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Abstract:We discuss the role of the Zweig rule (ZR) violation in the scalar channel

for the determination of low-energy constants and condensates arising in the effective

chiral lagrangian of QCD. The analysis of the Goldstone boson masses and decay

constants shows that the three-flavor condensate and some low-energy constants

are very sensitive to the value of the ZR violating constant L6. A similar study is

performed in the case of the decay constants. A chiral sum rule based on experimental

data in the 0++ channel is used to constrain L6, indicating a significant decrease

between the two- and the three-flavor condensates. The analysis of the scalar form

factors of the pion at zero momentum suggests that the pseudoscalar decay constant

could also be suppressed from Nf = 2 to 3.

Keywords: Spontaneous Symmetry Breaking, QCD, Chiral Lagrangians.

mailto:sdg@hep.phys.soton.ac.uk
http://jhep.sissa.it/stdsearch?keywords=Spontaneous_Symmetry_Breaking+QCD+Chiral_Lagrangians


J
H
E
P
0
3
(
2
0
0
1
)
0
0
2

Contents

1. Introduction 2

2. Constraints from the pseudoscalar meson masses 4

2.1 Role of L6 4

2.2 Paramagnetic inequality for Σ 8

3. Constraints from the pseudoscalar decay constants 10

3.1 Role of L4 10

3.2 Paramagnetic inequality for F 2 12

4. Sensitivity of low-energy constants to ZR violation 15

5. Sum rule for X(2)−X(3) 16

5.1 Correlator of two scalar densities 16

5.2 Asymptotic behavior 18

5.3 Contribution for s ≤ s1: pion and kaon scalar form factors 19

5.3.1 Omnès-Muskhelishvili equations 19

5.3.2 Contribution of the first integral 21

5.4 Second sum rule: s1 ≤ s ≤ s0 23

5.5 High-energy contribution: |s| = s0 24

6. Results 25

6.1 Logarithmic derivatives of pseudoscalar masses 25

6.2 Estimate of X(3) and of LEC’s 27

6.3 Slope of the strange scalar form factor of the pion 31

6.4 Scalar radius of the pion 35

7. Conclusions 37

A. Spectrum of pseudoscalar mesons 41

A.1 Decay constants 41

A.2 Masses 42

A.3 Pseudoscalar masses for m→ 0 43

B. Operator product expansion for Π 44

1



J
H
E
P
0
3
(
2
0
0
1
)
0
0
2

C. Logarithmic derivatives 45

C.1 Logarithmic derivatives for m→ 0 45

C.2 Logarithmic derivatives for m 6= 0 47

1. Introduction

The low-energy constants (LEC’s) of the effective chiral lagrangian of QCD [1] are

quantities of great theoretical interest, since they reflect the way chiral symmetry is

spontaneously broken. However, their determination remains a particularly awkward

problem. In most cases [1]–[6], their values have been inferred from observables for

the pseudoscalar mesons, with the help of two assumptions: (1) the quark conden-

sate is the dominant order parameter to describe the Spontaneous Breakdown of

Chiral Symmetry (SBχS) [1], and (2) the pattern of SBχS agrees correctly with a

large-Nc description of QCD [7], in which quantum fluctuations are treated as small

perturbations.

If we admit both assumptions, the SU(2)×SU(2) light quark condensate Σ(2) =
− limmu,md→0〈ūu〉 should not depend much on the mass of the strange quark. We
could then set the latter to zero with no major effect on the condensate: Σ(2) ∼
limms→0Σ(2) = Σ(3). We end up with only one large condensate in the SU(2)×SU(2)
and SU(3)× SU(3) chiral limits, which is not very sensitive to q̄q fluctuations. The
LEC’s suppressed by the Zweig rule, L4 and L6, are consistently supposed to be very

small when considered at a typical hadronic scale.

However, several arguments may be raised against this “mean-field approxima-

tion” of SBχS, in which the Zweig rule applies and the chiral structure of QCD

vacuum is more or less independent of the number of massless quarks. On the one

hand, the scalar sector 0++ does not comply with large Nc-predictions [8], and some

lattice simulations with dynamical fermions suggest a strong Nf -sensitivity of SBχS

signals [9]. On the other hand, the behavior of the perturbative QCD β-function

indicates that chiral symmetry should be restored for large enough values of Nf .

In the vicinity ot the corresponding critical point, chiral order parameters should

strongly vary with Nf . Various approaches, based on the investigation of the QCD

conformal window [10], gap equations [11], or the instanton liquid model [12], have

been proposed to investigate the variations of chiral order parameters with the num-

ber of massless flavors and to determine the critical value of Nf for the restoration

of chiral symmetry.

In ref. [13], the Nf -sensitivity of chiral order parameters has been investigated

without relying on perturbative methods, but rather by exploiting particular prop-

erties of vector-like gauge theories. The mechanism of SBχS is indeed related to
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the dynamics of the lowest eigenvalues of the Dirac operator: /D = γµ(∂µ + iGµ),

considered on an euclidean torus [14, 15, 16]. Two main chiral order parameters can

be expressed in this framework. The quark condensate Σ is related to the average

density of eigenvalues around zero [14] and the pion decay constant in the chiral

limit F can be interpreted as a conductivity [16]. The paramagnetic behavior of

Dirac eigenvalues leads to a suppression of both order parameters when the number

of flavors increases:

F 2(Nf + 1) < F
2(Nf ) , Σ(Nf + 1) < Σ(Nf ) . (1.1)

This sensitivity of chiral order parameters to light-quark loops is suppressed in

the large-Nc limit and is considered as weak for QCD according to the second hy-

pothesis of the Standard framework. However, the Nf -dependence of chiral order

parameters can be measured by correlators that violate the Zweig rule in the scalar

(vacuum) channel. For instance, the difference Σ(2) − Σ(3) (and the LEC L6) is
related to the correlator 〈ūu s̄s〉 [17, 18] (this correlator can be interpreted as fluc-
tuations of the density of Dirac eigenvalues [13]). The large ZR violation observed

in the 0++ channel could therefore support a swift evolution in the chiral structure

of the vacuum from Nf = 2 to Nf = 3. The quantum fluctuations of q̄q pairs would

then play an essential role in the low-energy dynamics of QCD.

Hence, it is worth reconsidering the determination of LEC’s without supposing

(1) the dominance of the quark condensate and (2) the suppression of quantum

fluctuations. This determination starts with the quark mass expansion of measured

observables such as F 2πM
2
π or F

2
KM

2
K , using Chiral Perturbation Theory (χPT) [1]:

F 2PM
2
P = mqΣP +m

2
q[aP + bP log(MP )] + F

2
P δP , (1.2)

where mq denotes formally the masses of the light quarks u, d, s and the remainder

F 2P δP is of order m
3
q. The coefficients ΣP , aP , bP are combinations of LEC’s. The

chiral logarithms log(MP ) stem from meson loops. The coefficient of each power of

mq does not depend on the renormalization scale of the effective theory (F
2
PM

2
P and

mq are independent of this scale).

Series like eq. (1.2) are assumed to converge on the basis of a genuine dimensional

estimate [19]. The LEC’s involved in the coefficients are related to Green functions

of axial and vector currents, and scalar and pseudoscalar densities. The dimensional

estimate consists in saturating the correlators by the exchange of resonances with

masses of order ΛQCD [4]. We obtain coefficients of order ∼ 1/ΛnQCD for the power
mnq . The quark mass expansion would therefore lead to (convergent) series in powers

of mq/ΛQCD � 1.
Notice that this genuine estimate cannot be applied to the linear term ΣP cor-

responding to the quark condensate (there is no colored physical state to saturate

〈q̄q〉). Moreover, the convergence of the whole series does not imply that the linear
term ΣP is dominant with respect to the quadratic term. In this article, we will
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precisely address (1) the possibility of such a competition between the first two or-

ders in the quark mass expansions, and (2) the implications of large values for the

ZR-suppressed constants L4 and L6, in particular for the determination of LEC’s.

Unfortunately, the masses and decay constants of the Goldstone bosons do not

provide enough information to estimate the actual size of quantum fluctuations in

QCD. To reach this goal, refs. [17, 18] have proposed a sum rule to estimate L6 (or

Σ(2)− Σ(3)) from experimental data in the scalar channel. Starting with Standard
assumptions (two- and three-flavor condensates of large and similar sizes), ref. [17]

ended up with a ratio Σ(3)/Σ(2) ∼ 1/2 at the Standard O(p4) order, whereas ref. [18]
confirmed a large decrease of the quark condensate when Standard O(p6) contri-

butions were taken into account. Even though these results suggest a significant

variation in the pattern of SBχS from Nf = 2 to Nf = 3, it seems necessary to

reevaluate this sum rule without any supposition about the size of the condensates.

This analysis will be performed in the second part of this article.

We will follow mainly the line of ref.[20], which can be considered as an orienta-

tion guide to this article. The first part is devoted to the determination of the LEC’s

from the pseudoscalar spectrum. Section 2 considers the role played by L6 for the

Goldstone boson masses and the quark condensates, whereas the decay constants

and L4 are treated in section 3. Section 4 deals mainly with the implication of ZR

violation in the 0++ channel for the determination of LEC’s. The second part of

this article focuses on the estimate of L6 from data in the scalar sector. Section 5

introduces the sum rule for L6, sketches the Operator Product Expansion of the in-

volved Green function and estimates the sum rule, with a special emphasis on the

the scalar form factors of the pion and the kaon. In section 6, we present the results

obtained for the quark condensates and LEC’s from the sum rule, and we discuss

two other quantities related to the pion scalar form factors: the slope of the strange

form factor and the scalar radius of the pion. Section 7 sums up the main results

of the article. Appendix A collects the expansions of pseudoscalar masses and decay

constants in powers of quark masses. Appendix B deals with the Operator Product

Expansion of the correlator 〈ūu s̄s〉. Appendix C provides logarithmic derivatives of
the pseudoscalar masses with respect to the quark masses.

2. Constraints from the pseudoscalar meson masses

2.1 Role of L6

Let us first study the pseudoscalar massesMπ,MK ,Mη, starting from their expansion

at the Standard O(p4) order, ref. [1, eqs. (10.7)]. We reexpress them as:

F 2πM
2
π = 2mΣ(3) + 2m(ms + 2m)Z

S + 4m2A + 4m2B20L+ F
2
πδπ , (2.1)

F 2KM
2
K = (ms +m)Σ(3) + (ms +m)(ms + 2m)Z

S +

+(ms +m)
2A+m(ms +m)B

2
0L+ F

2
KδK , (2.2)
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where m = (mu +md)/2 and Z
S and A are scale-independent constants, containing

respectively the LEC’s L6(µ) and L8(µ),

ZS = 32B20

[
L6(µ)−

1

512π2

(
log
M2K
µ2
+
2

9
log
M2η
µ2

)]
, (2.3)

A = 16B20

[
L8(µ)−

1

512π2

(
log
M2K
µ2
+
2

3
log
M2η
µ2

)]
, (2.4)

with B0 = Σ(3)/F
2
0 and F0 ≡ F (3). The remaining O(p4) chiral logarithms are

contained in L:1

L =
1

32π2

[
3 log

M2K
M2π
+ log

M2η
M2K

]
= 25.3 · 10−3 . (2.5)

There is a similar equation for F 2ηM
2
η :

F 2ηM
2
η =

2

3
(2ms +m)Σ +

2

3
(2ms +m)(ms + 2m)Z

S +

+
4

3
(2m2s +m

2)A+
8

3
(ms −m)2ZP +

1

3
B20L+ F

2
η δη , (2.6)

with the scale-independent constant ZP = 16B20L7. A factor B0 is included in the

expression of A, ZS and ZP in terms of Li=6,7,8, so that they do not diverge in the

limit Σ(3) → 0. The corresponding equations for the pseudoscalar decay constants
F 2P (P= π, K, η) will be treated in section 3.1.

We take F 2PM
2
P and F

2
P as independent observables, in order to separate in a

straightforward way the “mass” constants L6, L7, L8 from L4, L5 that appear only

in the expansion of decay constants F 2P . There is a second argument supporting the

choice of F 2P and F
2
PM

2
P as independent observables of the pseudoscalar spectrum.

We expand observables in powers of quark masses, supposing a good convergence of

the series. We have sketched in the introduction how a naive dimensional estimate

justifies this assumption: LEC’s are related to QCD correlation functions, which can

be saturated by massive resonances, leading to series in (mq/ΛQCD). We should there-

fore expect good convergence properties for “primary” observables obtained directly

from the low-energy behavior of QCD correlation functions, like F 2P and F
2
PM

2
P . For

such quantities, the higher-order remainders should thus remain small. On the other

hand, we have to be careful when we deal with “secondary” quantities combining

“primary” observables. The higher-order remainders may then have a larger influ-

ence. In particular, ratios of “primary” observables (like M2P = F
2
PM

2
P/F

2
P ) might be

dangerous if higher-order terms turned out to be sizable (leading to untrustworthy

approximations like 1/(1 + x) ' 1− x with a large x).
1In this article, we use the following values of masses and decay constants: Mπ = 135MeV,

MK = 495MeV, Mη = 547MeV, Fπ = 92.4MeV, FK/Fπ = 1.22.
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In eqs. (2.1), (2.2) and (2.6), all terms linear and quadratic in quark masses are

shown. The remaining contributions, of order O(m3quark) and higher, are collected in

the remainders δP . We can consider that the latter are given to us, so that eqs. (2.1),

(2.2) and (2.6) can be seen as algebraic identities relating the 3-flavor condensate

Σ(3) the quark mass ratio r = ms/m, and the LEC’s F0, L6(µ), L7 and L8(µ). The

three-flavor quark condensate is measured in physical units, using the Gell-Mann–

Oakes ratio: X(3) = 2mΣ(3)/(FπMπ)
2 [21].

We are going to assume that the remainders δP are small (δP � M2P ), and

investigate then the consequences of eqs. (2.1) and (2.2) for the values of LEC’s.

Before starting, we should comment the status of eqs. (2.1), (2.2) and (2.6) with

respect to Chiral Perturbation Theory (χPT). Even if we imposed δP = 0, we would

not work in the frame of one-loop Standard χPT [1]: we do not suppose that the

condensate Σ(3) is dominant in these equations, we do not treat 1−X(3) as a small
expansion parameter, and accordingly, we do not replace (for instance) 2mB0 by M

2
π

in higher-order terms. However, we are not following Generalized χPT either [22],

since B0 is not treated as an expansion parameter: even with δP = 0, eqs. (2.1),

(2.2) and (2.6) exceed the Generalized tree level, since these equations include chiral

logarithms.

It is useful to rewrite eqs. (2.1) and (2.2) as:

2m

F 2πM
2
π

[Σ(3) + (2m+ms)Z
S] = 1− ε̃(r)− 4m

2B20
F 2πM

2
π

rL

r − 1 − δ , (2.7)

4m2A

F 2πM
2
π

= ε̃(r) +
4m2B20
F 2πM

2
π

L

r − 1 + δ
′ , (2.8)

with

ε̃(r) = 2
r̃2 − r
r2 − 1 , r̃2 = 2

(
FKMK

FπMπ

)2
− 1 ∼ 39 . (2.9)

δ and δ′ are linear combinations of the remainders δπ and δK :

δ =
r + 1

r − 1
δπ

M2π
−
(
ε̃+

2

r − 1

)
δK

M2K
,

δ′ =
2

r − 1
δπ

M2π
−
(
ε̃+

2

r − 1

)
δK

M2K
. (2.10)

For large r, we expect δ′ � δ ∼ δπ/M2π . Similarly to ref. [6], we consider as pa-
rameters F0 = limm,ms→0 Fπ (i.e. L4(µ)), the ZR violating constant L6(µ) and the
quark mass ratio r = ms/m. Eq. (2.7) ends up with a non-perturbative formula (no

expansion) for the three-flavor Gell-Mann–Oakes–Renner ratio X(3):

X(3) =
2mΣ(3)

F 2πM
2
π

=
2

1 + [1 + κ(1− ε̃− δ)]1/2 (1− ε̃− δ), (2.11)
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where κ contains L6(µ):

κ = 64(r + 2)

(
FπMπ
F 20

)2 {
L6(µ)−

1

256π2

(
log
MK
µ
+
2

9
log
Mη
µ

)
+

+
rL

16(r − 1)(r + 2)

}
. (2.12)

Eq. (2.11) is an exact identity, useful if the remainder δ in eq. (2.10) is small,

i.e. if the expansion of QCD correlators in powers of the quark masses mu, md, ms is

globally convergent. It means that δP � M2P in eqs. (2.1) and (2.2), but the linear
term in these equations (related to the condensate) does not need to dominate.

κ describes quantum fluctuations of the condensate, and actually κ = O(1/Nc).

L6(µ) has to be fixed carefully to keep κ small. κ is equal to zero for 10
3 ·L6 = −0.26

at the scale µ = Mρ, which is close to the value usually claimed in Standard

χPT analysis [3]. In this case, eq. (2.11) yields X(3) near 1, unless the quark

mass ratio r decreases significantly, leading to ε̃ → 1. This effect is well-known

in GχPT [22]: the minimal value of r (corresponding to ε̃ = 1 and X(3) = 0) is

r̃1 = 2(FKMK)/(FπMπ) − 1 ∼ 8. Notice that for these very small values of r, the
combination of higher-order remainders δ cannot be neglected any more in eq. (2.11).

But quantum fluctuations can modify this picture: the number before the curly

brackets in eq. (2.12) is very large (∼ 5340 for r = 26 and F0 = 85MeV). Hence, even
a small positive value of L6(Mρ) can lead to a strong suppression of X(3), whatever

the value of r = ms/m. This effect can be seen on figure 1, where X(3) is plotted

as a function of L6(Mρ) for r = 20, r = 25, r = 30 and F0 = 85 and 75MeV. The

decrease of X(3) is slightly steeper for lower values of F0.

Once X(3) is known, eq. (2.8) leads to L8(µ):

L8(µ) =
L

r − 1 +
F 40
F 2πM

2
π

ε̃+ δ′

[X(3)]2
+

1

512π2

{
log
M2K
µ2
+
2

3
log
M2η
µ2

}
. (2.13)

This constant depends on L6 only through X(3). Notice that this dependence is

smaller when F0 decreases (L8 depends actually on L6 through B0).

The ZR violating constant L7 can be obtained from F
2
ηM

2
η eq. (2.6):

L7 =
1

32

F 40
F 2πM

2
π

{
1

(r − 1)2
[
3F 2ηM

2
η + F

2
πM

2
π − 4F 2KM2K

]
− F 2πM2π ε̃(r)

}
−

− r2

32(r − 1)2
F 40
F 2πM

2
π

[
3F 2η δη +

8r

r + 1
F 2KδK + (2r − 1)F 2πδπ

]
, (2.14)

where Fη will be discussed in section 3.1. The pseudoscalar spectrum satisfies with

a good accuracy the relation 3F 2ηM
2
η + F

2
πM

2
π = 4F

2
KM

2
K , which reduces at the

leading order to the Gell-Mann–Okubo formula [23]. This relation leads to a strong

correlation between A and ZP : A + 2ZP ' 0. This correlation can also be seen in

7
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Figure 1: X(2) (crosses) and X(3) (no symbol) as functions of L6(Mρ)·103 and r = ms/m
(solid line: r = 20, dashed line: r = 25, dotted line: r = 30) for F0 = 85MeV (upper plot)

and 75MeV (lower plot).

Standard χPT between L7 and L8, and remains to be explained in both frameworks.

No obvious reason forces this particular combination of two low-energy constants to

be much smaller than the typical size of the effective constants.

2.2 Paramagnetic inequality for Σ

In ref. [13], q̄q fluctuations were shown to increase the two-flavor condensate Σ(2) =

− limm→0〈ūu〉|ms physical with respect to Σ(3), so that X(2) > X(3). The two-flavor
quark condensate can be obtained through the limit:

Σ(2) = lim
m→0
(FπMπ)

2

2m
= Σ(3) +msZ

S|m=0 + δ2 , (2.15)

keeping ms fixed. We have the quantities: δ2 = limm→0 F 2πδπ/(2m) and Z
S|m=0 =

8



J
H
E
P
0
3
(
2
0
0
1
)
0
0
2

ZS +B20∆Z
S, with:

∆ZS =
1

16π2

[
log
M2K
M̄2K
+
2

9
· log

M2η
M̄2η

]
, (2.16)

and M̄2P = limm→0M
2
P . The effect of ∆Z

S is very small.2 ∆ZS should be compared

to the logarithmic terms included in ZS, eq. (2.3), at a typical scale µ ∼ Mρ. ∆ZS
reaches hardly 10% of this logarithmic piece.

Once ZS is eliminated from eqs. (2.7) and (2.15), we obtain the two-flavor Gell-

Mann–Oakes–Renner ratio X(2) = 2mΣ(2)/(FπMπ)
2:

X(2) = [1− ε̃] r
r + 2

+
2

r + 2
X(3)−

− (FπMπ)
2

2F 40
X(3)2

[
2r2

(r − 1)(r + 2)L− r∆Z
S

]
+ δX , (2.17)

with:

δX = δ2 −
r

r + 2
δ

=
1

F 2πM
2
π

[
m lim
m→0
F 2π δπ

m
− r(r + 1)

(r + 2)(r − 1)F
2
πδπ

]
+
r

r + 1

(
ε̃+

2

r − 1

)
δK

M2K
. (2.18)

In the expression of δX , the remainders δP/M
2
P are suppressed by a factor m/ms:

this suppression is obvious for δK (ε̃ = O(1/r)), whereas the operator applied to δπ
cancels the terms of order O(mm2s). For r > 20, we expect thus |δX | ∼ |δ′|. The
dependence of X(2) on L6 is completely hidden in X(3), and therefore marginal, as

shown in figure 1.

The paramagnetic inequality X(2) ≥ X(3) constrains the maximal value reached
by X(3) = X(3)|max. If we neglect δΣ(2) in eq. (2.15), the inequality can be trans-
lated into a lower bound for L6:

L6(µ) ≥
1

512π2

(
log
M̄2K
µ2
+
2

9
log
M̄2η
µ2

)
. (2.19)

Figure 1 shows clearly the lower bound: L6(Mρ) ≥ −0.21 · 10−3.
X(2) is loosely related toX(3), but it is very strongly correlated with r, specially

for small values of r. Eq. (2.17) yields the estimate X(2) ∼ [1 − ε̃] · r/(r + 2), up
to small correcting terms due to X(3). We are going to study the effect of these

correcting terms.

If we neglect ∆ZS, X(2) is a quadratic function ofX(3), which is not monotonous

when X(3) varies from 0 to X(3)|max: it first increases, and then decreases (see
figure 1). The decrease of X(2) for X(3) close to its upper bound is caused by

the negative term, quadratic in X(3), in eq. (2.17). This decrease of X(2) is more

significant for small F0, because the factor in front of [X(3)]
2 in eq. (2.17) becomes

larger.
2It can be evaluated following the procedure of section A.3.
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Figure 2: X(2) as a function of r for two ranges of F0

Therefore, X(2) does not reach its maximum for the paramagnetic boundX(2) =

X(3)|max, whereas its minimum is the smallest of the two values obtained for X(3) =
0 and X(3) = X(3)|max.3 The dependence on r of the minimal value of X(2) can
be guessed rather easily. For large r, the term linear in X(3) in eq. (2.17) can be

neglected: the minimum of X(2) occurs for X(3) = X(3)|max. For small r, X(2) and
X(3) tend to 0, and the term quadratic in X(3) should be small with respect to the

linear term. Therefore, X(2) reaches its minimum for X(3) = 0 when r is small.

The numerical analysis of eq. (2.17), including ∆ZS, supports this intuitive de-

scription. In figure 2, the variation ranges of X(2) are plotted for several values of F0.

The curve for the minimum ofX(2) exhibits a cusp when the minimum ofX(2) corre-

sponds no more toX(3) = 0, but toX(3)|max. X(2) appears to be strongly correlated
to r, even though a large value of X(2) ∼ 0.9 can be associated to a broad range of r.

3. Constraints from the pseudoscalar decay constants

3.1 Role of L4

The decomposition used for the Goldstone boson masses can be adapted to the decay

constants:

F 2π = F
2
0 + 2mξ + 2(2m+ms)ξ̃ + (3.1)

+
1

16π2
F 2πM

2
π

F 20
X(3)

[
2 log

M2K
M2π
+ log

M2η
M2K

]
+ επ,

F 2K = F
2
0 + (m+ms)ξ + 2(2m+ms)ξ̃ +

1

2

F 2πM
2
π

F 20
X(3)L+ εK , (3.2)

3This updates ref. [13], where the minimum and maximum of X(2) were claimed to be obtained

for X(3) = 0 and X(3) = X(3)|max.
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with the scale-independent constants related to L4 and L5:

ξ = 8B0

[
L5(µ)−

1

256π2

(
log
M2K
µ2
+ 2 log

M2η
µ2

)]
, (3.3)

ξ̃ = 8B0

[
L4(µ)−

1

256π2
log
M2K
µ2

]
, (3.4)

eqs. (3.1) and (3.2) contain all the terms constant or linear in quark masses in the

expansion of F 2π and F
2
K , whereas εP denote remainders of order O(m

2
quark). There

is also a formula for Fη, which can be written as:

F 2η =
4

3
F 2K −

1

3
F 2π +

1

24π2
M2πF

2
π

F 20
rX(3) log

M2η
M2K
+

+
1

48π2
M2πF

2
π

F 20
X(3)

(
log
M2η
M2K
− logM

2
K

M2π

)
+ εη −

4

3
εK +

1

3
επ . (3.5)

The two scale-independent constants can be extracted from eqs. (3.1) and (3.2):

2mξ

F 2π
= η̃(r) +

1

32π2
F 2π
F 20

M2π
F 2π

X(3)

r − 1

[
5 log

M2K
M2π
+ 3 log

M2η
M2K

]
+

+
2

r − 1

[
επ

F 2π
− εK
F 2π

]
(3.6)

2mξ̃

F 2π
=

1

r + 2

{
1− η̃(r)− F

2
0

F 2π
−

− 1

32π2
F 2π
F 20

M2π
F 2π
X(3)

[
4r + 1

r − 1 log
M2K
M2π
+
2r + 1

r − 1 log
M2η
M2K

]}
+

+
1

r + 2

[
2

r − 1
εK

F 2π
− r + 1
r − 1

επ

F 2π

]
, (3.7)

with:

η̃(r) =
2

r − 1

(
F 2K
F 2π
− 1

)
∼ 0.977
r − 1 , (3.8)

where the latter estimate is obtained for FK/Fπ = 1.22.

ξ (i.e. L5) turns out to depend essentially on X(3) and r, whereas ξ̃ (i.e. L4)

is related to the difference between F (3) and Fπ. Eq. (3.7) leads to a quadratic

equation for [F (3)/Fπ]
2, involving L4:

(
F (3)

Fπ

)4
− (1− η̃ − ε)

(
F (3)

Fπ

)2
+ λX(3) = 0 , (3.9)
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with:

λ = 8(r + 2)
M2π
F 2π

{
L4(µ)−

1

256π2
log
M2K
µ2
+

+
1

256π2
1

(r + 2)(r − 1)

[
(4r + 1) log

M2K
M2π
+ (2r + 1) log

M2η
M2K

]}
,

ε =
r + 1

r − 1
επ

F 2π
−
(
η̃ +

2

r − 1

)
εK

F 2K
. (3.10)

Eq. (3.9) has the solution:

(
F (3)

Fπ

)2
=
1− η̃ − ε+

√
(1− η̃ − ε)2 − 4λX(3)
2

. (3.11)

Notice that this formula is very close to eq. (2.11), that relatesX(3) to L6(µ) through

the parameter κ. For r = 25, the factor in front of the curly brackets in the definition

of λ is of order 460, and λ vanishes for L4(Mρ) = −0.51 · 10−3.
Eq. (3.9) admits a solution only if λX(3) ≤ (1− η̃ − ε)2/4. From eq. (3.11), we

get then a range for F (3):

1− η̃ − ε
2

≤
(
F (3)

Fπ

)2
≤ 1− η̃ − ε . (3.12)

The variations of F (3) with L4(Mρ) are plotted for three values of r and X(3) =

0.9 and 0.5 in figure 3. When X(3) decreases, the allowed range for L4 broadens.

This is due to the definition of L4, which relates B0L4 = Σ(3)L4/F
2(3) to the low-

energy behavior of a QCD Green function. [F (3)/Fπ]
2 starts at 0.9 (for the lowest

possible value of L4(Mρ)) and decreases until 0.5. F (3) can thus vary from 87 to

65MeV, depending on the value of L4(Mρ).

3.2 Paramagnetic inequality for F 2

We obtain F (2) by taking the limit:

F 2(2) = lim
m→0F

2
π = F (3)

2 + 2msξ̃|m=0 + ε2 , (3.13)

keeping ms fixed. We have ε2 = limm→0 επ and ξ̃|m=0 = ξ̃ +B0∆ξ̃, with

∆ξ̃ =
1

32π2
log
M2K
M̄2K
. (3.14)

∆ξ̃ has a tiny effect on the results, similarly to ∆ZS for X(3). We get the equation:

[
F (2)

Fπ

]2
=
r

r + 2


[1− η̃] + 2r

[
F (3)

Fπ

]2
−X(3)φ

[
Fπ

F (3)

]2
− εF


 , (3.15)
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Figure 3: F (2) (crosses) and F (3) (no symbol) as functions of L4(Mρ) ·103 and r = ms/m
(solid lines: r = 20, dashed lines: r = 25, dotted lines: r = 30) for X(3)=0.9 (upper plot)

and 0.5 (lower plot).

with:

εF =
r + 1

r − 1
επ

F 2π
− r + 2
r

ε2

F 2π
−
(
η̃ +

2

r − 1

)
εK

F 2K

=
1

F 2π

[
r + 1

r − 1επ −
r + 2

r
lim
m→0 επ

]
−
(
η̃ +

2

r − 1

)
εK

F 2K
,

φ =
1

32π2
M2π
F 2π

[
4r + 1

r − 1 log
M2K
M2π
+
2r + 1

r − 1 log
M2η
M2K
+ (r + 2) log

M̄2K
M2K

]
. (3.16)

It is interesting to compare the expression of F (2) as a function of F (3) with eq. (2.17)

that relates X(2) to X(3). Even though the equations look rather similar, we can
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F (3) [MeV] F (2) [MeV] No ZR violation

r min max min max F [MeV] X

10 61.69 87.24 81.31 87.24 85.57 0.403

15 63.02 89.12 82.34 89.12 86.17 0.751

20 63.63 89.99 83.02 89.99 86.71 0.860

25 63.99 90.50 83.38 90.50 87.08 0.905

30 64.23 90.83 83.43 90.83 87.35 0.928

35 64.39 91.06 83.14 91.06 87.55 0.940

Table 1: On the left hand-side, bounds for F (3). In the middle, corresponding bounds

for F (2). On the right hand-side, values of F (3) and X(3) saturating both paramagnetic

inequalities: F (2) = F (3) and X(2) = X(3).

notice that eq. (2.17) is a quadratic function of X(3) whereas eq. (3.15) involves

[F (3)/Fπ]
2 and its inverse [Fπ/F (3)]

2. Moreover, eq. (3.15) is an increasing func-

tion of F (3), whereas X(2) is not monotonous with X(3). On the other hand, εF
suppresses the remainders εP/F

2
P by a factor m/ms, in a comparable way to δX .

The paramagnetic inequality F (2) ≥ F (3) is translated into an upper bound for
F (3): (

F (3)

Fπ

)2
≤
1− η̃ − εF +

√
(1− η̃ − εF )2 − 4φX(3)
2

. (3.17)

A quick estimate shows that the condition X(3) ≤ (1 − η̃ − εF )2/(4φ) is satisfied
for any r between r̃1 ∼ 8 and r̃2. This paramagnetic bound corresponds to a lower
bound for L4(µ):

L4(µ) >
1

256π2
log
M̄2K
µ2
. (3.18)

The term log(M̄2K) is very weakly dependent on r, X(3) and F (3). If we scan the

acceptable range of variation for these three parameters, we obtain the lower bound

L4(Mρ) > −0.37 ·10−3. We notice that the curves for F (2) and F (3) cross each other
at this value in figure 3.

Since φ > 0, eqs. (3.12) and (3.17) lead to the range:

1− η̃ − ε
2

≤ F (3)
2

F 2π
≤ 1− η̃ −max(εF , ε). (3.19)

The bounds on F (3) are indicated in table 1 (neglecting the remainders ε and εF ).

Table 1 collects for several values of r the corresponding bounds for F (2), obtained

using eq. (3.15). It gives also the values of X(3) and F (3) that saturate both param-

agnetic bounds: F (2) = F (3) and X(2) = X(3). In this case, the Zweig rule would

be violated neither for the masses nor for the decay constants.
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4. Sensitivity of low-energy constants to ZR violation

The equations (2.13), (2.14), (3.6) and (3.7) can be used to extract the LEC’s Li=4,5,7,8
as functions of r, F0 et X(3), or equivalently, of L6, F0 ≡ F (3) and r using eq. (2.11).
Results are shown in table 2 as a function of L6, for 2 values of F0 and 3 values of r.

This table has been obtained by neglecting the higher-order terms δP and εP ,

which start at the next-to-next-to-leading order (NNLO). If the size of these remain-

ders is large, the values collected in these tables should be clearly modified. If we

keep considering the low-energy constants as functions of L6(Mρ) and we change

the relative size of the NNLO remainders within a range of 5%, the corresponding

variations of X(3) are of order ±0.02. The impact on the other LEC’s is larger for
smaller X(3) (of order ±0.3 · 10−3 for X(3) ∼ 0.8, r ∼ 25).
The authors of ref. [6] have estimated the NNLO remainders in the Standard

Framework. The authors assume first L4(Mρ) = L6(Mρ) = 0 and r = 24, estimate

O(p6) counterterms (Standard counting) through a saturation of the associated corre-

lators by resonances, and fit globally on the available data (masses, decay constants,

form factors). For the decay constants, the obtained NNLO remainders εP are less

than 5%. The situation is less clear for the masses, due to a bad convergence of the

series. For instance, ref. [6] has obtained the decomposition: M2π/(M
2
π)phys = 0.746+

0.007 + 0.247, where the three terms correspond respectively to the leading O(m),

next-to-leading O(m2) and next-to-next-to-leading O(m3) orders. Ref. [6] suggested

that a variation of L4(Mρ) and L6(Mρ) could make the NNLO contribution decrease,

but a competition occurs then between the O(m2) term and the leading-order term.

Such a competition could be understood from our analysis as a consequence of

the suppression of the three-flavor condensate X(3). It would be of great interest to

r = 20 r = 25 r = 30

L6 4 5 7 8 4 5 7 8 4 5 7 8

−0.2 −0.284 2.410 −1.259 2.624 −0.282 1.603 −0.503 0.994 −0.284 1.130 −0.185 0.298
−0.1 −0.264 2.628 −1.452 3.044 −0.261 1.812 −0.604 1.224 −0.262 1.332 −0.233 0.416
0. −0.246 2.824 −1.636 3.445 −0.242 1.993 −0.699 1.440 −0.243 1.501 −0.276 0.525
0.2 −0.215 3.167 −1.986 4.207 −0.210 2.306 −0.880 1.848 −0.211 1.790 −0.360 0.730
0.4 −0.188 3.466 −2.318 4.930 −0.184 2.572 −1.050 2.232 −0.184 2.036 −0.439 0.925
1. −0.121 4.209 −3.256 6.966 −0.116 3.228 −1.532 3.314 −0.117 2.631 −0.664 1.471
−0.2 0.068 1.833 −0.816 1.653 −0.013 1.174 −0.325 0.586 −0.065 0.782 −0.117 0.124
−0.1 0.133 2.088 −0.999 2.056 0.053 1.414 −0.420 0.804 0.002 1.014 −0.161 0.236
0. 0.190 2.310 −1.176 2.442 0.108 1.616 −0.509 1.008 0.055 1.203 −0.202 0.340
0.2 0.287 2.684 −1.503 3.156 0.200 1.953 −0.678 1.391 0.144 1.513 −0.290 0.533
0.4 0.368 3.002 −1.814 3.833 0.277 2.234 −0.837 1.751 0.217 1.770 −0.354 0.715
1. 0.567 3.781 −2.696 5.751 0.463 2.915 −1.291 2.774 0.392 2.384 −0.565 1.232

Table 2: Low-energy constants Li(Mρ) · 103 as functions of L6(Mρ) · 103 and r = ms/m,

for F0 = 85MeV (upper part) and 75MeV (lower part).

15



J
H
E
P
0
3
(
2
0
0
1
)
0
0
2

proceed to the same analysis as in ref. [6], and to allow a competition between the

terms linear and quadratic in quark masses. This might improve the convergence

of the expansion of Goldstone boson observables in powers of quark masses. Even

if the three-flavor condensate X(3) is suppressed (first term of the series for pseu-

doscalar masses), we expect a global convergence of the series, i.e. small higher-order

remainders δP and εP .

Standard values of the LEC’s at order O(p4) can be found in ref. [3], and were

derived with the supposition that the ZR violating LEC’s L6(µ) and L4(µ) were

suppressed at the scale µ =Mη. The following values have been obtained: L4(Mρ) ·
103 = −0.3 ± 0.5, L5(Mρ) · 103 = 1.4 ± 0.5, L6(Mρ) · 103 = −0.2 ± 0.3, L7(Mρ) ·
103 = −0.4 ± 0.2, L8(Mρ) · 103 = 0.9 ± 0.3. These values are compatible with our
analysis: it can be seen on the first lines of table 2, with L6(Mρ) ∼ −0.2 · 10−3,
X(2) ∼ X(3) ∼ 0.9, r = 25, F0 = 85MeV. The values of L4(Mρ) and L6(Mρ)
correspond also to the lower bounds derived from the saturation of the paramagnetic

inequalities for F 2 and X: X(2) = X(3) and F (2) = F (3).

We see that L4 is weakly sensitive to L6, in agreement with eqs. (3.4) and (3.7).

For large r, and F0 close to Fπ, 1 − η̃(r) − F 20 /F 2π is nearly vanishing, so that L4
is mainly fixed by the last term in eq. (3.7) with no dependence on X(3). On the

contrary, L5 is clearly dependent on the value of L6. We can look at eq. (3.6) to

understand this phenomenon: η̃(r) may be small, but it never vanishes. The first

term in eq. (3.6) leads therefore to large values of L5 when X(3) decreases, whatever

values we choose for r and F0 (this is related to the definition of L5). The Gell-Mann–

Okubo formula eq. (2.14) correlates strongly L7 and L8, leading to L7 ' −L8/2.
From this analysis of the pseudoscalar masses and decay constants, we cannot

conclude whether q̄q fluctuations have important effects on the chiral structure of

QCD vacuum. However, the values of LEC’s are extremely sensitive to the value of

L6(Mρ). A small shift of L6 towards positive values would immediately split X(2)

and X(3), and increase strongly L8(Mρ) and L5(Mρ). We will now use additional

information from experimental data in the scalar sector, in order to constrain L6(Mρ).

5. Sum rule for X(2)−X(3)

5.1 Correlator of two scalar densities

We introduce the correlator [17, 18]:

Π(p2) = i
mms
M2πM

2
K

lim
m→0

∫
d4x eip·x 〈0|T{ūu(x) s̄s(0)}|0〉 , (5.1)

that is invariant under the QCD renormalization group, and violates the Zweig rule

in the 0++ channel. For ms 6= 0, Π is a SUL(2) ⊗ SUR(2) order parameter, related
to the derivative of Σ(2) with respect to ms: mms∂Σ(2)/∂ms =M

2
πM

2
KΠ(0).
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Figure 4: Contour of the integral in the sum rule for the correlator 〈ūu s̄s〉.

We can use the relation eq. (2.17) between r, X(3) and X(2) to compute

∂Σ(2)/∂ms. Eq. (2.3) can be used to compute (∂Z
S/∂ms)m=0. This leads to an

equation involving ZS and Π(0):

X(2)−X(3) = 2mms
F 2πM

2
π

ZS
∣∣∣
m=0
+
m

F 2πM
2
π

lim
m→0
F 2πδπ

m

=
2M2K
F 2π
Π(0) +

r[X(3)]2

32π2
F 2πM

2
π

F 40

(
λ̄K +

2

9
λ̄η

)
+

+
m

F 2πM
2
π

(
1−ms

∂

∂ms

)
lim
m→0
F 2π δπ

m
, (5.2)

with the logarithmic derivatives: λ̄P = ms · ∂(log M̄2P )/∂ms. This equation contains
the NNLO remainder F 2πδπ in the quark mass expansion of F

2
πM

2
π . Its leading term

is O(mm2s), so that the last term in eq. (5.2) should be of order ∼ (−δπ/M2π).
L6 (or the difference X(2) − X(3)) measures the violation of the Zweig rule in

the scalar channel. We are going to exploit experimental information about this

violation and to evaluate Π(0) through the sum rule:

Π(0) =
1

π

∫ s1
0
ds ImΠ(s)

1

s

(
1− s
s0

)
+

+
1

π

∫ s0
s1
ds ImΠ(s)

1

s

(
1− s
s0

)
+
1

2iπ

∫
|s|=s0

ds Π(s)
1

s

(
1− s
s0

)
. (5.3)

The three terms will be estimated in different ways:

• For 0 ≤ √s ≤ √s1 ∼ 1.2GeV, the spectral function ImΠ is obtained by
solving Omnès-Muskhelishvili equations for two coupled channels, using several

T -matrix models in the scalar sector.
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Figure 5: Feynman diagrams contributing to ms〈ūu〉 in OPE of Π (lowest order in αs).
The white circle is the scalar source ūu, the black one s̄s.

• For √s1 ≤
√
s ≤ √s0 ∼ 1.5GeV, the spectral function under s1 is exploited

through another sum rule in order to bound the contribution of the integral.

• For |s| = s0, we estimate the integral through Operator Product Expansion
(OPE).

5.2 Asymptotic behavior

Π can be expanded using OPE:

Π(p2) = i
mms

M2πM
2
K

lim
m→0

∫
d4x eip·x 〈0|T [ūu(x) s̄s(0)]|0〉

∼
P 2→∞

mms
M2πM

2
K

∑
n≥4

1

(P 2)n/2−1
C(n)(t)〈0|On|0〉, (5.4)

with P 2 = −p2, µ a renormalization scale, t = µ2/P 2, and On a combination of n-
dimensional operators. Π transforms chirally as (ūu)(s̄s) and we take the chiral limit

m → 0. Hence, the lowest-dimension operator is O4 = msūu, and the contributing
diagrams include at least two gluonic lines [17].

We will work in dimensional regularization (d = 4−2ω). In the class of t’Hooft’s
gauges, the gluon propagator reads:

−i
k2 + iε

(
gµν − (1− ξ)

kµkν

k2 + iε

)
δab , (5.5)

with ξ a free real parameter. The Wilson coefficient of msūu (at the leading order) is

obtained by adding 6 two-loop integrals. It is easy to see that the contributions of ξ

and ξ2 cancel in this sum of integrals. Hence, we check that the Wilson coefficient of

msūu at the leading order is independent of the chosen gauge, in the class of t’Hooft’s

gauges.
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We want the large-P 2 limit of integrals like:

g4sµ
4ωms〈ūu〉

1

p2

∫
d4q

(2π)d
d4k

(2π)d
P(p2, q2, k2, p · q, p · k, q · k,m2s)×

× 1

[(p− q)2 −m20]n2 [q2 −m20]n3
×

× 1

[(k + p)2 −m2s]n4 [(k + q)2 −m2s]n5[k2 −m2s]n6
, (5.6)

where P is a polynomial of degree 2. m0 corresponds at the same time to m = mu =
md for fermion propagators in the loop of u − d quarks, and to a fictitious mass to
regularize infrared gluonic divergences (we take at the end the limit m0 → 0).
Using identities like 2(k · q) = [(k + q)2 +m2s]− [k2 +m2s]− q2, we can reexpress

the sum in terms of:

1

p2ν0
J({νi}, {mi}, p) =

1

p2ν0

∫
d4q d4k

[q2 −m20]ν1 [k2 −m2s]ν2
×

× 1

[(k + q)2 −m2s]ν3[(p− q)2 −m20]ν4[(k + p)2 −m2s]ν5
, (5.7)

with m1 = m4 = m0 and m2 = m3 = m5 = ms. These integrals are formally identical

to the ones arising for two-loop self-energies. The behavior of such integrals at large

external momentum has already been studied. The basic idea consists in following

the flow of the large external momentum through the Feynman diagrams, in order

to Taylor expand the propagators [24]. This procedure, based on the asymptotic

expansion theorem [25], is sketched in appendix B.

Rather lengthy computations lead to the first term arising in the OPE of the

correlator. Some integrals contain poles in 1/ω, but these divergences cancel when

all the contributions are summed (this cancellation is a non-trivial check of the

procedure). The first term in OPE is:

i
mms

M2πM
2
K

lim
m→0

∫
d4x eip·x 〈0|T{mūu(x) mss̄s(0)}|0〉 ∼

P 2→∞
(5.8)

∼
P 2→∞

− 18[1− 2ζ(3)]
P 2

(
αs

π

)2 m2s
M2πM

2
K

m〈ūu〉 .

The involved condensate should be the two-flavor one (m→ 0, ms 6= 0).

5.3 Contribution for s ≤ s1: pion and kaon scalar form factors

5.3.1 Omnès-Muskhelishvili equations

In order to compute the integral:

I = 1
π

∫ s1
0
ds ImΠ(s)

1

s

(
1− s
s0

)
, (5.9)
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we have to know ImΠ between 0 and s1 (
√
s1 ∼ 1.2GeV). The procedure is explained

in detail in refs. [17, 18], and we shall merely sketch its main features for completeness.

In the range of energy between 0 and s1, the ππ- and KK̄- channels should dominate

the spectral function [17, 26, 27]. If we denote these channels respectively 1 and 2,

the spectral function is:

ImΠ(s) =
mms

M2πM
2
K

1

16π

∑
i=1,2

√
s− 4M2i
s

[niFi(s)][niG
∗
i (s)]θ(s− 4M2i ) , (5.10)

with the scalar form factors for the pion and the kaon:

~F (s) =

(
〈0|ūu|ππ〉
〈0|ūu|KK̄〉

)
, ~G(s) =

(
〈0|s̄s|ππ〉
〈0|s̄s|KK̄〉

)
, (5.11)

with M1 = Mπ and M2 = MK . n1 =
√
3/2 and n2 =

√
2 are numerical factors

related to the normalization of the states |ππ〉 and |KK̄〉.
The form factors are analytic functions in the complex plane, with the exception

of a right cut along the real axis. They should have the asymptotic behavior Fi(s) ∼
1/s when s → ∞, and fulfill a dispersion relation with no subtraction. Obviously,
when s increases, new channels open, and the two-channel approximation is no more

sufficient. But we need ~F and ~G for s ≤ s1, and we are not interested in the behavior
of the spectral function at much higher energies. We can therefore suppose that the

two-channel approximation is valid for any energies, with the discontinuity along the

cut:

Sij = δij + 2iσ
1/2
i Tijσ

1/2
j θ(s− 4M2i )θ(s− 4M2j ) , (5.12)

ImFi(s) =
n∑
j=1

T ∗ij(s)σj(s)Fj(s)θ(s− 4M2j ) , σi =

√
s− 4M2i
s

, (5.13)

and we will suppose in addition that the two-channel T -matrix model impose the

correct asymptotic behavior for ~F and ~G.

Under these assumptions, ~F and ~G satisfy separately a set of coupled Omnès-

Muskhelishvili equations [17, 26, 28, 29]:

Fi(s) =
1

π

n∑
j=1

∫ ∞
4M2π

ds′
1

s′ − sT
∗
ij(s

′)

√
s′ − 4M2j
s′

θ(s′ − 4M2j )Fj(s′) , (5.14)

with the condition that the T matrix leads to the expected decrease of the form

factors for s → ∞. Ref. [17] has proved a condition of existence and unicity for
the solution of eq. (5.14): ∆(∞) − ∆(4M2π) = 2π, where ∆(s) is the sum of the
ππ and KK̄ phase shifts. In that case, the set of linear equations admits a unique

solution, once the values at a given energy are fixed [18]. All the solutions are thus
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linear combinations of a basis, for instance the solutions ~A(s) and ~B(s) such as:
~A(0) =

(
1
0

)
and ~B(0) =

(
0
1

)
. ~F and ~G can therefore be written as:

~F (s) = F1(0) ~A(s) + F2(0) ~B(s) , ~G(s) = G1(0) ~A(s) +G2(0) ~B(s) . (5.15)

The value of the form factors at zero is related to the derivatives of the pseudoscalar

masses with respect to the quark masses:

F1(0) =
1

2

(
∂M2π
∂m

)
m=0

, F2(0) =
1

2

(
∂M2K
∂m

)
m=0

,

G1(0) =

(
∂M2π
∂ms

)
m=0

= 0 , G2(0) =

(
∂M2K
∂ms

)
m=0

. (5.16)

Up to now, we have followed the same line as refs. [17, 26]. But in these papers,

the value of the scalar form factors at zero was derived using Standard χPT, i.e.

supposing that the three-flavor quark condensate dominates the expansion of the

pseudoscalar masses. We are going to allow a competition between the terms linear

and quadratic in quark masses, so that the normalization of the form factors may

become rather different from what is considered in refs. [17, 26]. In a similar way, the

form factors that we will obtain could differ from the ones obtained by a matching

with Standard one-loop expressions [27, 30].

We consider here three models of T -matrix, proposed respectively by Oller, Oset

and Pelaez in ref. [31], by Au, Morgan and Pennington in ref. [32], and by Kaminski,

Lesniak and Maillet in ref. [33]. These models fit correctly the available data in

the scalar sector under 1.3GeV, as discussed in refs. [17, 26, 31]. However, they

have to be corrected for very low and very high energies, as discussed in ref. [17]:

chiral symmetry constrains the ππ phase shift near the threshold, and the asymptotic

behavior of the phases shifts has to be changed to insure existence and unicity for

the solution of eq. (5.14).

5.3.2 Contribution of the first integral

If we put eq. (5.15) into eq. (5.10), we obtain the spectral function as the sum of two

contributions:

ImΠ(s) = γπλK



√
3

32π

∑
i=1,2

√
s− 4M2i
s

Ai(s)B
∗
i (s)θ(s− 4M2i )


+

+ γKλK
M2K
M2π


 1
16π

∑
i=1,2

√
s− 4M2i
s

Bi(s)B
∗
i (s)θ(s− 4M2i )


 , (5.17)

where the logarithmic derivatives of the masses are denoted:

λP =
ms

M2P

(
∂M2P
∂ms

)
m=0

=
ms

M2P

∂M̄2P
∂ms

, γP =
m

M2P

(
∂M2P
∂m

)
m=0

. (5.18)
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Figure 6: Up: Contributions of type BB∗ (positive) and type AB∗ (negative) to the
spectral function. Down: example of spectral function, obtained with γπ = 1, λK =

1−M2
π/(2M

2
K) and γK =M

2
π/(2M

2
K). In both cases, we plot the results for the T -matrix

models of ref. [31] (solid lines), ref. [32] (dotted) and ref. [33] (dashed).

The two bracketed functions in eq. (5.17) can be plotted: the first one is called “type

AB∗”, the second one “type BB∗”. It is also interesting to study how these two
contributions cancel each other inside the spectral function, by taking the Standard

tree-level estimates: γπ = 1, λK = 1 −M2π/(2M2K) and γK = M2π/(2M2K). A peak,
corresponding to the narrow resonance f0(980) [8], arises with a height depending

on the models: ref. [31] leads to a smaller peak than refs. [32] and [33].

The integral between 0 and s1 in the sum rule eq. (5.3) can be written, using

eq. (5.17):

1

π

∫ s1
0
ds ImΠ(s)

1

s

(
1− s
s0

)
= γπλKIAB + γKλK

M2K
M2π
IBB , (5.19)
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where IXY =M(−1)
XY −M

(0)
XY /s0, involves the moments:

M(k)
AB =

√
3

32π2

∫ s1
0
ds sk

∑
i=1,2

√
s− 4M2i
s

Ai(s)B
∗
i (s)θ(s− 4M2i ) , (5.20)

M(k)
BB =

1

16π2

∫ s1
0
ds sk

∑
i=1,2

√
s− 4M2i
s

Bi(s)B
∗
i (s)θ(s− 4M2i ) . (5.21)

Notice that we solve Omnès-Muskhelishvili equations to obtain the scalar form

factors of the pion and the kaon in the limit m → 0 (and ms fixed at its physical
value). But we consider T -matrix models fitting experimental data, with up and

down quarks with their physical masses. The limit m → 0 sets the ππ-threshold
to zero,4 changes ππ phase shifts near the threshold and shifts slightly the KK̄

threshold. Such modifications should not alter significantly the general shape of the

spectral function. In particular, the integral of the spectral function, dominated by

the f0(980) peak, should be affected only marginally when Tm 6=0 is considered instead
of Tm→0.

5.4 Second sum rule: s1 ≤ s ≤ s0
The contribution of the integral below s1 is positive and dominated by the f0(980)

peak. But according to section 5.2, Π is superconvergent, and the integral of the spec-

tral function from 0 to infinity vanishes. ImΠ(s) should therefore become negative

in some range of energy. In particular, negative peaks should rather naturally appear

in the spectral function, in relation with massive scalar resonances like f0(1370) and

f0(1500) [8].

Let us suppose that the spectral function is negative for s1 ≤ s ≤ s0.5 The
contribution from the intermediate region in eq. (5.2) can be estimated from:

1

s0
J ′ ≤ −1

π

∫ s0
s1
ds ImΠ(s)

1

s

(
1− s
s0

)
≤ 1
s1
J ′ , (5.23)

where J ′ is the integral:

J ′ = 1
π

∫ s0
s1
ds ImΠ(s)

(
1− s
s0

)
, (5.24)

4For m→ 0, the cut along the real axis starts at s = 0. However, the integral
∫ s0
0
ds (1− s/s0) ·

ImΠ(s)/s is convergent, since for s→ 0: F1(s)→ F1(0) and G1(s) ∼ G′1(0) · s, leading to:

ImΠ(s) ∼ 3

32π

mms

M2
πM

2
K

F1(0)G
′
1(0) · s . (5.22)

5If the spectral function is partially positive in this range, our hypothesis will end up with an

estimate for the second integral that will be smaller than its actual value. In that case, we would

underestimate the difference X(2)−X(3).
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which satisfies the sum rule:

1

π

∫ s1
0
ds ImΠ(s)

(
1− s
s0

)
+ J ′ + 1

2iπ

∫
|s|=s0

dsΠ(s)
(
1− s
s0

)
= 0 . (5.25)

The first integral in eq. (5.25) can be computed from the spectral function ob-

tained in the previous section:

1

π

∫ s1
0
ds ImΠ(s)

(
1− s
s0

)
= γπλKI ′AB + γKλK

M2K
M2π
I ′BB , (5.26)

with I ′XY =M
(0)
XY −M

(1)
XY /s0 involving the moments eqs. (5.20)–(5.21).

The contribution from the complex circle (third integral in eq. (5.25)) can be

estimated through Operator Product Expansion (OPE), using the method described

in the following section:

1

2iπ

∫
|s|=s0

dsΠ(s)
(
1− s
s0

)
= 9[1− 2ζ(3)] F

2
π

M2K
X(2)m2s(s0)a

2(s0)×

×
{
1 +
β0γ

2
a(s0) +

+

[
β1γ

2
− γ(γ + 1)

8

(
π2

3
− 2

)
β20

]
a2(s0)

}
+ · · ·

= 9[1− 2ζ(3)] F
2
π

M2K
X(2)m2s(s0)a

2(s0)×

× [1 + 6.5 · a(s0)− 25.125 · a2(s0)] . (5.27)

5.5 High-energy contribution: |s| = s0
We want the contribution of the integral on the large circle:

K = 1

2iπ

∫
|s|=s0

dsΠ(s)
1

s

(
1− s
s0

)
=
1

2π

∫ π
−π
dθ (1 + eiθ) Π(p2 = −s0eiθ) . (5.28)

The factor (1−s/s0) suppresses the contribution stemming from the time-like region
around s0, so that we can use in this integral the Operator Product Expansion of

Π [34]. Once Renormalization Group Improvement is applied to eq. (5.8), the QCD

renormalization group invariant m〈ūu〉 gets the coefficient:

a2(P 2)m2s(P
2) = a2(s0)m

2
s(s0)×

[
a(P 2)

a(s0)

]8/b0+2
, (5.29)

with a(s) = αs(s)/π and b0 = 11− 2Nf/3 = 9. The integral eq. (5.28) becomes:

K = 9[1− 2ζ(3)]
2π

F 2π
M2K
X(2)

m2s(s0)

s0
[a(s0)]

−8/b0
∫ π
−π
ds (1 + e−iθ) aγ(s0eiθ) , (5.30)
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with γ = 2 + 8/b0 = 2 + 8/9. To compute this integral, we expand a(P
2 = s0e

iθ) in

powers of a(s0). The behavior of a(t) (t complex) depends on the β function:

t
d

dt
a(t) =

1

2π
β[a(t)],

1

π
β[a(t)] = −β0a2 − β1a3 + · · · ,

β0 =
33− 2Nf
6

=
9

2
, β1 =

306− 38Nf
24

= 8 . (5.31)

The expansion of a(s0e
iθ) is:

a(s0e
iθ) = a(s0)−

i

2
β0θa

2(s0) +
[
i

2
β1θ −

1

4
θβ20θ

2
]
a3(s0) +O(a

4) . (5.32)

We get:

K = 9[1− 2ζ(3)] F
2
π

M2K
X(2)

m2s(s0)

s0
a2(s0)×

×
{
1− β0γ

2
a(s0)−

[
β1γ

2
+
γ(γ + 1)

8

(
π2

3
− 2

)
β20

]
a2(s0)

}
+ · · ·

= 9[1− 2ζ(3)] F
2
π

M2K
X(2)

m2s(s0)

s0
a2(s0)[1− 6.5 · a(s0) + 48.236 · a2(s0)] . (5.33)

This negative contribution is strongly suppressed by α2s and m
2
s/s0. We have consid-

ered here ms ∼ 200MeV, but the contribution of this integral is so small that the
error due to ms and αs can be neglected. Notice that duality is not supposed to arise

in the scalar sector for as low energies as in other channels, due to a probably large

contribution from the direct instantons in this sector [35].

6. Results

6.1 Logarithmic derivatives of pseudoscalar masses

The logarithmic derivatives of the masses are obtained from the expansions of F 2P
and F 2PM

2
P :

λP =
ms

M2P

(
∂M2P
∂ms

)
m=0

=
ms

M2P

∂M̄2P
∂ms

, γP =
m

M2P

(
∂M2P
∂m

)
m=0

. (6.1)

The corresponding expressions are given in appendix C.1. We have λπ = 0 since it

is proportional to the derivative of M2π with respect to ms in the limit m→ 0.
We would obtain at the one-loop order in the Standard framework:

γπ ∼ 1 , γK ∼
M2π
2M2K

= 0.04 , γη ∼
M2π
3M2η

= 0.02 , (6.2)

λK ∼ 1−
M2π
2M2K

= 0.96 , λη ∼
4M2K
3M2η

= 1.09 . (6.3)
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r = 20 r = 25 r = 30

X(3) γπ γK γη γπ γK γη γπ γK γη

0. 0.876 0.090 0.081 0.930 0.078 0.068 0.958 0.070 0.059

0.3 0.920 0.082 0.071 0.970 0.069 0.058 0.995 0.060 0.049

0.5 0.946 0.074 0.062 0.992 0.060 0.048 1.015 0.051 0.038

0.7 0.967 0.064 0.052 1.009 0.050 0.036 1.029 0.039 0.025

0.8 0.975 0.059 0.046 1.016 0.044 0.030 1.034 0.033 0.019

0.9 - - - 1.021 0.038 0.024 1.038 0.027 0.013

0. 0.892 0.080 0.072 0.943 0.070 0.060 0.970 0.063 0.053

0.3 0.941 0.072 0.062 0.990 0.061 0.050 1.011 0.053 0.041

0.5 0.965 0.063 0.051 1.009 0.051 0.038 1.029 0.042 0.029

0.7 0.980 0.052 0.039 1.020 0.038 0.025 1.037 0.029 0.015

0.8 0.983 0.046 0.032 1.022 0.032 0.018 1.037 0.022 0.009

Table 3: Logarithmic derivatives with respect to m: γπ, γK and γη, as functions of X(3)

and r, for F0 = 85MeV (upper part) and F0 = 75MeV (lower part).

r = 20 r = 25 r = 30

X(3) λK λη λK λη λK λη

0. 1.438 1.398 1.455 1.416 1.467 1.428

0.3 1.391 1.346 1.383 1.339 1.366 1.321

0.5 1.326 1.276 1.284 1.231 1.226 1.169

0.7 1.236 1.179 1.148 1.086 1.041 0.975

0.8 1.183 1.123 1.070 1.005 0.938 0.871

0.9 - - 0.986 0.921 0.833 0.768

0. 1.341 1.310 1.354 1.323 1.362 1.332

0.3 1.302 1.263 1.287 1.247 1.261 1.220

0.5 1.224 1.177 1.163 1.111 1.086 1.029

0.7 1.109 1.053 0.991 0.931 0.858 0.796

0.8 1.041 0.982 0.894 0.834 0.739 0.681

Table 4: Logarithmic derivatives with respect to ms: λK and λη, as functions of r and

X(3), for F0 = 85MeV (upper part) and F0 = 75MeV (lower part).

The logarithmic derivatives differ from these values because of the terms quadratic

in the quark masses in the expansions of F 2PM
2
P . The tables 3 and 4 collect values

of these derivatives for r = 20, 25, 30, and F0 = 75MeV and 85MeV. We note that

the values for F0 = 85MeV, r = 25, X(3) ∼ 0.8 are in correct agreement with the
Standard tree-level estimates eqs. (6.2)–(6.3).

We can notice that γπ remains close to 1 if we change F0, r and X(3). γπ
involves the linear m-dependence of the pion mass, which can be written as: F 2πM

2
π =

2mΣ(2) +O(m2). Therefore, γπ is related to the two-flavor quark condensate Σ(2),
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which is very weakly dependent on the values of F0 and X(3) (it is affected by the

value of r, but our tables show only large values of r where X(2) does not strongly

vary). On the other hand, γK and γη are rather sensitive to X(3). These two

logarithmic derivatives are 1/r-suppressed when the three-flavor quark condensate

is large. If X(3) decreases, these 2 quantities feel strongly the presence of large

higher-order contributions.

λK and λη increase from 1 to 1.4 when X(3) decreases down to 0. If X(3)

vanishes, the pseudoscalar masses are dominated by terms quadratic in ms. In that

case, we would naively expect logarithmic derivatives to be twice as large as for

X(3) ∼ 1. To understand this discrepancy, it is useful to consider the second kind
of logarithmic derivatives arising in eq. (5.2):

λ̄P =
ms

M̄2P

∂M̄2P
∂ms

=
M2P
M̄2P
λP , P = K, η (6.4)

λP and λ̄P are related, but the first is suppressed with respect to the latter by a

factor M̄2P/M
2
P . For instance, in the limit of a vanishing three-flavor condensate, the

expansion of F̄ 2P M̄
2
P begins with terms quadratic in ms, so that λ̄P is of order 2,

whereas λP = λ̄P · M̄2P/M2P is suppressed, and reaches lower values around 1.4–1.5.
To obtain the values of tables 3 and 4, we had to neglect the remainders of

higher order εP and δP . It is difficult to estimate the size of the resulting errors for

the logarithmic derivatives γP and λP . Suppose for instance that εP/F
2
P and δP/M

2
P

are smaller than 10 %. To know the impact on γP and λP , we would have to calculate

the values of the derivatives of εP and δP with respect to m and ms. If we know

only the size of εP/F
2
P and δP/M

2
P , it is hard to get any information about their

derivatives, and to estimate the resulting errors on the logarithmic derivatives of the

pseudoscalar masses.

6.2 Estimate of X(3) and of LEC’s

Hence, two different estimates ofX(2)−X(3) are available: the first one is the relation
between X(2) and X(3) (eq. (2.17)), the second one consists of the relation between

X(2)−X(3) and Π(0) (eq. (5.2)) and the sum rule for Π(0) (eq. (5.3)). In both cases,
the difference X(2) − X(3) can be expressed as a function of the observables and
of F0, r, X(3). This overdertermination can be viewed as a constraint fixing X(3) in

terms of r and F0, see figures 7 and 8.

This analysis contains 3 sources of errors.

(i) First, we have neglected NNLO remainders in the expansions of pseudoscalar

masses and decay constants. Their effect is easy to control in the relations

between X(2) and X(3) (eq. (2.17)) or F (2) and F (3) (eq. (3.15)), but the sit-

uation gets more complicated for the sum rule eq. (5.2) and for the logarithmic

derivatives λP and γP . In the framework of Standard χPT, the authors of ref. [6]
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Figure 7: Sum rule: range for X(3) as a function of r = ms/m for F0 = 85MeV, with the

T -matrix models of refs. [31] (up) and [32] (down). The results are plotted for s1 = 1.2GeV

and s0 = 1.5GeV (solid lines), 1.6GeV (dashed lines) and 1.7GeV (dotted lines). The lines

with white circles show the corresponding range for X(2).

noticed that the dependence on ms of Σ(2) is not really affected by two-loop

effects. In addition, these effects have the same sign as one-loop contributions:

if they were significant, they would increase (and not decrease) the gap between

X(2) and X(3). A similar conclusion was drawn in ref. [18]. The NNLO re-

mainders are supposed here to be small, and they are not included in the results.

(ii) The evaluation of the sum rule eq. (5.3) relies on an estimate of the integral

between s1 and s0. If we choose a couple (F0, r), we will not end up with one

value for X(3), but rather a range of acceptable values that will also depend
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Figure 8: Sum rule: range for X(3) as a function of r = ms/m for F0 = 85MeV, with the

T -matrix models of ref. [33]. The results are plotted for s1 = 1.2GeV and s0 = 1.5GeV

(solid lines), 1.6GeV (dashed lines) and 1.7GeV (dotted lines). The lines with white circles

show the corresponding range for X(2).

on the separators s1 < s0. On the figures 7 and 8, the upper bound for X(3)

remains stable for
√
s0 > 1.5GeV, whereas the lower bound depends strongly

on s0. When s0 increases, the lower bound of eq. (5.23) is too loose to be

saturated. A more stringent lower bound would be welcome.

(iii) The third source of error is the T -matrix used to build the spectral func-

tion eq. (5.17) for s < s1. Three different models of T -matrix have been

used [32, 33, 31]. The central element is the shape of the f0(980) peak. Ref. [31]

leads to the least pronounced effect. The two other models [32, 33] lead to a

higher f0(980) peak, a larger value for Π(0), and a smaller value for X(3).

The range for X(3) is much narrower for large values of r, and can be even

reduced to one value in the case of ref. [31]. This range should be broadened if we

took into account the errors related to higher orders in the expansion of pseudoscalar

masses and decay constants. The value of F0 has no major influence on the constraint

for [X(3), r]. For instance, choosing F0 = 75MeV would slightly shift the curves

for X(3) towards the left of the graphs (r → r − 2). Similarly, a change of √s1
around 1.2GeV does not affect strongly the results. If we choose

√
s1 = 1.3GeV, the

convergence of the upper bound is slightly less good, but its values remain very close

to figures 7 and 8. We should add a last comment for r ∼ 25 (commonly used in the
Standard framework): the values of X(3) correspond then to the half of X(2). We

end up with a similar result to the one obtained in refs. [17, 18], but without relying

on the hypothesis X(3) ∼ 1.
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Figure 9: Sum rule: low-energy constants Li=4,...,8(Mρ) ·103 as functions of r = ms/m for
F0 = 85MeV, s1 = 1.2GeV and s0 = 1.6GeV, with the T -matrix models of refs. [31] (up)

and [32] (down). The values plotted on the left, along the vertical axis, are the Standard

estimates stemming from ref. [3].

The results of the sum rule for X(3) can be converted into bounds for Li=4,...,8,

plotted on figures 9 and 10 as functions of r, for
√
s1 = 1.2GeV,

√
s0 = 1.6GeV, and

F0 = 85MeV. For small r, the LEC’s reach very large values: their definition from

the low-energy behavior of QCD correlators includes 1/B0 factors that make them

diverge when X(3)→ 0. We notice also the large values of L5, L7 and L8 for r ∼ 25,
because the sum rule pushes L6(Mρ) towards slightly positive values. The value of

L4 is not predicted by the sum rule: it depends essentially on the value fixed for F0.

For instance, choosing F0 = 75MeV would yield a slightly positive value for L4 as r

becomes large.
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Figure 10: Sum rule: low-energy constants Li=4,...,8(Mρ) · 103 as functions of r = ms/m

for F0 = 85MeV, s1 = 1.2GeV and s0 = 1.6GeV, with the T -matrix models of refs. [33].

The values plotted on the left, along the vertical axis, are the Standard estimates stemming

from ref. [3].

We have plotted on the left side of figures 9 and 10 the values of the LEC’s of

ref. [3], which were derived assuming that X(3) is of order 1 and L4(Mη) = L6(Mη) =

0. Let us remind that the values obtained for L5, L7, and L8 are strongly dependent

on these assumptions. The values of the LEC’s of ref. [3] hardly agree with the ones

obtained from the sum rule, because the latter leads to positive values of L6(Mρ)

and to a small three-flavor condensate.

6.3 Slope of the strange scalar form factor of the pion

Additional information about the decay constants is provided by the scalar form

factors through a low-energy theorem. Consider the correlator:

Dijµν(p, q) = limm→0

∫ ∫
ei(p·x−q·y)〈0|T{Aiµ(x) Ajν(0) s̄s(y)|0〉(c) , (6.5)

where i, j = 1, . . . , 3, and (c) denotes the connected part of (AiµA
j
ν)(s̄s). The Ward

identities pµDijµν = r
νDijµν = 0 (with r = q − p) yield the Lorentz decomposition:

Dijµν = msδij
{
K[r2pµpν − (p · r)pµrν + p2rµrν − p2r2gµν ] +

+ L[rµpν − (p · r)gµν ]
}
, (6.6)

where K and L are scalar functions of p2, q2 and r2.

On the one hand, we have:

Dijµν(p, 0) =
∂

∂ms

[
i
∫
d4xeip·x〈0|T{Aiµ(x) Ajν(0)}|0〉

]
. (6.7)
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The correlator AiµA
j
ν admits the following decomposition:

i
∫
d4xeip·x〈0|T{Aiµ(x) Ajν(0)}|0〉 = δij [pµpν − p2gµν ]Φ(p2) . (6.8)

Φ(p2) contains a pole at p2 = 0 stemming from one-pion states:

Φ(p2) = −F
2(2)

p2
+ · · · , (6.9)

where the dots denote contributions from the other states. We have therefore:

Dijµν(p, 0) = −δij [pµpν − gµνp2]
{
1

p2
∂F 2(2)

∂ms
+ · · ·

}
. (6.10)

On the other hand, T ijµν is dominated at low energy by the exchange of two pions

between s̄s and each of the axial currents:

Dijµν = 2δ
ijF 2(2)G1(q

2)
pµrν

p2r2(p · r) + · · · , (6.11)

which contributes to K:

K(p2, q2, r2) = −2F 2(2) G1(q
2)

p2r2(p · r) + · · · , (6.12)

whereas L(p2, q2, r2) receives no contribution. We compare eqs. (6.10) and (6.12) for

p, q → 0 to obtain:

∂F 2(2)

∂ms
= 2F 2(2) lim

q2→0
G1(q

2)

q2
ms
F (2)

∂F (2)

∂ms
= msG

′
1(0) . (6.13)

This low-energy theorem [17, 18, 26] provides a relation between the logarithmic

derivative of F (2) with respect to ms, and the slope of the strange scalar form factor

of the pion for a vanishing momentum.

We can now exploit the solutions of Omnès-Muskhelishvili equations. According

to eq. (5.15), we get for the slope of the form factor:

msG
′
1(0) = msG2(0)B

′
1(0) = ms

∂M̄2K
∂ms

B′1(0) = λKM
2
KB

′
1(0) . (6.14)

B′1(0) is computed by taking the derivative of eq. (5.14) with respect to s at 0:

B′1(0) =
1

π

2∑
j=1

∫ ∞
4M2π

ds′
1

s′2
T ∗1j(s

′)

√
s′ − 4M2j
s′

θ(s′ − 4M2j )Bj(s′) . (6.15)

The numerical resolution of Omnès-Muskhelishvili equations eq. (5.14) yields the

values of ~B(s) at the points of integration used for the Gauss-Legendre quadra-

ture [17]. Hence, we can compute directly the integral eq. (6.15) by the same inte-

gration method.
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Figure 11: Sum rule and slope of the strange form factor of the pion: range for X(3) as

a function of r = ms/m with the T -matrix models of refs. [31] (up) and [32] (down). The

results are plotted for s1 = 1.2GeV and s0 = 1.5GeV (solid lines), 1.6GeV (dashed lines)

and 1.7GeV (dotted lines). The lines with white circles show the corresponding range

for X(2).

On the other hand, eq. (3.1) leads to:

ms

2F 2(2)

∂F 2(2)

∂ms
=
1

F̄ 2π

[
msξ̃ −

rX(3)

64π2
F 2πM

2
π

F 20

(
log
M̄2K
M2K
+
M2K
M̄2K
λK

)]
. (6.16)

We see that eq. (6.13) is an additional constraint, different from the sum rule

eq. (5.3). From the analysis of the pseudoscalar spectrum, we have concluded that

all the quantities could be expressed (at the NLO) as functions of masses, decay

constants, and 3 parameters F0, r, X(3). The sum rule was a first constraint, fixing
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Figure 12: Sum rule and slope of the strange form factor of the pion: range for X(3) as

a function of r = ms/m with the T -matrix models of ref. [33]. The results are plotted for

s1 = 1.2GeV and s0 = 1.5GeV (solid lines), 1.6 GeV (dashed lines) and 1.7GeV (dotted

lines). The lines with white circles show the corresponding range for X(2).

a range for X(3) depending on r and F0 ≡ F (3). If we exploit the second constraint
eq. (6.13), we can obtain ranges for X(3) and F (3) as functions of r, plotted respec-

tively in figures 11–12 and figures 13–14. These results can also be converted into

values for the low-energy constants (see figures 15 and 16).

The values of X(3) are close to the ones obtained by the only application of

the sum rule eq. (5.3). The results obtained then for X(3) were not very sensitive

to the valued chosen for F0. We see also that the slope of the strange scalar form

factor of the pion leads to rather small values for F (3) ≡ F0 (around 70MeV) for
r ∼ 25. This result is in agreement with the small positive values obtained for
L4(Mρ). This increase of L4 (with respect to the previous analysis) comes with

a decrease of L5. In ref. [26], the analysis of the same form factor led to dF =

ms/F (2) · ∂ logF (2)/∂ms = 0.09. In the framework of Standard χPT, such a value
corresponds to L4(Mρ) ' 0.4 ·10−3, i.e. F (3) of order 75MeV. This question has also
been discussed in refs. [17, 18, 27].

However, these two constraints do not demand the same accuracy for the scalar

form factors. The sum rule involves the integral of the spectral function ImΠ up to

1.2GeV, which is dominated by the f0(980) peak. The global shape of the spectral

function (and more precisely around 1GeV) is the crucial element. For the low-energy

theorem, we are interested in the slope of a form factor at zero, i.e. low-energy details.

The resulting constraint may be less stable than the sum rule. It seemed therefore

preferable to split the analysis in two parts: the first one dealing only with the sum

rule, the second one exploiting both constraints at the same time.
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Figure 13: Sum rule and slope of the strange form factor of the pion: ranges for [F (3)/Fπ ]
2

(no symbol) and [F (2)/Fπ ]
2 (white circles) as functions of r = ms/m with the T -matrix

models of refs. [31] (up) and [32] (down). The results are plotted for s1 = 1.2GeV and

s0 = 1.5GeV (solid lines), 1.6 GeV (dashed lines) and 1.7GeV (dotted lines).

6.4 Scalar radius of the pion

The scalar radius of the pion 〈r2〉πs can also be obtained from the scalar form factors
of the pion, considered out of the chiral limit (i.e. with the physical masses ms and

m = (mu +md)/2):

F1(s) = F1(0)
[
1 +
1

6
〈r2〉πs s+ cπs2 + · · ·

]
, (6.17)

If we project ~F on the two solutions ~A and ~B, we obtain:

〈r2〉πs = 6
F ′1(0)
F1(0)

= 6

[
A′1(0) +

M2K
M2π

γ̃K

γ̃π
B′1(0)

]
, (6.18)
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Figure 14: Sum rule and slope of the strange form factor of the pion: ranges for [F (3)/Fπ ]
2

(no symbol) and [F (2)/Fπ ]
2 (white circles) as functions of r = ms/m with the T -matrix

model of refs. [33]. The results are plotted for s1 = 1.2GeV and s0 = 1.5GeV (solid lines),

1.6 GeV (dashed lines) and 1.7GeV (dotted lines).

where a third kind of logarithmic derivatives is involved (considered out of the chiral

limit): γ̃P = ∂[logM
2
P ]/∂[logm]. Appendix C.2 collects their expressions in terms of

the low-energy constants.

We are interested in a quantity describing the non-strange pion form factor

around the threshold. It should be possible to neglect the KK̄ channel with no

major change in the results. This point of view is supported by a numerical estimate:

B′1(0)/A
′
1(0) ∼ 0.1 and (M2K/M2π)× (γ̃K/γ̃π) ∼ 1/2. If we restricted our analysis to

the ππ channel, only the first term (the solution ~A) would appear on the right side

of eq. (6.18). The scalar radius of the pion would be independent of r, X(3) and F0
in that case. Actually, the second term on the right side of eq. (6.18), related to the

KK̄ channel, is responsible for a weak dependence of 〈r2〉πs on r, X(3), F0. We can
use the previous results, where X(3) and F0 are functions of r, in order to study the

range of variation for the pion scalar radius:

0.537 – 0.588 fm2 Oller-Oset-Pelaez ref. [31],

0.567 – 0.630 fm2 Au-Morgan-Pennington ref. [32],

0.592 – 0.650 fm2 Kaminski-Lesniak-Maillet ref. [33],

to be compared to the estimates: 0.6 ± 0.2 fm2 [37], 0.55 ± 0.15 fm2 [1], 0.55 to
0.61 fm2 [30], 0.57 to 0.61 fm2 [38] and 0.61±0.04 fm2 [39]. Notice that the matching
of Roy equations with Standard χPT [39] relies strongly on the value of the scalar

radius of the pion.
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Figure 15: Sum rule and slope of the strange form factor of the pion: low-energy constants

Li=4,...,8(Mρ) · 103 as functions of r = ms/m for F0 = 85MeV, s1 = 1.2GeV and s0 =

1.6GeV, with the T -matrix models of refs. [31] (up) and [32] (down). The values plotted

on the left, along the vertical axis, are the Standard estimates stemming from ref. [3].

Information about the scalar radius of the pion could be seen as an additional

constraint on our system, since 〈r2〉πs is related to 2L4+L5. The situation is similar to
dF : this kind of constraint could rather easily be affected by higher-order corrections.

We are also obliged to consider it out of the chiral limit m → 0. It seems therefore
wiser not to use this constraint, until a new analysis would treat less crudely NNLO

remainders.

7. Conclusions

The LEC’s of the effective chiral lagrangian should be determined as accurately as

possible in order to know and understand the pattern of SBχS. These constants
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Figure 16: Sum rule and slope of the strange form factor of the pion: low-energy constants

Li=4,...,8(Mρ) · 103 as functions of r = ms/m for F0 = 85MeV, s1 = 1.2GeV and s0 =

1.6GeV, with the T -matrix model of ref. [33]. The values plotted on the left, along the

vertical axis, are the Standard estimates stemming from ref. [3].

have generally been estimated from the expansion of Goldstone boson observables

in powers of quark masses, supposing (1) a dominance of the quark condensate and

(2) an agreement with the large-Nc picture of QCD. But such determinations of the

LEC’s could be modified if quantum fluctuations turned out to be significant. A

symptom of large quantum fluctuations could be seen in the large violation of the

Zweig rule in the scalar channel and in large variations of chiral order parameters

(e.g. the quark condensate) from Nf = 2 to Nf = 3.

First we have studied how the relaxation of the Standard assumptions (1) and (2)

could affect the determination of the LEC’s. To reach this goal, we have studied the

expansion in quark masses of the Goldstone boson masses and decay constants. We

have truncated these expansions to keep the first two powers in quark masses and we

have supposed that higher-order remainders (O(m3quark) for F
2
PM

2
P and O(m

2
quark) for

F 2P ) are small. These expansions can be written using “effective” scale-independent

constants that combine chiral logarithms and LEC’s. F 2PM
2
P involves Σ(3), F

2(3)

and constants related to L6, L7 and L8, whereas F
2
P is expressed in terms of F

2(3)

and constants corresponding to L4 and L5.

We have not considered these expansions in one-loop Standard χPT, since the

three-flavor quark condensate Σ(3) is not supposed to dominate the expansion of

pseudoscalar masses. We have not worked either in tree-level Generalized χPT, since

we have included chiral logarithms. These relations between LEC’s and experimental

quantities (masses and decay constants) can be inverted to express Li=4,...,8 (and

therefore X(2) and F (2)) as functions of F (3), r = ms/m and X(3). We have
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then studied a possible competition between the first two orders of the quark mass

expansions, by admitting large values for the ZR violating constants L4 and L6 (larger

than the expected values on the basis of large-Nc arguments).

The variation of the Gell-Mann–Oakes–Renner ratioX from Nf = 2 to Nf = 3 is

governed by L6. The equality X(2) = X(3) (saturation of the paramagnetic bound)

is realized for L6(Mρ) = −0.21 · 10−3. A three-flavor GOR ratio X(3) much smaller
than 1 could be obtained for two different reasons. On the one hand, the ratio of

quark masses r may be smaller than 25 (r < 20), which leads to small values of X(2),

and then of X(3) (due to the paramagnetic inequality X(2) ≥ X(3)). On the other
hand, L6(Mρ) may be larger than the value −0.26 ·10−3 saturating the paramagnetic
bound for X. A slight shift of L6(Mρ) towards positive values leads to a significant

decrease of X(3), whereas X(2) remains almost constant and unsuppressed. X(2)

could thus be of order 1 and X(3) much smaller than 1, provided that r is large

(r ∼ 25) and the Zweig rule is strongly violated for the correlator defining L6.
A similar analysis has been performed for the decay constants. L4 tunes the

difference between F 2(2) and F 2(3): the equality is obtained for L4(Mρ) = −0.37 ·
10−3. If L4(Mρ) is heading for positive values, F 2(2) and F 2(3) split swiftly. For
r = 25, the saturation of both paramagnetic inequalities (for F 2 and X) yields

X(2) = X(3) = 0.9 and F (2) = F (3) = 87MeV. This “ultra-Standard” scenario

corresponds to the minimal values of L4 and L6 (no ZR violation). A slight drift

towards positives values could lead to very different chiral structures of the vacuum

for Nf = 2 and Nf = 3, corresponding to a significant role of quantum fluctuations

in SBχS.

The pseudoscalar spectrum (masses and decay constants) by itself does not con-

tain enough information to pin down the size of these fluctuations. This effect can

however be estimated from experimental data in the scalar channel, through a sum

rule. The difference between X(2) and X(3) is related to the correlator Π of two

scalar densities ūu and s̄s at vanishing momentum. Π(0) can be expressed in terms

of a sum rule made of three distinct integrals. (i) We compute the first one, involving

the spectral function ImΠ up to energies around 1.2GeV, by solving coupled Omnès-

Muskhelishvili equations for the scalar form factors of the pion and the kaon. The

solutions depend on the T -matrix model used to describe the interactions between

ππ- and K̄K-channels, and on a normalization of the form factors related to the

derivatives of Mπ and MK with respect to m and ms. (ii) The second integral cor-

responds to the contribution of the spectral function ImΠ between 1.2 and 1.6GeV,

where we cannot trust the two-channel approximation anymore. A second sum rule

is used to estimate roughly this integral. (iii) The third integral is performed on a

large complex circle, with a large enough radius to rely on the Operator Product

Expansion (OPE) of Π.

The most significant contribution stems from the first integral: the f0(980)-peak

leads to a large value for Π(0), and therefore to an important splitting between X(2)
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and X(3). If we fix X(3), r and F (3), we know X(2) and the LEC’s Li=4,...,8, using

our previous analysis of the pseudoscalar spectrum. The derivatives of Mπ and MK
with respect to m and ms can then be directly computed, since they involve X(3), r,

F (3) and LEC’s. The sum rule eq. (5.3) can therefore be seen as a constraint, giving

X(3) as a function of r and F (3). Several sources of errors could affect this sum rule:

the higher-order remainders in the expansions of F 2PM
2
P and F

2
P , the rough estimate

of the integral in the intermediate energy range, the T -matrix model. The three

models considered here support nevertheless a large decrease of X(3) with respect to

X(2), corresponding to positive values of L6(Mρ). The size of the splitting between

the quark condensates depends on the height of the f0(980) peak in the spectral

function. In the particular case of “Standard” inputs r ∼ 25, F0 = 85MeV, the
results of ref. [17] are confirmed: X(3) can hardly reach more than one half of X(2)

for the three considered models.6

The scalar form factors of the pion and the kaon can be exploited in several

different ways. For instance, L4 (i.e. F (3)) is related to the slope of the scalar form

factor of the pion at zero. This second constraint may be used to fix X(3) and

F0 as functions of r. If the conclusions for X(3) remain unchanged, positive values

of L4(Mρ) are obtained, leading to a significant decrease from F (2) to F (3) (20 to

30%). The Zweig rule would be violated strongly for L4 and L6. However, this second

constraint is sensitive to fine details of a form factor (slope at zero), whereas the sum

rule depends on the general shape of the spectral function ImΠ (and especially on

the presence of a high peak corresponding to the f0(980) resonance). The scalar

radius of the pion has also been computed, in agreement with former estimates.

A large decrease of the quark condensate from 2 to 3 flavors could be understood

in terms of chiral phase transitions [13]. One of these transitions could be triggered

by a vanishing quark condensate. If the corresponding critical value ncrit(Nc) turned

out to be close to 2-3, we should expect significant variations of the quark condensate

with Nf in the vicinity of the critical point. Moreover, in terms of eigenmodes of the

Dirac operator, the quark condensate can be interpreted as a density of eigenvalues,

whereas L6 corresponds to fluctuations of this density. Near the critical point where

the first vanishes, the latter is expected to increase significantly. Let us remind

that this scenario is only a possible explanation for a large difference between X(2)

and X(3). The large value of ZR violating LEC’s might be caused by another (and

unrelated) mechanism.

Forthcoming experiments [40] on ππ scattering should pin down the value of

X(2), which is strongly correlated to r. If X(2) turned out to be close to 1, they

could also measure low-energy constants of the SU(2) × SU(2) lagrangian, l3 and
l4 [1, 41]. However, these experimental values could not be used to fix SU(3)×SU(3)

6We remind however that this result is barely consistent with the Standard hypothesis of a

three-flavor condensate dominating the description of SBχS.
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LEC’s without assumptions on the size of the ZR violating LEC’s L4 and L6 [13]. It

would be possible to constrain more tightly L6 through a more sophisticated analysis

of the sum rule including bounds on X(2) (or equivalently r). However, this remains

a very indirect determination of the three-flavor condensate. Direct experimental

tests are necessary to investigate closely the chiral structure of QCD vacuum for

three massless quarks, and to understand the role of quantum fluctuations in the

pattern of SBχS.
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A. Spectrum of pseudoscalar mesons

A.1 Decay constants

The decay constants are [1, 36]:

F 2π = F
2
0 + 2mξ + 2(2m+ms)ξ̃ +

1

16π2
F 2πM

2
π

F 20
X(3)

[
2 log

M2K
M2π
+ log

M2η
M2K

]
+ επ ,

F 2K = F
2
0 + (m+ms)ξ + 2(2m+ms)ξ̃ +

1

2

F 2πM
2
π

F 20
X(3)L+ εK , (A.1)

F 2η = F
2
0 +
2

3
(m+ 2ms)ξ + 2(2m+ms) + ξ̃ +

1

48π2
F 2πM

2
π

F 20
(2r+ 1)X(3) log

M2η
M2K
+ εη ,

with the scale-independent low-energy constants:

ξ = F 20 ξ(µ)−
B0

32π2

(
log
M2K
µ2
+ 2 log

M2η
µ2

)

= 8B0

[
L5(µ)−

1

256π2

(
log
M2K
µ2
+ 2 log

M2η
µ2

)]
,

ξ̃ = F 20 ξ̃(µ)−
B0

32π2
log
M2K
µ2

= 8B0

[
L4(µ)−

1

256π2
log
M2K
µ2

]
, (A.2)

and:

L =
1

32π2

[
3 log

M2K
M2π
+ log

M2η
M2K

]
. (A.3)
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The higher-order contributions are denoted by δ2F
2
P . The effective constants are

related to F0 through the relations:

msξ =
r

r − 1

{
F 2K − F 2π +

1

64π2
F 2πM

2
π

F 20
X(3)

[
5 log

M2K
M2π
+ 3 log

M2η
M2K

]}
+

+
r

r − 1 [επ − εK ] ,

msξ̃ =
r

2(r + 2)

{
r + 1

r − 1F
2
π −

2

r − 1F
2
K − F 20 −

− 1

32π2
F 2πM

2
π

F 20
X(3)

[
4r + 1

r − 1 log
M2K
M2π
+
2r + 1

r − 1 log
M2η
M2K

]}
+

+
r

2(r + 2)

[
2

r − 1εK −
r + 1

r − 1επ
]
. (A.4)

The decay constants fulfill the relation:

F 2η =
4

3
F 2K −

1

3
F 2π +

1

24π2
M2πF

2
π

F 20
rX(3) log

M2η
M2K
+

+
1

48π2
M2πF

2
π

F 20
X(3)

(
log
M2η
M2K
− logM

2
K

M2π

)
+ εη −

4

3
εK +

1

3
επ . (A.5)

A.2 Masses

The pseudoscalar masses are [1, 36]:

F 2πM
2
π = 2mΣ + (2mms + 4m

2)ZS + 4m2A+
F 4πM

4
π

F 40
[X(3)]2L+ F 2πδπ , (A.6)

F 2KM
2
K = (ms +m)Σ + (ms +m)(ms + 2m)Z

S + (ms +m)
2A+

+
1

4

F 4πM
4
π

F 40
(r + 1)[X(3)]2L+ F 2KδK , (A.7)

F 2ηM
2
η =

2

3
(2ms +m)Σ +

2

3
(2ms +m)(ms + 2m)Z

S +

+
4

3
(2m2s +m

2)A+
8

3
(ms −m)2ZP +

+
1

3

F 4πM
4
π

F 40
[X(3)]2L+ F 2η δη . (A.8)

with the scale-independent low-energy constants:

ZS = 2F 20Z
S
0 (µ)−

B20
32π2

{
2 log

M2K
µ2
+
4

9
log
M2η
µ2

}

= 32B20

[
L6(µ)−

1

512π2

{
log
M2K
µ2
+
2

9
log
M2η
µ2

}]
,

A = F 20A0(µ)−
B20
32π2

{
log
M2K
µ2
+
2

3
log
M2η
µ2

}
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= 16B20

[
L8(µ)−

1

512π2

{
log
M2K
µ2
+
2

3
log
M2η
µ2

}]
,

ZP = F 20Z
P
0 = 16B

2
0L7 . (A.9)

The higher-order remainders are denoted by δM2P . The low-energy constants can be

estimated using the relations:

m2sZ
S = F 2πM

2
π

r2

2(r + 2)

{
1− ε̃(r)−X(3)− F

2
πM

2
π

F 40

r[X(3)]2

r − 1 L
}
+

+
r2

2(r + 2)

[
4

r2 − 1F
2
KδK −

r + 1

r − 1F
2
πδπ

]
,

m2sA = F
2
πM

2
π

r2

4

{
ε̃(r) +

F 2πM
2
π

F 40

[X(3)]2

r − 1 L
}
+

+
r2

2(r − 1)F
2
π δπ −

r2

r2 − 1F
2
KδK ,

m2sZ
P =

r2

8

{
1

(r − 1)2
[
3F 2ηM

2
η + F

2
πM

2
π − 4F 2KM2K

]
− F 2πM2π ε̃(r)

}
−

− r2

8(r − 1)2
[
3F 2η δη +

8r

r + 1
F 2KδK + (2r − 1)F 2πδπ

]
, (A.10)

with:

ε̃(r) = 2
r̃2 − r
r2 − 1 r̃2 = 2

F 2KM
2
K

F 2πM
2
π

− 1 . (A.11)

A.3 Pseudoscalar masses for m→ 0

From the previous relations, one can derive low-energy constants from experimental

data (pseudoscalar masses, Fπ and FK) and 3 parameters: r, X(3) and F0.

Fπ, FK → Fη, msξ,msξ̃ → F̄π, F̄K , F̄η
Mπ,MK ,Mη → m2sZS, m2sA,m2sZP → M̄K , M̄η . (A.12)

In the chiral limit m→ 0, we will have to know the effective constants:

lim
m→0Xi = Xi +

∑
P

CP · log
M̄2P
M2P
. (A.13)

To compute M̄P in this expression, we take the chiral limit of the mass expansions

eqs. (A.6)–(A.8). But these expansions involve the effective constants at m = 0,

which leads to corrections containing logarithms of M̄Q/MQ:

M̄P =
∑
i

aiXi +
∑
Q

DQ · log
M̄2Q
M2Q
. (A.14)

The equations eq. (A.14) could be solved iteratively. Actually, M̄Q/MQ remains

very close to 1. The calculation is simplified (and still accurate) if we compute in
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a slightly different way M̄Q in the logarithmic piece of eq. (A.14). We start from

eq. (A.14), and we neglect the second (logarithmic) term:

M̄Q =
∑
i

aiXi . (A.15)

M̄Q is then directly computed from observables and F0, r, X(3). We put then these

values of M̄Q in the logarithmic term of eq. (A.14). We end up with values of M̄P
very close to the ones computed iteratively. These values will be used to compute

the low-energy constants in the chiral limit Xi|m=0 using eq. (A.13).

B. Operator product expansion for Π

Six integrals contribute to the Wilson coefficient of ms〈ūu〉 at the leading order in
the strong coupling constant. The corresponding Feynman diagrams are drawn on

figure 5. On each line, the left and right diagrams correspond to each other by

crossing the gluonic lines. A simple change of variables in the integrals shows that

the diagrams on the same line contribute identically to the Wilson coefficient.

We want to consider the large-p2 behavior of integrals like:

J({νi}, {mi}, p) =
∫

d4q d4k

[q2 −m21]ν1[k2 −m22]ν2
×

× 1

[(k + q)2 −m23]ν3 [(p− q)2 −m24]ν4 [(k + p)2 −m25]ν5
. (B.1)

These integrals are formally identical to the integrals arising in two-loop computa-

tions of self-energies, see figure 17.

The behavior of such integrals at large external momentum is known. The basic

idea is to follow the flow of this large external momentum through the Feynman

diagram, in order to Taylor expand correctly the propagators [24]. This procedure

p p

q (1) k (2)

k+q (3)

k+p (5)p-q (4)

Figure 17: Self-energy diagram, leading to the same kind of integrals as in the OPE of Π

at the lowest order.
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Figure 18: Subgraphs involved in the asymptotic expansion of the two-loop Feynman

integrals. The solid lines constitute the subgraphs, the dashed lines correspond to the

excluded propagators [24].

relies on the asymptotic expansion theorem [25] and can be formally expressed as:

JΓ ∼
p2→∞

∑
γ

JΓ/γ ◦ T{mi},{qi}Jγ . (B.2)

Γ denotes the whole graph, γ are subgraphs into which the large external momentum

may flow and Γ/γ is the complementary graph of γ. For each subgraph γ (see fig-

ure 18), we write the corresponding Feynman integral Jγ. We perform then a Taylor

expansion T{mi},{qi} with respect to the masses and the small momenta (external to
γ and not containing p). We combine the resulting “expanded” integral with the re-

maining graph Γ/γ and integrate over internal momenta. The asymptotic behavior

of the whole integral JΓ is obtained by considering all the possible flows γ for the

large external momentum.

We look for the leading order in 1/p2 of the Wilson coefficient. All the subraphs

do not contribute with the same power of 1/p2. In particular, the diagrams of type

5 do not appear in the Wilson coefficient of ms〈ūu〉 at the leading order in 1/p2.
Gathering all the contributions, we obtain:

Π(p2) ∼
P 2→∞

α2sm
2
s

M2πM
2
K

2

π2p2
{[5− 6ζ(3)] + [5− 6ζ(3)]− [1 + 6ζ(3)]} , (B.3)

where the bracketed terms correspond respectively to the contributions of the first,

second and third lines in figure 5. The ζ(3) terms are related to subdiagrams of

type 1 (see figure 18), corresponding to two-loop massless integrals J({νi}, {0}, p).

C. Logarithmic derivatives

C.1 Logarithmic derivatives for m→ 0
To compute the logarithmic derivatives γP and λP :

γP =
m

M2P

(
∂M2P
∂m

)
m=0

, λP =
ms

M2P

(
∂M2P
∂ms

)
m=0

, (C.1)

we use the relations:

γP =
m

F̄ 2PM
2
P

(
∂[F 2PM

2
P ]

∂m

)
m=0

− M̄
2
P

M2P
· m
F̄ 2P

(
∂F 2P
∂m

)
m=0

,

λP =
ms
F̄ 2PM

2
P

∂[F̄ 2P M̄
2
P ]

∂ms
− M̄

2
P

M2P
· ms
F̄ 2P

∂F̄ 2P
∂ms

, (C.2)

where X̄ = limm→0X.
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The logarithmic derivatives with respect to m are:

γπ =
1

F̄ 2πM
2
π

{
F 2πM

2
πX(3) +

2

r
m2sZ

S −

− 1

32π2
F 4πM

4
π

F 40
r[X(3)]2

(
log
M̄2K
M2K
+
2

9
log
M̄2η
M2η

)}
+

+
m

F̄ 2πM
2
π

(
∂[F 2π δπ]

∂m

)
m=0

,

γK

[
1− 3

64π2
F 2πM

2
π

F 20 F̄
2
K

rX(3) +
3

128π2
M4πF

4
π

F 40

1

F̄ 2KM̄
2
K

[rX(3)]2
]
+

+γη

[
− 1

32π2
F 2πM

2
π

F 20 F̄
2
K

M2η M̄
2
K

M̄2ηM
2
K

rX(3) +
5

576π2
M4πF

4
π

F 40

1

F̄ 2KM
2
K

M2η
M̄2η
[rX(3)]2

]
=

=
1

F̄ 2KM
2
K

{
F 2πM

2
π

2
X(3) +

1

r

[
3m2sZ

S + 2m2sA− M̄2K
(
msξ + 4msξ̃

)]
+

− 1

16π2
F 4πM

4
π

F 40
r[X(3)]2

[
log
M̄2K
M2K
+
1

3
log
M̄2η
M2η

]
+

+
1

64π2
F 2πM

2
π

F 20
M̄2KX(3)

[
5 log

M̄2K
M2K
+ 2 log

M̄2η
M2η

]}
+

+
m

F̄ 2KM
2
K

(
∂[F 2KδK ]

∂m

)
m=0

− M̄
2
K

M2K
· m
F̄ 2K

(
∂εK

∂m

)
m=0

,

γK

[
− 3

32π2
F 2πM

2
π

F 20 F̄
2
η

M2KM̄
2
η

M̄2KM
2
η

rX(3) +
1

24π2
F 4πM

4
π

F 40

1

F̄ 2ηM
2
η

M2K
M̄2K
[rX(3)]2

]
+

+γη

[
1 +

1

54π2
F 4πM

4
π

F 40

1

F̄ 2η M̄
2
η

[rX(3)]2
]
=

=
1

F̄ 2ηM
2
η

{
F 2πM

2
π

3
X(3)+

+
1

r

[
10

3
m2sZ

S +
16

3
m2sZ

P − M̄2η
(
2

3
msξ + 4msξ̃

)]
−

− 1

32π2
F 4πM

4
π

F 40
r[X(3)]2

[
5

3
log
M2K
M̄2K
+
10

27
log
M2η
M̄2η

]
−

− 1

32π2
F 2πM

2
π

F 20
M̄2ηX(3)

[
7 log

M̄2K
M2K
+ 2 log

M̄2η
M2η
+ 2 log

M̄2K
M̄2η

]}
+

+
m

F̄ 2ηM
2
η

(
∂[F 2η δη]

∂m

)
m=0

−
M̄2η
M2η
· m
F̄ 2η

(
∂εη

∂m

)
m=0

. (C.3)
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The logarithmic derivatives with respect to ms are:

λπ = 0 ,

λK

[
1− 3

64π2
F 2πM

2
π

F 20 F̄
2
K

rX(3) +
3

128π2
F 4πM

4
π

F 40

1

F̄ 2KM̄
2
K

[rX(3)]2
]
+

+λη

[
− 1

32π2
F 2πM

2
π

F 20 F̄
2
K

M̄2KM
2
η

M2KM̄
2
η

rX(3) +
5

576π2
F 4πM

4
π

F 40

1

F̄ 2KM
2
K

M2η
M̄2η
[rX(3)]2

]
=

=
1

F̄ 2KM
2
K

{
F 2πM

2
π

2
rX(3) + 2m2sZ

S + 2m2sA− M̄2K(msξ + 2msξ̃)−

− 1

128π2
F 4πM

4
π

F 40
[rX(3)]2

[
5 log

M̄2K
M2K
+
20

9
log
M̄2η
M2η

]
+

+
1

64π2
F 2πM

2
π

F 20
M̄2KrX(3)

[
3 log

M̄2K
M2K
+ 2 log

M̄2η
M2η

]}
+

+
ms

F̄ 2KM
2
K

(
∂[F 2KδK ]

∂ms

)
m=0

− M̄
2
K

M2K
· ms
F̄ 2K

(
∂εK

∂ms

)
m=0

,

λK

[
− 3

32π2
F 2πM

2
π

F 20 F̄
2
η

M2K
M̄2K

M̄2η
M2η
rX(3) +

1

24π2
F 4πM

4
π

F 40

1

F̄ 2ηM
2
η

M2K
M̄2K
[rX(3)]2

]
+

+λη

[
1 +

1

54π2
F 4πM

4
π

F 40

1

F̄ 2η M̄
2
η

[rX(3)]2
]
=

=
1

F̄ 2ηM
2
η

{
4F 2πM

2
π

3
rX(3)+

+
8

3

[
m2sZ

S + 2m2sA+ 2m
2
sZ
P
]
− M̄2η

(
4

3
msξ + 2msξ̃

)
−

− 1

12π2
F 4πM

4
π

F 40
[rX(3)]2

[
log
M̄2K
M2K
+
4

9
log
M̄2η
M2η

]
+

+
1

96π2
F 2πM

2
π

F 20
M̄2η rX(3)

[
5 log

M̄2K
M2K
+ 4 log

M̄2η
M2η
+ 4 log

M̄2K
M̄2η

]}
+

+
ms
F̄ 2ηM

2
η

(
∂[F 2η δη]

∂ms

)
m=0

−
M̄2η
M2η
· ms
F̄ 2η

(
∂εη
∂ms

)
m=0

. (C.4)

C.2 Logarithmic derivatives for m 6= 0

The same method can be used to compute the logarithmic derivatives involved in

the scalar radius of the pion:

γ̃P =
m

M2P

∂M2P
∂m
. (C.5)
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We obtain:

γ̃π =
1

F 2πM
2
π

{
F 2πM

2
πX(3) +

2

r2

[
(r + 4)m2sZ

S + 4m2sA
]
− 2M

2
π

r
[msξ + 2msξ̃]

}
+

+
F 2πM

2
π

F 40

[X(3)]2

32π2

[
6 log

M2K
M2π
+ 2 log

M2η
M2K
− 3γ̃π − (r + 1)γ̃K −

1

9
(2r + 1)γ̃η

]
−

−M
2
π

F 20

X(3)

32π2

[
4 log

M2K
M2π
+ 2 log

M2η
M2K
− 4γ̃π − (r + 1)γ̃K

]
+

+
m

F 2πM
2
π

∂[F 2π δπ]

∂m
− m
F 2π

∂επ

∂m
,

γ̃K =
1

F 2KM
2
K

{
F 2πM

2
π

2
X(3) +

3r + 4

r2
m2sZ

S +
2(r + 1)

r2
m2sA−

M2K
r
[msξ + 4msξ̃]

}
+

+
F 4πM

4
π

F 40F
2
KM

2
K

[X(3)]2

128π2

[
3(r + 2) log

M2K
M2π
+ (r + 2) log

M2η
M2K
−

− 3γ̃π − 3(r + 1)2γ̃K −
5

9
(2r + 1)(r + 1)γ̃η

]
−

−F
2
πM

2
π

F 2KF
2
0

X(3)

64π2

[
3 log

M2K
M2π
+ log

M2η
M2K
− 3γ̃π − 3(r + 1)γ̃K − (2r + 1)γ̃η

]
+

+
m

F 2KM
2
K

∂[F 2KδK ]

∂m
− m
F 2K

∂εK

∂m
,

γ̃η =
1

F 2ηM
2
η

{
F 2πM

2
π

3
X(3) +

2(4 + 5r)

3r2
m2sZ

S +
8

3r2
m2sA−

− 16(r − 1)
3r2

m2sZ
P −
M2η
r

[
2

3
msξ + 4msξ̃

]}
+

+
F 4πM

4
π

F 40F
2
ηM

2
η

[X(3)]2

128π2

[
8 log

M2K
M2π
+
8

3
log
M2η
M2K
− 4γ̃π −

− 4
3
(4r + 1)(r + 1)γ̃K −

4

27
(16r2 + 10r + 1)γ̃η

]
−

−F
2
πM

2
π

F 2ηF
2
0

X(3)

64π2

[
4

3
log
M2η
M2K
− 6(r + 1)γ̃K

]
+

+
m

F 2ηM
2
η

∂[F 2η δη]

∂m
− m
F 2η

∂εη

∂m
. (C.6)

This linear system of three equations and three variables is easily solved to

compute γ̃π and γ̃K as functions of F0, r and X(3).

48



J
H
E
P
0
3
(
2
0
0
1
)
0
0
2

References

[1] J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Ann. Phys. (NY)

158 (1984) 142; Chiral perturbation theory: expansions in the mass of the strange

quark, Nucl. Phys. B 250 (1985) 465.

[2] The second DAΦNE physics handbook, L. Maiani, G. Pancheri and N. Paver eds.,

INFN, Frascati, Italy 1995.

[3] J. Bijnens, G. Ecker and J. Gasser, Chiral perturbation theory, hep-ph/9411232.

[4] G. Ecker, J. Gasser, A. Pich and E. de Rafael, The role of resonances in chiral per-

turbation theory, Nucl. Phys. B 321 (1989) 311.

[5] M. Knecht and E. de Rafael, Patterns of spontaneous chiral symmetry breaking in the

large-Nc limit of QCD-like theories, Phys. Lett. B 424 (1998) 335 [hep-ph/9712457];

S. Peris, M. Perrottet and E. de Rafael, Matching long and short distances in large-Nc
QCD, J. High Energy Phys. 05 (1998) 011 [hep-ph/9805442];

M.F. L. Golterman and S. Peris, The 7/11 rule: an estimate of mρ/fπ, Phys. Rev. D

61 (2000) 034018 [hep-ph/9908252].

[6] G. Amoros, J. Bijnens and P. Talavera, K`4 form-factors and π-π scattering, Nucl.

Phys. B 585 (2000) 293 [hep-ph/0003258].

[7] S. Coleman and E. Witten, Chiral symmetry breakdown in large-N chromodynamics,

Phys. Rev. Lett. 45 (1980) 100;

G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974)

461; A two-dimensional model for mesons, Nucl. Phys. B 75 (1974) 461;

G.C. Rossi and G. Veneziano, A possible description of baryon dynamics in dual and

gauge theories, Nucl. Phys. B 123 (1977) 507;

E. Witten, Baryons in the 1/N expansion, Nucl. Phys. B 160 (1979) 57.

[8] S. Spanier and N. Tornqvist, Note on scalar mesons: in review of particle physics

(RPP 1998), Eur. Phys. J. C 3 (1998) 390;

For a recent discussion, M.R. Pennington, Riddle of the scalars: where is the sigma?,

hep-ph/9905241, and references therein.

[9] Y. Iwasaki, K. Kanaya, S. Kaya, S. Sakai and T. Yoshie, Quantum chromodynamics

with many flavors, Prog. Theor. Phys. Suppl. 131 (1998) 415 [hep-lat/9804005];

D. Chen and R.D. Mawhinney, Dependence of QCD hadron masses on the number of

dynamical quarks, Nucl. Phys. 53 (Proc. Suppl.) (1997) 216 [hep-lat/9705029];

R.D. Mawhinney, Evidence for pronounced quark loop effects in QCD, Nucl. Phys.

60A (Proc. Suppl.) (1998) 306 [hep-lat/9705031];

C. Zhong Sui, QCD with zero, two and four flavors of light quarks: results from

QCDSP, Nucl. Phys. 73 (Proc. Suppl.) (1999) 228 [hep-lat/9811011];

P.H. Damgaard, U.M. Heller, A. Krasnitz and P. Olesen, On lattice QCD with many

flavors, Phys. Lett. B 400 (1997) 169 [hep-lat/9701008].

49

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C158%2C142
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C158%2C142
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB250%2C465
http://xxx.lanl.gov/abs/hep-ph/9411232
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB321%2C311
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB424%2C335
http://xxx.lanl.gov/abs/hep-ph/9712457
http://jhep.sissa.it/stdsearch?paper=05%281998%29011
http://xxx.lanl.gov/abs/hep-ph/9805442
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD61%2C034018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD61%2C034018
http://xxx.lanl.gov/abs/hep-ph/9908252
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB585%2C293
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB585%2C293
http://xxx.lanl.gov/abs/hep-ph/0003258
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C45%2C100
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB72%2C461
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB72%2C461
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB75%2C461
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB123%2C507
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB160%2C57
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC3%2C390
http://xxx.lanl.gov/abs/hep-ph/9905241
http://xxx.lanl.gov/abs/hep-lat/9804005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C53%2C216
http://xxx.lanl.gov/abs/hep-lat/9705029
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C60A%2C306
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C60A%2C306
http://xxx.lanl.gov/abs/hep-lat/9705031
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C73%2C228
http://xxx.lanl.gov/abs/hep-lat/9811011
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB400%2C169
http://xxx.lanl.gov/abs/hep-lat/9701008


J
H
E
P
0
3
(
2
0
0
1
)
0
0
2

[10] E. Gardi and G. Grunberg, The conformal window in QCD and supersymmetric QCD,

J. High Energy Phys. 03 (1999) 024 [hep-th/9810192].

[11] T. Appelquist, A. Ratnaweera, J. Terning and L.C. R. Wijewardhana, The phase

structure of an SU(N) gauge theory with Nf flavors, Phys. Rev. D 58 (1998) 105017

[hep-ph/9806472].

[12] T. Appelquist and S.B. Selipsky, Instantons and the chiral phase transition, Phys.

Lett. B 400 (1997) 364 [hep-ph/9702404];

M. Velkovsky and E. Shuryak, QCD with large number of quarks: effects of the in-

stanton anti-instanton pairs, Phys. Lett. B 437 (1998) 398 [hep-ph/9703345].

[13] S. Descotes, L. Girlanda and J. Stern, Paramagnetic effect of light quark loops on

chiral symmetry breaking, J. High Energy Phys. 01 (2000) 041 [hep-ph/9910537].

[14] T. Banks and A. Casher, Chiral symmetry breaking in confining theories, Nucl. Phys.

B 169 (1980) 103.

[15] H. Leutwyler and A. Smilga, Spectrum of dirac operator and role of winding number

in QCD, Phys. Rev. D 46 (1992) 5607;

S. Descotes and J. Stern, Finite-volume analysis of Nf -induced chiral phase transitions,

Phys. Rev. D 62 (2000) 054011 [hep-ph/9912234].

[16] J. Stern, Two alternatives of spontaneous chiral symmetry breaking in QCD,

hep-ph/9801282.

[17] B. Moussallam, Nf dependence of the quark condensate from a chiral sum rule, Eur.

Phys. J. C 14 (2000) 111 [hep-ph/9909292].

[18] B. Moussallam, Flavor stability of the chiral vacuum and scalar meson dynamics, J.

High Energy Phys. 08 (2000) 005 [hep-ph/0005245].

[19] H. Georgi, Generalized dimensional analysis, Phys. Lett. B 298 (1993) 187

[hep-ph/9207278].

[20] S. Descotes and J. Stern, Vacuum fluctuations of q̄q and values of low-energy constants,

Phys. Lett. B 488 (2000) 274 [hep-ph/0007082].

[21] M. Gell-Mann, R.J. Oakes and B. Renner, Behavior of current divergences under

SU(3) × SU(3), Phys. Rev. 175 (1968) 2195.

[22] M. Knecht and J. Stern, Generalized chiral perturbation theory, hep-ph/9411253;

M. Knecht, B. Moussallam, J. Stern and N.H. Fuchs, The low-energy ππ amplitude to

one and two loops, Nucl. Phys. B 457 (1995) 513 [hep-ph/9507319].

[23] M. Gell-Mann, Symmetries of baryons and mesons, Phys. Rev. 125 (1962) 1067

S. Okubo, Note on unitary symmetry in strong interactions, Prog. Theor. Phys. 27

(1962) 949.

50

http://jhep.sissa.it/stdsearch?paper=03%281999%29024
http://xxx.lanl.gov/abs/hep-th/9810192
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD58%2C105017
http://xxx.lanl.gov/abs/hep-ph/9806472
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB400%2C364
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB400%2C364
http://xxx.lanl.gov/abs/hep-ph/9702404
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB437%2C398
http://xxx.lanl.gov/abs/hep-ph/9703345
http://jhep.sissa.it/stdsearch?paper=01%282000%29041
http://xxx.lanl.gov/abs/hep-ph/9910537
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB169%2C103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB169%2C103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD46%2C5607
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C054011
http://xxx.lanl.gov/abs/hep-ph/9912234
http://xxx.lanl.gov/abs/hep-ph/9801282
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC14%2C111
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC14%2C111
http://xxx.lanl.gov/abs/hep-ph/9909292
http://jhep.sissa.it/stdsearch?paper=08%282000%29005
http://jhep.sissa.it/stdsearch?paper=08%282000%29005
http://xxx.lanl.gov/abs/hep-ph/0005245
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB298%2C187
http://xxx.lanl.gov/abs/hep-ph/9207278
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB488%2C274
http://xxx.lanl.gov/abs/hep-ph/0007082
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2C175%2C2195
http://xxx.lanl.gov/abs/hep-ph/9411253
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB457%2C513
http://xxx.lanl.gov/abs/hep-ph/9507319
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2C125%2C1067
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C27%2C949
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C27%2C949


J
H
E
P
0
3
(
2
0
0
1
)
0
0
2

[24] A.I. Davydychev, V.A. Smirnov and J.B. Tausk, Large momentum expansion of

two loop selfenergy diagrams with arbitrary masses, Nucl. Phys. B 410 (1993) 325

[hep-ph/9307371].

[25] V.A. Smirnov, Asymptotic expansions in limits of large momenta and masses, Comm.

Math. Phys. 134 (1990) 109.

[26] J.F. Donoghue, J. Gasser and H. Leutwyler, The decay of a light Higgs boson, Nucl.

Phys. B 343 (1990) 341.

[27] U.-G. Meissner and J.A. Oller, J/ψ → φππ(KK̄) decays, chiral dynamics and ozi

violation, Nucl. Phys. A 679 (2001) 671 [hep-ph/0005253].

[28] R. Omnes, On the solution of certain singular integral equations of quantum field

theory, Nuovo Cim. 8 (1958) 316.

[29] N.I. Muskhelishvili, Singular integral equations, Noordhoff, Groningen 1953

[30] J. Gasser and U.G. Meissner, Chiral expansion of pion form-factors beyond one loop,

Nucl. Phys. B 357 (1991) 90.

[31] J.A. Oller, E. Oset and J.R. Pelaez, Meson meson and meson baryon interactions in a

chiral non-perturbative approach, Phys. Rev. D 59 (1999) 074001 [hep-ph/9804209].

[32] K.L. Au, D. Morgan and M.R. Pennington, Meson dynamics beyond the quark model:

a study of final state interactions, Phys. Rev. D 35 (1987) 1633.

[33] R. Kaminski, L. Lesniak and J.P. Maillet, Relativistic effects in the scalar meson dy-

namics, Phys. Rev. D 50 (1994) 3145 [hep-ph/9403264];

R. Kaminski, L. Lesniak and B. Loiseau, Three channel model of meson meson scatter-

ing and scalar meson spectroscopy, Phys. Lett. B 413 (1997) 130 [hep-ph/9707377].

[34] E. Braaten, S. Narison and A. Pich, QCD analysis of the tau hadronic width, Nucl.

Phys. B B373 (1992) 581.

[35] V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Are all hadrons

alike? technical appendices, Nucl. Phys. B 191 (1981) 301.

[36] N.H. Fuchs, M. Knecht and J. Stern, Contributions of order O(m2quark) to K`3
form factors and unitarity of the CKM matrix, Phys. Rev. D 62 (2000) 033003

[hep-ph/0001188].

[37] J. Gasser and H. Leutwyler, Low-energy theorems as precision tests of QCD, Phys.

Lett. B 125 (1983) 325.

[38] J. Bijnens, G. Colangelo and P. Talavera, The vector and scalar form factors of the

pion to two loops, J. High Energy Phys. 05 (1998) 014 [hep-ph/9805389].

51

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB410%2C325
http://xxx.lanl.gov/abs/hep-ph/9307371
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C134%2C109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C134%2C109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB343%2C341
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB343%2C341
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CA679%2C671
http://xxx.lanl.gov/abs/hep-ph/0005253
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUCIA%2C8%2C316
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB357%2C90
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C074001
http://xxx.lanl.gov/abs/hep-ph/9804209
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD35%2C1633
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD50%2C3145
http://xxx.lanl.gov/abs/hep-ph/9403264
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB413%2C130
http://xxx.lanl.gov/abs/hep-ph/9707377
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CBB373%2C581
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CBB373%2C581
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB191%2C301
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C033003
http://xxx.lanl.gov/abs/hep-ph/0001188
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB125%2C325
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB125%2C325
http://jhep.sissa.it/stdsearch?paper=05%281998%29014
http://xxx.lanl.gov/abs/hep-ph/9805389


J
H
E
P
0
3
(
2
0
0
1
)
0
0
2

[39] B. Ananthanarayan, G. Colangelo, J. Gasser and H. Leutwyler, Roy equation analysis

of ππ scattering, hep-ph/0005297;

G. Colangelo, J. Gasser and H. Leutwyler, The ππ s-wave scattering lengths, Phys.

Lett. B 488 (2000) 261 [hep-ph/0007112].

[40] M. Baillargeon and P.J. Franzini, Accuracies of Ke4 parameters at DAΦNE,

hep-ph/9407277;

U.-G. Meissner et al., Working group on ππ and πN interactions, in Proc. of Chiral

dynamics: theory and experiment, A.M. Bernstein, D. Drechsel and T. Walcher eds.,

Mainz, Germany, September 1-5 1997, Springer 1998 [hep-ph/9711361].

[41] J. Bijnens, G. Colangelo, G. Ecker, J. Gasser and M.E. Sainio, Elastic ππ scattering

to two loops, Phys. Lett. B 374 (1996) 210 [hep-ph/9511397]; Pion pion scattering

at low energy, Nucl. Phys. B 508 (1997) 263 [hep-ph/9707291];

L. Girlanda, M. Knecht, B. Moussallam and J. Stern, Comment on the prediction of

two-loop standard chiral perturbation theory for low-energy pi pi scattering, Phys. Lett.

B 409 (1997) 461 [hep-ph/9703448];

M. Knecht, B. Moussallam, J. Stern and N.H. Fuchs, Determination of two-loop ππ

scattering amplitude parameters, Nucl. Phys. B 471 (1996) 445 [hep-ph/9512404].

52

http://xxx.lanl.gov/abs/hep-ph/0005297
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB488%2C261
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB488%2C261
http://xxx.lanl.gov/abs/hep-ph/0007112
http://xxx.lanl.gov/abs/hep-ph/9407277
http://xxx.lanl.gov/abs/hep-ph/9711361
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB374%2C210
http://xxx.lanl.gov/abs/hep-ph/9511397
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB508%2C263
http://xxx.lanl.gov/abs/hep-ph/9707291
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB409%2C461
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB409%2C461
http://xxx.lanl.gov/abs/hep-ph/9703448
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB471%2C445
http://xxx.lanl.gov/abs/hep-ph/9512404

