC. Such an inter-
play could be mapped out by a systematic variation in
collision energies accessible at RHIC. The predicted in-
crease in J/Ψ yields will render J/Ψ suppression diffi-
cult to identify as a QGP signature. However, the exci-
tation function might serve as a sensitive probe of the
hadronization dynamics at the QCD phase transition,
provided an accurate knowledge of primordial cc̄ abun-
dances. We also note that our description might imply
significant changes in the J/Ψ transverse-momentum dis-
tributions. At the highest RHIC energies, one expects
essentially thermal shapes (accompanied by a flow com-
ponent from the QGP phase), which should be distin-
guishable from hard production prevalent at the SpS.

In this work, we did not address phenomena in the
later hadronic stages of the collision, e.g., possible con-
sequences of (the approach towards) chiral symmetry
restoration via in-medium modifications of D-meson
masses which might play an important role for the
Ψ′/Ψ ratio [45,46]. An extension of our approach along
these lines together with a detailed comparison to avail-
able data on centrality and projectile dependence is in
progress [47].
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