

The pp elastic scattering analyzing power measured with the polarized beam and the unpolarized target between 1.98 and 2.80 GeV

C E. Allgower, J. Ball, M. Beddo, Y. Bedfer, A. Boutefnouchet, J. Bystricky, P A. Chamouard, P. Demierre, J M. Fontaine, V. Ghazikhanian, et al.

▶ To cite this version:

C E. Allgower, J. Ball, M. Beddo, Y. Bedfer, A. Boutefnouchet, et al.. The pp elastic scattering analyzing power measured with the polarized beam and the unpolarized target between 1.98 and 2.80 GeV. Nuclear Physics A, 1998, 637, pp.231-242. in2p3-00015306

HAL Id: in2p3-00015306 https://in2p3.hal.science/in2p3-00015306v1

Submitted on 12 Apr 2000

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NUCLEAR PHYSICS A

Nuclear Physics A 637 (1998) 231-242

The pp elastic scattering analyzing power measured with the polarized beam and the Volarized beam 2.80 GeV

² Argonne National Laboratory, HEP Division, 9700 South Cass Avenue, Argonne, IL 60439, US.A.

⁵ Laboratoire National SATURNE, CNRS/IN2P3 and CEA/DSM, CEA-Saclay, 91191 Gif sur Yvette Cedex, France

^c DAPNIA, CEA/Saclay, 91191 Gif sur Yvette Cedex, France

^d 1161 A A05 Hiland Ave Los Angeles, CA 90024, USA

c DAPNIA, CENSaciay, 91191 Gif sur Ivelle Cedes, France d UCLA, 405 Hilgard Ave., Los Angeles, CA 90024, USA c DPNC, University of Geneva. 24, quai Ernest-Ansermer, 1211 Geneva 4, Switzerland f Laboratory of Nuclear Problems, 11NR, 141980 Dubna, Moscow Region, Russia s Si, Petersburg Nuclear Physics Institute, 188350. Gatchina, Russia

Received 10 March 1998; revised 23 April 1998; accepted 24 April 1998

ETZENIEK

קסשפענטן

ge; A. Richter,

J.G. Zelevinsky, stock, Frankfurt; agi, Kyoto; P.J. Jeningen; J.W. or, Saclay; J.P.

niginal research ysics; Hadronic s the following

neq lengoini ne :

epartment at the luest. For orders, are sent by SAL a reduced rate. 35) and Nuclear - A zoizyA9 10. 3y. Subscription

2-633-3730, Fax:

,7275-284-02 (18

1: (+81) 3-2291-

9192. Tel: (+65)

'alei

dlington, Oxford

CL 09439-1110'

106, Japan. Tel:

ity. Second class AZU off in soing icr Science B.V.,

·gamos diting, Inc., 200

10 sonsnanch) !

Science

unpolarized target between 1.98 and 2.80 GeV measured with the polarized beam and the

The pp elastic scattering analyzing power

H.M. Spinka", A. Tegliae, Yu.A. Usov'i, V.V. Vikhrov E, B. Vuaridele, I.L. Pisarev ', A.A. Popov ', A.N. Prokofiev B, D. Rapin e, J.-L. Sans b.6, F. Lehar c.5, A. de Lesquen c, D. Lopiano a, V.N. Matafonov f, V.A. Kalinnikov f, T.E. Kasprzyk a, B.A. Khachaturov f, R. Kunne b.4, V. Ghazikhanian⁴, D. Grosnick^a, R. Hess^{e,1}, Z. Janout^{6,2}, Z.F. Janout^{6,3}, J. Bystrický °, P.-A. Chamouard b, Ph. Demierre °, J.-M. Fontaine b.c, C.E. Allgower, J. Ball b.c, M. Beddo a, Y. Bedfer b, A. Boutefnouchet d,

b Laboratoire National SATURNE, CNRS/IN2P3 and CEA/DSM, CEA-Saclay. * Argonne National Laboratory, HEP Division, 9700 South Cass Avenue, Argonne, IL 60439, USA C.A. Whitten^d, A.A. Zhdanov^g

d UCLA, 405 Hilgard Ave., Los Angeles, CA 90024, USA c DAPNIA, CEA/Saclay, 91191 Gif sur Yvette Cedex, France 91191 Gif sur Yvette Cedex, France

Laboratory of Nucleur Problems, JINR, 141980 Dubna, Moscow Region, Russia C DPNC, University of Geneva, 24, quai Ernest-Ansermer, 1211 Geneva 4, Switzerland

2 St. Petersburg Nuclear Physics Institute, 188350, Gatchina, Russia

Received 10 March 1998; revised 23 April 1998; accepted 24 April 1998

Abstract

V. B sovier Science B.V. measurements are by-products of an experiment measuring the spin correlation parameter Assert was determined at the fixed mean laboratory angle of 13.9° in the same energy range. Both from 1.98 to 2.8 GeV and at 0.80 GeV nominal beam kinetic energy. The same observable target. The angular distribution of the beam analyzing power Amas measured at large angles A polarized proton beam extracted from SATURNE II was scattered on an unpolarized CH2

Keywords: Proton-proton: Blastic scattering: Beam and target polarizations; Analyzing power; Polarimeter WC8: 13/12/C8: 13/82/Dz

t-91700(86)+L+6-5LE0S IIJ 0375-9474/98/519.00 © 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

also carried out at 0.80 GeV at smaller angles. spin correlation parameter A_{min} and the rescattering observables D_{min} and K_{min} , using CH2 target. The data were obtained as a by-product of an experiment measuring the present results from single scattering of the polarized proton beam by protons in a small beam energies from 1.98 to 2.80 GeV at angles around 90° CM. Meaurements were preliminary results of this experiment are listed in Ref. [1]. Data were recorded at 18 the same beam and the same apparatus, with a polarized proton target (PPT). The devoted to a study of the energy and angular dependence of scattering amplitudes. We This experiment is a part of the nucleon-nucleon (NN) program at SATURNE II

accurately determined ratio of pp and $p-CH_2$ asymmetries [2]. This ratio depends on range. From these data the pp clastic scattering asymmetries were calculated using the Asymmetries of p-CH₂ scattering were measured at 20 energies in the same energy arms for scattered protons were positioned at the fixed forward laboratory angle of 13.9°. Another part of the data was provided by the beam-line polarimeter. The polarimeter

measurements and was used to calculate the beam analyzing power A_{nono} for both measurements. The beam polarization at each energy was determined independently of the present

and the NN experimental setup is discussed in Section 5. The results are presented in data are discussed in Section 3. The beam and the polarimeter are described in Section 4, Section 6. They are compared with predictions of two phase shift analyses (PSA) [3,4]. The formalism for this experiment is given in Section 2. Existing pp analyzing power

2. Determination of the analyzing power

polarization states of the seattered, recoil, beam, and target particles, respectively. observables given in Ref. [5]. The subscripts of any observable X_{Iwij} refer to the Throughout the paper we use the NN formalism and the four-index notation of

particles in the laboratory system are oriented along the basic unit vectors For so-called "pure experiments" the polarizations of the incident beam and target

$$k, \quad n = [k \times k'], \quad s = [n \times k].$$
 (2.1)

where k and k' are the beam and scattered particle directions, respectively, and n is the normal to the scattering plane.

q are absent. proton beam on a polarized proton target (PPT), where observables with indices p and The more general case of the present experiment is a single scattering of a polarized

in the reference frame (h, ν, k) (horizontal perpendicularly to the beam, vertical and scattering frame may be expressed by azimuthal angle ϕ -functions. The vectors (2.1) beam direction) are: The unit vectors (2.1) and beam or target polarization vectors P_B and P_T in the

$$s = (\cos \phi, \sin \phi, 0)$$
, $n = (-\sin \phi, \cos \phi, 0)$, $k = (0, 0, 1)$. (2.2)

The beam and target polarization vectors, arbitrarily oriented, are expressed by components in the reference frame:

$$P_B = (P_{Bh}, P_{Br}, P_{Hk}), \qquad P_T = (P_{Th}, P_{Tr}, P_{Tk}). \tag{2.3}$$

the general seattering formula in Ref. [5] reduces to: If P_B and P_T are oriented along the vertical direction ($P_{Br} = \pm |P_B|$, and ($P_{Fr} = \pm |P_T|$

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_0 \left(1 + (A_{mnm}P_B + A_{mnm}P_T)\cos\phi + A_{mnm}P_BP_T\cos^2\phi + A_{mnn}P_BP_T\sin^2\phi\right),$$
(2.4)

experiment. The Pauli principle impose $A_{\alpha m\alpha} = A_{\alpha mn}$. Other observables are equal to zero, due to fundamental laws and to conditions of $(d\sigma/d\Omega)_o$, $A_{\omega mo}$, $A_{\omega mn}$, $A_{\omega mn}$ and $A_{\omega ms}$ are functions of scattering angle and energy where $(d\sigma/d\Omega)_{\sigma}$ is the unpolarized differential cross section. The quantities $d\sigma/d\Omega$

event selection. The latter part is dominant and depends on the beam polarization. The on unpolarized target nuclei. The pp inclastic part is strongly reduced by the clastic differential cross section: background can be considered as a dilution d of the proton spin contribution to the Background is due to inclastic pp contributions and to scattering of polarized protons

$$(1-d)[pp \rightarrow pp] + d$$
 [background]. (2.5)

or by a fit over wings of θ and ϕ distributions for each beam polarization direction. It has been determined either by measurements with an unpolarized hydrogenless target the factor (1-d) and in an addition of the factor dA(back) to the corrected polarized The background subtraction results in a multiplication of any pp observable in (2.4) by beam analyzing power $(1-d)A_{min}$. Here A(back) is the background analyzing power The mean ϕ -acceptance of our apparatus is $\pm 8^{\circ}$ around 0°. The observables for which

$$\cos\phi \sim \cos^2\phi \sim 1, \tag{2.6}$$

are predominant. The mean value of $\sin^2 \phi$ is ~ 0.007 .

² Present address: Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Břehová

^{7, 11519} Prague 1, Czech Republic. ³ Present address: Computing Center of the Czech Technical University, Zikova 4, 16635 Prague 6, Czech

⁴ Present address: Institut de Physique Nucléaire IN2P3, 91400 Orsay, France

^{*}E-mail lehar@hep.saclay.eea.fr. tel. (+33) 1 6908 3065, fax (+33) 1 6908 6428

[&]quot;Present address: Centrale Themis, F-66121 Targasonne, France

On the other hand, a magnetic field close to the target may bend particles and disturb the ϕ -symmetry of the vertical apparatus acceptance. A term ϵ (instr.) $\sin \phi$, added in (2.4) checks this instrumental effect.

For a given energy, Eq. (2.4) provides four relations for the two opposite directions of P_B and P_T , respectively. These polarizations are common to all scattering angles.

The opposite proton beam polarizations at SATURNE II for the two ion source polarized states, were accurately measured in a dedicated experiment discussed in detail in Ref. [6]. It was found that $P_B = |P_B^+| = |P_B^-|$. Only these two states of the ion source with large polarizations were used. The two "unpolarized" ion source states are polarized to $\pm 6\%$.

For the PPT $|P_t^+| \neq |P_t^-|$, but any P_t was measured by the same apparatus and a possible normalization error results in a common factor F, which multiply both P_T^+ and P_T^+ and P_T^-

If the absolute value of P_B or F is unknown, we can solve four relations (2.4) with different beam and target polarizations for three quantities: P_B (or F), $A_{mnm} = A_{mnm}$ and A_{mnm} and relate P_B and F. For this purpose one imposes the statistical equality of $A_{mnm}(atr)$ and $A_{mnm}(atr)$ values, averaged over the same angular range. Either P_B or F varies, whereas the other quantity is fixed, until the equality $A_{mnm}(atr) = A_{mnm}(atr)$ is obtained. Since the errors of the two averaged observables are small with respect to the beam or target polarizations, the errors of P_B and FP_T will be of the same order. Comparison of the beam and target analyzing powers [7] was used to determine P_B at all high energies. Additionally a check of F was made at 0.80 GeV, where the P_B analyzing power is well known.

3. Existing pp analyzing power data

Previously our collaboration obtained results at SATURNE II on $A_{numn} = A_{numn}$ with the polarized beam and target. Those covered the angular region from 20° to 95° CM at 1.596, 1.796, 2.096, 2.396, and 2.696 GeV [8]. Close to these energies and angles A_{numn} was measured simultaneously with the polarized beam and with an unpolarized CH₂ target [8]. The A_{numn} data [9] were measured at angles from 19° to 52° CM at 2.16, 2.18, 2.20, 2.22, 2.24, 2.26, and 2.28 GeV. They were obtained with an unpolarized beam and with a PPT in order to study the region close to the accelerator proton depolarizing resonance yG = 6 at 2.202 GeV. A_{numn} data at very small angles were obtained between 0.94 and 2.44 GeV [10]. None of the previously mentioned results needs any corrections for the recently determined polarizations of the "unpolarized" ion source states [6].

At other accelerators, but within our energy range, there exist the SATURNE I results at 3 GeV of Ref. [11], the BNL results at 1.63 and 2.24 GeV [12], LBL data at 1.70, 2.85, and 3.50 GeV [13], and CERN data at 1.958 GeV [14]. All these data were measured with a proton beam with a relatively small uncertainty of the energy. Larger energy uncertainties exist for the ANL-ZGS data at 1.732, 1.967, 2.138, 2.444, 2.927, and 3.561 GeV from Ref. [15], at 1.967 GeV [16], at 2.205 and 3.170 GeV

from Ref. [17], and at 2.301 GeV from [18]. Quasiclastic pp data were obtained with a deuterium target and the ANL-ZGS polarized proton beam at 2.205 [19,20] and at 3.170 GeV [19]. Finally, A_{some} data below 2.0 GeV were measured at the fixed laboratory recoil angle of 68° with an internal target during polarized beam acceleration at KEK [21]. The beam polarization for the latter measurement was fairly small.

The data measured before 1983 were fitted and analyzed in Ref. [22]. In the energy region under discussion, the authors observed a considerable difference in the absolute polarization values between the different data sets. Common fits averaging these sets suggested to normalize the data in Refs. [13,16,18] downward by 10%, 8%, and 8%, respectively. The data in Refs. [15,19] needed to be normalized upwards by 15% and 12%. The conclusions based on fits including the SATURNE II data are similar to those in Ref. [22].

4. Beam polarimeter

The vertical polarization of the extracted proton beam at SATURNE II was flipped at each accelerator spill. The extracted beam polarization was monitored by the beam line polarimeter [23], which has two pairs of kinematically conjugate arms in the horizontal plane and beam intensity monitors in the vertical plane. It measured the left-right (L-R) scattering asymmetry $\epsilon = P_B A$, where A is the analyzing power. In the present experiment the p-CH2 asymmetry was measured at $\theta_1 = 13.9^{\circ}$ in the laboratory frame and the pp elastic scattering asymmetry was deduced using the known ratio of the CH2 and the pp asymmetries for this polarimeter [2]. The polarimeter target was a rectangle 5 mm thick, 2 mm wide, and 15 mm high. Incident protons have a nominal kinetic energy from the accelerator. The full scattering angle interval $2\theta_1$, accepted by the polarimeter definition counters, was $\pm 1.9^{\circ}$ in the laboratory frame. This provided $2\theta_1 = \pm 1^{\circ}$ of the half maximum for the polarimeter conjugate angle distribution. The $\cos \phi$ -dependence is averaged over the polarimeter counter acceptance. The beam intensity of $2 \times 10^{\circ}$ protons/spill allowed the use of this polarimeter simultaneously with the data taking by the following experimental equipment.

5. NN experimental setup

The beam passed through three thin windows, through the target of the second beam polarimeter, and entered the Saclay frozen spin PPT, 35 mm thick, 40 mm wide, and 49 mm high, containing pentanol [24]. The target worked in the frozen spin mode at a small magnetic holding field of 0.33 Tesla.

The proton beam outgoing from the PPT loses about 8 MeV with respect to the nominal accelerator energy. A CH₂ target, 10 mm thick and 15 mm in diameter, was placed 16 cm downstream from the PPT.

given by the solid line. The present data were not introduced in the latter. the quadratic fit to all existing data (Eq. (6.2)) [33]. The predictions of the energy dependent PSA [3] are Fig. 1. Results of the A_{como} measurement at a fixed laboratory angle of 13.9°. The dashed line represents

chambers (MWPC's) with three wire planes each. The acceptance of each arm in the equipped with single scintillation counters and counter hodoscopes selecting events with of a two-arm spectrometer with an analyzing magnet in the forward arm. Each arm was subsequent analysis of the data were described in detail in Ref. [7]. The setup consisted CH2 target were carried out using the NN experimental setup. This apparatus and the analyzing magnet, and by time of flight information. The ϕ -dependence of events was of both arms was limited to $\pm 8^{\circ}$. The pp-elastic events from both targets were selected laboratory frame was $\sim \pm 4.5^\circ$ vertically and 23° horizontally. The mean ϕ acceptance target were different. Either one of the triggers gated the eight multi-wire proportional pairs of charged particles. The triggers for events scattering off the PPT and the CH2 taken into account as described by Eq. (2.4). in the off-line analysis by kinematic conditions, bending of scattered protons in the The measurements of pp scattering from the PPT as well as from the additional

is a check of the normalization of events recorded with two opposite PPT polarizations. whereas P_B was flipped every spill. This is due to the fact that the P_T was usually reversed after several hours of data taking The aim of the measurements using simultaneously the PPT and an unpolarized target

been measured, for example, at SATURNE II, SATURNE I, LAMPF, CERN, Gatchina, around 0.8 GeV was checked by the deceleration method [29] at SATURNE II. At the BNL Cosmotron, and the ANL-ZGS. The majority of these data are listed in compolarization. This is an energy where the pp analyzing power is well known, having pilations [25-27] and are referenced in Refs. [8,28]. Moreover, the beam polarization Accurate measurements at 0.80 GeV were undertaken in order to check the PPT

CH2 target. The beam-line polarimeter was used and results at the same energy were averaged over different errors were added in quadrature contain systematic errors due to the angular bin width estimated to be $\pm 5\%$ of the pp analyzing power. The vidual result dispersions and normalization errors in the determination of the beam polarizations. Total errors running periods. Errors of experimental values contain statistical uncertainties, random-like errors from indi-The analyzing power Λ_{com} at $\theta_1 = 13.9^\circ$ in the pp clastic scattering of polarized protons on the unpolarized

2.650	2.600	2.580	2.570	2.520	2.500	2.450	2.400	2.350	2.240	2.230	2.220	2.180	2.160	2.140	2.120	2,100	2.080	2.040	1.980	T _{km} (GeV)
42.1 ± 2.8	41.8 ± 2.8	41.8 ± 2.8	41.7 ± 2.8	41.5 ± 2.8	41.4 ± 2.8	41.2 ± 2.8	41.0 ± 2.8	40.8 ± 2.8	40.3 ± 2.8	40.2 ± 2.8	40.2 ± 2.8	40.0 ± 2.7	39.9 ± 2.7	39.8 ± 2.7	39.7 ± 2.7	39.6 ± 2.7	39.5 ± 2.7	39.4 ± 2.7	39.1 ± 2.7	θ _{CM} (deg)
0.155 ± 0.007	0.146 ± 0.005	0.149 ± 0.006	0.160 ± 0.005	0.165 ± 0.000	0.192 ± 0.007	0.179 ± 0.007	0.208 ± 0.011	0.176 ± 0.009	0.221 ± 0.006	0.199 ± 0.006	0.218 ± 0.005	0.242 ± 0.006	0.237 ± 0.007	0.228 ± 0.013	0.244 ± 0.008	0.258 ± 0.011	0.251 ± 0.011	0.272 ± 0.008	0.310 ± 0.011	Exp. value
0.010	0.010	0.010	0.010	0.011	210.0	0.011	0.015	0.012	0.01.3	0.012	0.012	0.014	0.014	0.016	0.016	0.017	0.017	0.016	0.019	Total error ±

energies above 1.9 GeV the P_f was fixed at the value measured by the polarized target $(P_T = 0)$ are listed below. these measurements, using the scattering of polarized protons in the unpolarized target NMR probe. The P_B value was then determined using Eq. (2.4). The by-products of

6. Results and discussion

to obtain the pp clastic scattering asymmetry $\epsilon(pp)$, measurements with a carbon target are needed as well. On the other hand the ratio: The results obtained from the polarimeter are the asymmetries $\epsilon(p-CH_2)$. In order

$$R(T_{\rm kin}, \theta_1) = \epsilon(pp)/\epsilon(p - \text{CH}_2), \tag{6}$$

at 13.9° hab at all energies. The P_B values [1], independently determined (Section 2). ments with the same polarimeter. These R values were used to deduce the $\epsilon(pp)$ values the energy dependence of R values, listed in Ref. [2] and based on about 200 measuretermined at different scattering angles and energies [2,30-32]. More recent data confirm is independent of the beam polarization P_B . Previously these ratios were accurately de-

Table 2 The analyzing power A_{come} in the pp elastic scattering of polarized protons on the unpolarized CH₂ target. The analyzing power A_{come} in the vertical direction. The beam kinetic energy and the CM angles in The beam polarization was oriented are listed. The quoted errors include statistical uncertainties and random-like errors in the determination of the absolute P_B value. The systematic normalization error in the beam polarization was $\pm (3$ to 5)% (relative)

0.50	37.0	60.0	45 D	<u>s</u>	77.2	1,		0.00	100.4	97.0	910	\$: = :	×5 :	<u>x</u>	77.0	74.1	7' _{km}	100.6	96.9	93.0	88.9	85.0	81.0	77.0	73.6	Then	88.5	37.0	82.0	77.9	74.0	0.00	06.0	<u>වැ.</u>	50.0	Ţ.	Tkm	θ _{C.N.}	
-0.024 1.0.011	12000 1 20000	1000 + 0001	1008 + 007	+0.121 ± 0.019	+0.164 ± 0.020	" = 5"345 GeA		* 0.115 F 85015	0.113 ± 0.013	-0.096 + 0.012	-0.052 ± 0.012	+0.001 ± 0.012	+0.048 ± 0.012	+0.094 ± 0.011	$\pm 0.126 \pm 0.011$	+0.160 ± 0.020	, = 2.212 GeV	-0.109 ± 0.024	-0.068 ± 0.021	-0.016 ± 0.020	$+0.004 \pm 0.019$	$\pm 0.049 \pm 0.017$	$+0.088 \pm 0.016$	+0.125 ± 0.016	+0.146 ± 0.020	= 2.112 GeV	+0.000 ± 100.00+	+0.09/ ± 0.00/	+0.174 ± 0.007	+ 0.260 ± 0.006	+0.313 ± 0.006	$\pm 0.365 \pm 0.005$	$\pm 0.394 \pm 0.005$	$+0.442 \pm 0.005$	$\pm 0.455 \pm 0.010$	$\pm 0.505 \pm 0.053$	= 0.792 GeV	Exp. value	P
07.0	910	80.0	24.9	80.9	77.3	1.		(c()	990	95.0	91.0	87.0	82.9	79.0	75.1	72.3	T _{ku}	0.00	96.9	94.1	× ×	3	81.0	77.0	74.0	Tkm			100.5	97.0	97.9	89.0	85.0	80.9	77.0	73.4	Tim	W.) _{tt}	4
000 + 000	-0.055 ± 0.021	$+0.054 \pm 0.019$	$\pm 0.051 \pm 0.019$	$\pm 0.163 \pm 0.018$	$\pm 0.159 \pm 0.019$	= 2.442 GeV		-0.065 ± 0.030	-0.055 ± 0.020	-0.071 ± 0.019	-0.011 ± 0.018	$\pm 0.041 \pm 0.018$	$+0.101 \pm 0.017$	$\pm 0.127 \pm 0.016$	$\pm 0.153 \pm 0.017$	$+0.166 \pm 0.049$, = 2.222 GeV	- 0.136 ± 0.013	-0.090 ± 0.015	-0.020 ± 0.015	+0.020 ± 0.015	+0.061 ± 0.014	+0.087 ± 0.012	+0.1.8 ± 0.012	+0.155 ± 0.020	1			-0.000 ± 0.0±0	-0.002 ± 0.000	-0.000 ± 0.007	+0.001 ± 0.020	+0.034 ± 0.017	+0.072 ± 0.016	$\pm 0.137 \pm 0.016$	$\pm 0.124 \pm 0.018$	= 1.972 GeV	Exp. value	Exp value
97.0	93.0	89.2	× 7.8	80.9	77.2	1,			100.6	97.0	93.0	89.0	85.0	81.0	77.1	74.1	T _{ki}	100.4	90.9	97.1	2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	60.0	06.0	c .	74.0	, kiii		;	103.9	100.6	07.0	03.0	90.1	80.9	77.0	73.6	Tkm	3	#CM
-0.112 ± 0.033	-0.061 ± 0.032	$+0.034 \pm 0.032$	$+0.087 \pm 0.028$	+0.177 ± 0.025	$+0.142 \pm 0.027$	in=2.492 GeV			-0.166 ± 0.017	-0.076 ± 0.017	-0.071 ± 0.017	+0.025 ± 0.016	+0.073 ± 0.016	$+0.124 \pm 0.014$	+0.190 ± 0.013	$+0.137 \pm 0.030$			10.00 + 111.0-	-0.017 ± 0.018	_0.015 ± 0.017	+0.000 ± 0.017	+0.122 ± 0.016	+0.127 ± 0.014	$+0.170 \pm 0.023$	= 2.1/2 GeV			-0.148 ± 0.026	-0.126 ± 0.012	-0.020 ± 0.012	110.0 ± 0.00.0	110.0 ± 50.0 ±	+0.065 ± 0.010	+0.110 ± 0.010	$+0.135 \pm 0.014$			Exp. value
	-0.004 1.0001 07.0 07.0 07.0 07.0 07.0	$-0.024 + 0.022$ 93.0 -0.055 ± 0.021 93.0	$+0.021 \pm 0.021$ 89.0 $+0.054 \pm 0.019$ 89.2 -0.024 ± 0.022 93.0 -0.055 ± 0.021 93.0 97.0	+0.098 ± 0.021 84.9 +0.051 ± 0.019 84.8 +0.002 ± 0.021 89.0 +0.054 ± 0.019 89.2 -0.024 ± 0.022 93.0 -0.005 ± 0.001 -0.024 ± 0.022 93.0	+0.121 ± 0.019 80.9 +0.163 ± 0.018 80.9 +0.098 ± 0.021 84.9 +0.051 ± 0.019 84.8 +0.092 ± 0.021 89.0 +0.054 ± 0.019 89.2 -0.024 ± 0.022 93.0 -0.024 ± 0.022 93.0	+0.164 ± 0.020 77.3 +0.159 ± 0.019 77.2 +0.121 ± 0.019 80.9 +0.163 ± 0.018 80.9 +0.098 ± 0.021 84.9 +0.051 ± 0.019 84.8 +0.092 ± 0.021 89.0 +0.054 ± 0.019 89.2 -0.024 ± 0.022 93.0	$k_{\text{km}} = 2.342 \text{ GeV}$ $k_{\text{km}} = 2.442 \text{ GeV}$ $7k_{\text{km}} = 2.4$	$k_{\rm m} = 2.342~{\rm GeV}$ $I_{\rm km} = 2.442~{\rm $	$T_{\rm kin} = 2.342~{\rm GeV}$ $T_{\rm kin} = 2.442~{\rm GeV}$	$I_{K_{BH}} = 2.342 \text{ GeV}$ $I_{K_{BH}} = 2.342 \text{ GeV}$ $I_{K_{BH}} = 2.442 \text{ GeV}$ $I_{K_{BH}} = 2$	$I_{km} = 2.342 \text{ GeV}$ $I_{km} = 2.342 \text{ GeV}$ $I_{km} = 2.002 + 0.020$ $I_{km} = 2.002$ $I_{km} = 2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{split} & K_{\text{km}} = 2.212 \text{ GeV} & K_{\text{km}} = 2.222 \text{ GeV} & K_{\text{km}} = 2.2222 \text$	$T_{km} = 2.212 \text{ GeV}$ $T_{km} = 2.222 \text$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$+0.146 \pm 0.020$ $+0.125 \pm 0.016$ $+0.088 \pm 0.016$ $+0.088 \pm 0.016$ $+0.088 \pm 0.016$ $+0.088 \pm 0.017$ $+0.081 \pm 0.012$ $+0.081 \pm 0.021$ $+0.102 \pm 0.021$ $+0.103 \pm 0.012$ $+0.104 \pm 0.012$ $+0.081 \pm 0.013$ $+0.121 \pm 0.013$ $+0.1$	$T_{km} = 2.112 \text{ GeV}$ $T_{km} = 2.182 \text$		$\begin{split} & + 0.001 \pm 0.028 \\ & + 0.001 \pm 0.028 \\ & + 0.126 $	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$+0.313 \pm 0.006$ $+0.274 \pm 0.007$ $+0.174 \pm 0.007$ $+0.174 \pm 0.007$ $+0.174 \pm 0.007$ $+0.002 \pm 0.0108$ $+0.174 \pm 0.007$ $+0.002 \pm 0.0108$ $+0.001 \pm 0.028$ $+0.001 \pm 0.028$ $+0.001 \pm 0.028$ $+0.125 \pm 0.016$ $+0.001 \pm 0.020$ $+0.125 \pm 0.016$ $+0.001 \pm 0.010$ $+0.001 \pm 0.011$ $+0.001 \pm 0.012$ $+0.001 \pm 0.013$ $+0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$+0.442 \pm 0.008$ $\times 80.9$ $+0.072 \pm 0.016$ $\times 80.9$ $+0.034 \pm 0.017$ $\times 80.9$ $+0.034 \pm 0.017$ $\times 80.9$ $+0.034 \pm 0.017$ $\times 80.9$ $+0.031 \pm 0.020$ $\times 97.0$ $+0.035 \pm 0.020$ $\times 100.6$ $\times 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	EXP. Name Exp.

Table 2 — continued

$\theta_{\rm CM}$	Exp. value	θСМ	Exp. value	W.N.	exp. value
Tkin	$T_{\rm kin} = 2.512 \; {\rm GeV}$	Tkm	T _{km} = 2.562 GeV	Tiun	T _{km} =2.572 GeV
77.3	+0.157 ± 0.018	77.5	+0.168 ± 0.029	77.2	$\pm 0.167 \pm 0.019$
8 ().9	$+0.128 \pm 0.016$	81.0	$\pm 0.136 \pm 0.025$	<u>8</u> (0.	$+0.151 \pm 0.018$
Z.	$+0.075 \pm 0.017$	84.9	$+0.092 \pm 0.026$	¥4.9	+0.079 ± 0.019
85	$+0.042 \pm 0.018$	89.0	-0.016 ± 0.028	89.0	$\pm 0.010 \pm 0.020$
010	-0.028 ± 0.020	93.0	-0.063 ± 0.028	93.0	-0.055 ± 0.022
970	-0.118 ± 0.019	96.9	-0.118 ± 0.028	97.0	-0.093 ± 0.023
1.001	-0.147 ± 0.024			100.1	-0.083 ± 0.034
Thin	$T_{\rm kin} = 2.592 {\rm GeV}$	Tkin	$T_{\rm kin} = 2.642~{\rm GeV}$	T ₁ ,,	T _{km} =2.792 GeV
777	+0.175 ± 0.024	77.3	+0.187 ± 0.031		
90.9	$\pm 0.137 \pm 0.019$	<u>8</u> .0	$+0.166 \pm 0.029$	80.1	$+0.141 \pm 0.049$
×4.9	$+0.091 \pm 0.021$	84.9	$\pm 0.094 \pm 0.032$	83.9	$+0.118 \pm 0.049$
8 9.	$+0.036 \pm 0.025$	88.9	$\pm 0.112 \pm 0.043$	87.9	$+0.090 \pm 0.055$
93.0	-0.007 ± 0.024	92.8	$+0.003 \pm 0.043$	92.0	$+0.014 \pm 0.053$
97.1	-0.148 ± 0.025	97.0	-0.143 ± 0.051	96.0	-0.093 ± 0.055
100 3	-0.122 ± 0.035				

and $\epsilon(pp)$ results from the polarimeter measurements, provided the analyzing power results at $\theta_1=13.9^\circ$, listed in Table 1.

The quadratic fit to the present and previously existing $A_{\alpha m n}$ data at $\theta_1 = 13.9^{\circ}$, as a function of the beam kinetic energy $T_{\rm kin} = T$ gives:

$$A_{min}(13.9^{\circ} \text{ lab}) = 0.79849 - 0.33118T + 0.032327T^{2},$$
 (6.2)

where $T = T_{kin}$ is in GeV. The fit described 75 contributing points in the energy range from 1.6 to 3.5 GeV with $\chi^2 = 87.39$ [33].

The present results and the fit of Eq. (6.2) are plotted in Fig. 1 as a function of the beam kinetic energy. In addition, the predictions are shown of the energy dependent PSA [3], carried out below 2.55 GeV, which do not include the present data.

The data measured with the additional CH₂ target downstream from the PPT were analyzed by the standard off-line procedure described in Ref. [7]. The observables were extracted by the method described in Ref. [34]. Using again the independently determined P_B values, the results of $A_{mmn}(p_B)$ are listed in Table 2. As an example, the results at 2.032 and at 2.112 GeV are plotted in Fig. 2a, and the results at 2.342 and at 2.442 GeV are shown in Fig. 2b. The polarimeter results at 2.10 and 2.40 GeV are added. One observes that the slope of the angular dependence in the vicinity of 90° change considerably with energy. The present data are compared with existing results at 2.096 and 2.396 GeV from Ref. [8] and with predictions of the Saclay–Geneva PSA [4] and the PSA of Ref. [3] at 2.10 GeV and at 2.40 GeV, respectively. The present results were introduced in Ref. [4], but were not included yet in Ref. [3].

Fig. 2. Results at 2.032 GeV (black dots), at 2.100 GeV (triangle), and at 2.112 GeV (open circles) are plotted in (a). The results at 2.342 GeV (black dots), at 2.400 GeV (triangle), and at 2.442 GeV (open circles) are shown in (b). The present data are compared with the previous measurements at 2.096 and 2.306 GeV from Ref. [81] (crosses), with the predictions of the Saclay-Geneva PSA [41] (dashed curve) and PSA of Ref. [31] (solid curve) at 2.10 and 2.40 GeV, respectively. The present results were not included in the PSA [31]. They were introduced in the PSA of Ref. [41] together with the preliminary data of Ref. [11].

7. Conclusions

The present results improve the existing database for pp clastic scattering. The results were obtained in small energy steps and are important for the angular dependence of this observable at large CM angles. The additional data taken with the polarimeter will help to establish the accurate energy dependence of A_{como} at small angles needed for the proton beam polarization measurements.

Acknowledgements

We express our gratitude to C. Lechanoine-Leluc for encouraging suggestions and to I.I. Strakovsky for the unpublished angular distribution predictions. For excellent operation of the accelerator, we are indebted to all of the operations crew. This work was supported in part by the U.S. Department of Energy, Division of Nuclear Physics, Contract No. W-31-109-ENG-38, by the Swiss National Science Foundation, and by the Russian Foundation for Fundamental Nuclear Physics Programme 122.03.

References

- [1] C.E. Allgower, Ph.D. Thesis, ANL-HEP-TR-97-71, August 1997.
- [2] M. Arignon, J. Bystrický, J. Derégel, J.-M. Fontaine, T. Hasegawa, F. Lehar, C.R. Newsom, A. Penzo, F. Borna, L. von Poecuni, C.A. Whitten, and J. Yonnet, Note CEA-N-2375, Saclay, Décembre 1983.
- E. Perrot, L. van Rossum, C.A. Whiten, and J. Yonnet, Note CEA-N-2375, Saclay, Décembre 1983.
 [3] R.A. Arndt, C.H. Oh, I.I. Strakovsky, R.L. Workman and F. Dohrman, Phys. Rev. C 56 (1997) 3005
- SAID solution SM97.
 [4] J. Bystrický, C. Lechanoine-LeLuc and F. Lehar, to be published in Europhys. J. C (1998).
- [5] J. Bystrický, F. Lehar and P. Winternitz, J. Phys. (Paris) 39 (1978) 1.
- [6] C. Dymicky, J. Arcicux, P. Ausset, J. Ball, P.-Y. Beauvais, Y. Bedfer, J. Bystrický, P.-A. Chamouard, [6] C.E. Allgower, J. Arcicux, P. Ausset, J. Ball, P.-Y. Beauvais, Y. Bedfer, J. Bystrický, P.-A. Chamouard, Ph. Demierre, J.-M. Fontaine, Z. Janout, V.A. Kalinnikov, T.E. Kasprzyk, B.A. Khachaturov, R. Kunne, J.-M. Lagniel, F. Lehar, A. de Lesquen, A.A. Popov, A.N. Prokofiev, D. Rapin, J.-L. Sans, H.M. Spinka, A. Teglia, V.V. Vikhrov, B. Vuaridel and A.A. Zhdanov, Nucl. Instr. and Meth. A 399 (1997) 171.
- [7] J. Ball, Ph. Chesny, M. Combet, J.-M. Fontaine, R. Kunne, J.-L. Sans, J. Bystrický, C.D. Lac, D. Legrand, F. Lehar, A. de Lesquen, M. de Mali, F. Perrot-Kunne, L. van Rossum, P. Bach, Ph. Demierre, G. Gaillard, R. Hess, Z.F. Janout, D. Rapin, Ph. Sormani, B. Vuaridel, J.P. Goudour, R. Binz, A. Klett, E. Rössle, H. Schmitt, L.S. Barabash, Z. Janout, V.A. Kalinnikov, Yu.M. Kazarinov, B.A. Khachaturov, V.N. Matafonov, I.L. Pisarev, A.A. Popov, Yu.A. Usov, M. Beddo, D. Grosnick, T. Kasprzyk, D. Lopiano and H. Spinka, Nucl. Instr. and Meth. A 327 (1993) 308.
- [8] F. Perrot, J.-M. Fontaine, F. Lehar, A. de Lesquen, J.P. Meyer, L. van Rossum, P. Chaumette, J. Deréget, J. Fabre, J. Ball, C.D. Lac, A. Michalowicz, Y. Onel, B. Aas, D. Adams, J. Bystricy, V. Ghazikhanian, G. Igo, F. Sperisen, C.A. Whitten and A. Penzo, Nucl. Phys. B 294 (1987) 1001.
- [9] J. Arvieux, J. Ball, J. Bystrický, J.-M. Fontaine, G. Gaillard, J.P. Goudour, R. Hess, R. Kunnet, F. Lehar, J. Lovieux, J. Lopiano, M. de Mali, F. Perrot-Kunne, D. Rupin, L. van Rossum, J.L. Sans and H.M. Spinka, Z. Physik C 76 (1997) 465.
- [10] S. Dalla Torre-Colautti, R. Birsa, F. Bradamante, M. Giorgi, L. Lanceri, A. Martin, A. Penzo, P. Shiavon,
 V. Sossi, A. Villari, H. Azaicz, K. Kuroda, A. Michalowicz and F. Lehar, Nucl. Phys. A 505 (1989)
- [111] J. Derégel, C. Bruneton, J. Bystrický, G. Cozzika, Y. Ducros, A. Gaidot, F. Lehar, A. de Lesquen, J.P. Merlo, S. Miyashita, J. Movchet, J.C. Raoul and L. van Rossum, Nucl. Phys. B 103 (1976) 269.
- [12] H.A. Neal and M.J. Longo, Phys.Rev. 161 (1967) 1374.
- [13] P. Grannis, J. Arens, F. Betz, O. Chamberlain, B. Dieterle, C. Schultz, G. Shapiro, H. Steiner, L. van Rossum and D. Weldon, Phys. Rev. 148 (1966) 1297.
- [14] M.G. Albrow, S. Andersson/Almehed, B. Bosnjakovic, C. Daum, F.C. Erne, J.P. Lagnaux, J.C. Sens and F. Udo, Nucl. Phys. B 23 (1970) 445.
- [15] J.H. Parry, N.E. Booth, G. Conforto, R.J. Esterling, J. Scheid, D.J. Sherden and A. Yokosawa, Phys.
- Rev. D 8 (1973) 45.

 [16] D.A. Bell, J.A. Buchanan, M.M. Calkin, J.M. Clement, W.H. Dragoset, M. Furič, K.A. Johns, J.D. Lesikar, H.E. Miettinen, T.A. Mulera, G.S. Mutchler, G.C. Phillips, J.B. Roberts and S.E. Turpin, Phys. Lett. B 94 (1980) 310.
- [17] D. Miller, C. Wilson, R. Giese, D. Hill, K. Nield, P. Rynes, B. Sandler and A. Yokosawa, Phys. Rev. D 16 (1977) 2016.

(A more detailed version c

Instructions to Auther

enoged to noissimdu?

Manuscripts should be sent

Original material. Submiss c-mail: npa@

161: +31.50

Postal Addre

Street Addre

Nuclear Phys

inplicate. process. Electronic submiss not being considered for ;

Types of paper

pe accepted. Concisely written research

involved. Further informa-Editor figures may be put set must be in publishable listed by number at the en References. References to more relevant PACS claan abstract of no more th postal address, e-mail add References, Vitae, Figure ! Title, Authors, Affiliation Language. Manuscripts st Manuscript preparation

of scientific information. You will be asked to trans Copyright transfer

The Publisher welcomes Electronic publishing

No page charge. Publishi Author benefits information, please refer

Electronic, Nuclear Phys Service ContentsDirect. books. A coupon will be paid offprints. Discount. 25 offprints of the article

For further information

Ch. Weddigen, Such Instr. and Meth. 166 (1979) 379. [34] D. Besser, Q.H. Do. B. Favier, L.G. Greenlaus, R. Hess, C. Lechanoine, D. Rapin, D.W. Werren and Proprint LNS/Ph/97-11, Saclay, May 1997.

Zhdanov. The Angular and Kinetic Energy Dependence of the pp Elastic Scattering Analyzing Power.

J.-L. Sans, H.M. Spinka, A. Teglia, Yu.A. Usov, V.V. Vikhrov, B. Vuaridel, C.A. Whitten and A.A.

Lesquen, M. de Mali, D. Lopiano, V.N. Matafonov, J.L. Pisarev, A.A. Popov, A.N. Prokoliev, D. Rapin,

Janout, V.A. Kalinnikov, Yu.M. Kazarinov, B.A. Khachaturov, T.E. Kasprzyk, R. Kunne, F. Lehar, A. de

P.-A. Chamouard, Ph. Demietre, J.-M. Fontaine, V. Chazikhanian, D. Grosnick, R. Hess, Z. Janout, Z.F. [33] C.E. Allgower, J. Arvieux, J. Baill, L.S. Barabash, M. Beddo, Y. Bedfer, A. Bourefnouchet, J. Bystricky,

C.R. Newsom, W. Leo, Y. Onel, A. Michalowicz, A. Penzo and A. Villari, Lett. Nuovo Cim. 41 (1984)

A. Penzo, F. Perrot and L. van Rossum, J. Phys. (Paris) 46 (1985) Colloque C2, No. 2, C2-483. [32] J. Bystricky, J. Dereggel, J.-M. Fontaine, T. Hasegawa, F. Lehar, A. de Lesquen, C.R. Newsonn, Y. Onell,

[31] J. Bystrický, J. Derégel, F. Lehar, A. de Lesquen, L. van Rossum, J.M. Fontaine, F. Perrol, T. Hasegawa,

[30] J. Bystrický, J. Derégel, F. Lehar, L. van Rossum, J.-M. Fontaine, F. Perrot, T. Hasegawa, C. Newsom,

[29] J. Bystricky, F. Lehar, A. de Lesquen, A. Penzo, L. van Rossum, J.-M. Fontaine, F. Perrot, G. Leleux

[27] J. Bystricky and F. Lehar. Nucleon-nucleon Scattering Data. Summary Tables, ed. H. Behrens und G.

[26] J. Bystricky, P. Carlson, C. Lechanoine, F. Lehar, F.Mönnig and K.R. Schubert, Elastic and Charge

[25] J. Bystrický and F. Lehart Nucleon-nucleon Scattering Data, ed. H. Behrens and G. Ebell.

[24] J. Baill, M. Comber, J.-L. Sans, B. Benda, P. Chaumette, J. Dereggel, G. Durand, A.P. Dzyubak, C.

[23] J. Bystrický, J. Derégel, F. Lehar, A. de Lesquen, L. van Rossum, J.-M. Fontaine, F. Perrot, C. A.

Nucleon-mucleon Scattering Data, Detailed Tables, Herausgeber: H. Behrens und G. Ebel.

Börnstein, New Series, Vol. 9, ed. H. Schopper, ed. in Chief K.H. Hellwege, Group I: Nuclear and Particle

Exchange Scattering of Elementary Particles A: Nucleon Nucleon and Kaon Nucleon Scattering, Landoll-

Gaudron, F. Lehar, A. de Lesquen, T.E. Kasprzyk, Z. Janour, B.A. Khachaturov, V.V. Matafonov and

Whitten, T. Hasegawa, C. R. Newsom, W. R. Leo, Y. Onel, S. Dalla Torre-Colautti, A. Penzo, H. Azaiez

Toshioka, D. Underwood, R. Wagner, Y. Watanabe, A. Yokosawa, G.R. Burleson, W.B. Contingame, S.J. [22] H. Spinka, E. Colton, W.R. Ditzler, H. Halpern, K. Imai, R. Stanek, N. Tamura, G. Theodosiou, K.

J.C. Hiebert, R.A. Kenefick, S. Wath, L.C. Northeliffe, A.J. Simon, S. Hiramarsu, Y. Mori, H. Sato, A.

[21] Y. Kobayashi, K. Kobayashi, T. Nakagawa, H. Shimizu, H.Y. Yoshida, H. Ohnuma, J.A. Holt, G. Glass,

1201 Y. Makdisi, M.L. Marshak, B. Mossberg, E.A. Peterson, K. Ruddick, J.B. Roberts and R.D. Klem, Phys.

[19] R. Diebold, D.S. Ayres, S.L. Kramer, A.J. Pawlicki and A.B. Wicklund, Phys. Rev. Lett. 35 (1975) 632.

Salthouse, B. Sandler and K.M. Terwilliger, Phys. Lett. B 74 (1978) 273; and Preprint UM-HE 78-3.

Y. Onel and A. Penzo, Lett. Nuovo Cim. 40 (1984) 466.

and A. Nakach, Nucl. Instr. and Meth. A 234 (1985) 412.

Ebel, Fachinformationszentrum Karlsruhe, Nr. 11-2, 1981;

Physics (Springer, Berlin, Heidelberg, New York, 1980).

Fachinformationszentrum Karlstuhe, Mr. 11-1, 1978, Part Land III.

and A. Michalowicz, Nucl. Instr. and Meth. A 239 (1985) 131.

Greene, S. Stuart and J.J. Jarmer, Nucl. Instr. and Meth. 211 (1983) 239.

Takagi, T. Toyanna, A. Ueno and K. Imai, Nucl. Phys. A 569 (1994) 719.

The numerical table given in Ph.D. Thesis of B. Mossberg. University of Minnesota.

Fachinformationszentrum Karlstube, Nr.11-3, 1991.

Yu.A. Usov, Nucl. Instr. and Meth. A 381 (1996) 4.

Ber, Lett. 45 (1980) 1529;

8791 nodiA nnA

[128] C. Lechanoine-Leluc and F. Lehan, Rev. Mod. Phys. 65 (1993) 47.

ELSEVIER