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Measurements are reported of the proton and deuteron spin structure functions gp1
and gd1 at beam energies of 29.1, 16.2, and 9.7 GeV, and gp2 and gd2 at a beam energy

of 29.1 GeV. The integrals Γp =
∫ 1
0 g

p
1(x,Q2)dx and Γd =

∫ 1
0 g

d
1(x,Q2)dx

were evaluated at fixed Q2 = 3 (GeV/c)2 using the full data set to yield Γp =

0.132 ± 0.003(stat.) ± 0.009(syst.) and Γd = 0.047 ± 0.003 ± 0.006.

The Q2 dependence of the ratio g1/F1 was studied and found to be small for

Q2 > 1 (GeV/c)2. Within experimental precision the g2 data are well-described

by the twist-2 contribution, gWW
2 . Twist-3 matrix elements were extracted and

compared to theoretical predictions. The asymmetryA2 was measured and found to

be significantly smaller than the positivity limit
√
R for both proton and deuteron

targets. Ap
2 is found to be positive and inconsistent with zero. Measurements of

g1 in the resonance region show strong variations with x and Q2, consistent with

resonant amplitudes extracted from unpolarized data. These data allow us to study

the Q2 dependence of the integrals Γp and Γn below the scaling region.

PACS Numbers: 13.60.Hb, 29.25.Ks, 11.50.Li, 13.88.+e
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I. INTRODUCTION

Inelastic lepton scattering from nucleons has been used over the past thirty years to
obtain an ever-increasing knowledge of the distribution of the partons that make up the
nucleon, namely gluons and up, down, strange, and perhaps charmed quarks. It is one
of the great successes of QCD that the same parton densities can be used to describe the
unpolarized inelastic structure functions F1(x,Q2) and F2(x,Q2) as well as many other
physical processes, such as the production of jets in pp collisions. The parton densities
depend on the fractional momentum of the parton x = Q2/2Mν, where −Q2 is the
four-momentum transfer squared, M is the nucleon mass, and ν is the lepton energy transfer.
The measured Q2 dependence at fixed x of F1(x,Q2) and F2(x,Q2) has been shown to be
in very good agreement with the QCD-based evolution equations [1].

The F1 and F2 structure functions are sensitive to the helicity-averaged parton densities.
Recent improvements in polarized lepton beams and targets have made it possible to make
increasingly accurate measurements of two additional structure functions, g1(x,Q2) and
g2(x,Q2), which depend on the difference in parton densities with helicity either aligned or
anti-aligned with the spin of the nucleon. Measurements of gp1 have been made using electron
beams at SLAC [2,3,4,5] and muon beams at CERN [6,7], while gn1 has been measured both
using polarized deuteron targets at SLAC [5,8] and CERN [9], and a 3He target at SLAC
[10,11] and DESY [12]. Measurements have also been made of g2 for both the proton
and deuteron [10,13,14,15], although with limited statistical precision compared to the g1

measurements. This paper reports final results for gp1 , gd1 , gp2 , and gd2 from experiment E143
at SLAC, and includes more details of the analysis procedure, as well as some auxiliary
results not covered in the original short publications [4,5,8,13,16].

The earliest experiments [2,3,6] sparked considerable interest in the spin structure
functions when it was reported that, contrary to the quark model expectation, the quarks
contribute very little to the proton’s spin (the so-called “spin crisis”). Subsequent precision
measurements are consistent with the original experimental results (with improved QCD
corrections applied), but the theoretical interpretation has become more complex. It is
now believed that in addition to the quarks, the orbital angular momentum and gluons may
contribute significantly to the proton’s spin. There is still the unanswered question as to how
much the gluons alone really contribute. The g1 and g2 structure functions are interesting
not only in opening a new degree of freedom with which to explore the detailed structure of
the nucleon, but also for making a precise test of QCD via the Bjorken sum rule which is a
strict QCD prediction [17].

In this paper we describe the theory and phenomenology of spin structure physics,
and detail the SLAC experiment E143, which measured both A‖ and A⊥ for proton and
deuteron targets over a wide range of kinematics. The theory and experimental apparatus
are described in Sections II and III. The analysis procedure is detailed in Section IV. Results,
their interpretation, and a discussion of systematic errors are shown in Section V, and finally
we present a summary and conclusions in Section VI.
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II. INTERPRETATION AND THEORY

A. Formalism

The structure functions g1(x,Q2) and g2(x,Q2) are typically extracted from asymmetry
measurements. Longitudinally polarized leptons are scattered from a target that is polarized
either longitudinally or transversely. The longitudinal (A‖) and transverse (A⊥) asymmetries
are formed from combining data taken with opposite beam helicity:

A‖ =
σ↓↑ − σ↑↑
σ↓↑ + σ↑↑

, A⊥ =
σ↓→− σ↑→
σ↓→ + σ↑→

. (1)

The polarized structure functions can be determined from these asymmetries:

g1(x,Q2) =
F1(x,Q2)

d′
[A‖ + tan(θ/2)A⊥] ,

g2(x,Q2) =
yF1(x,Q2)

2d′

[
E + E ′ cos(θ)

E ′ sin(θ)
A⊥ −A‖

]
, (2)

where E is the incident electron energy, E′ is the scattered electron energy, θ is the
scattering angle, y = (E − E ′)/E, d′ = [(1 − ε)(2 − y)]/[y(1 + εR(x,Q2))], ε−1 =
1 + 2[1 + γ−2] tan2(θ/2), γ = 2Mx/

√
Q2, M is the nucleon mass and R(x,Q2) = σL/σT is

the ratio of longitudinal and transverse virtual photon-absorption cross sections. R(x,Q2)
is related to the spin-averaged (or unpolarized) structure functions F1(x,Q2) and F2(x,Q2)
by R(x,Q2) + 1 = (1 + γ2)F2(x,Q2)/[2xF1(x,Q2)].

The virtual photon-absorption asymmetries A1 and A2 are related to the measured
asymmetries by

A‖ = D(A1 + ηA2),

A⊥ = d(A2 − ζA1), (3)

where the photon depolarization factor D = (1 − E ′ε/E)/(1 + εR), η = ε
√
Q2/(E − E ′ε),

d = D
√

2ε/(1 + ε), and ζ = η(1 + ε)/2ε. A1 and A2 can be expressed as:

A1 =
σT1/2 − σT3/2
σT1/2 + σT3/2

=
σTT
σT

=
A‖

D(1 + ηζ)
− ηA⊥
d(1 + ηζ)

=
g1(x,Q2)− γ2g2(x,Q2)

F1(x,Q2)

A2 =
2σLT

σT1/2 + σT3/2
=
σLT
σT

=
ζA‖

D(1 + ηζ)
+

A⊥
d(1 + ηζ)

=
γ(g1(x,Q2) + g2(x,Q2))

F1(x,Q2)
, (4)

where σT1/2 and σT3/2 are the virtual photoabsorption transverse cross sections for total helicity
between photon and nucleon of 1/2 and 3/2 respectively, σLT is the interference term
between the transverse and longitudinal photon-nucleon amplitudes, σT = (σT1/2 + σT3/2)/2,

and σTT = (σT1/2 − σT3/2)/2. We see from Eq. 4 that for low x or high Q2 (where γ << 1),

A1 ≈ g1/F1. Positivity constrains |A1| ≤ 1 and |A2| ≤
√
R(x,Q2). For the case where

only the longitudinal asymmetry is measured, and a model is used for g2, A1 and g1 can be
expressed as

5



A1 =
A‖
d′

[
1 +

xMy

E + E′cos(θ)

]
− g2

F1

[ 4xME′cos2(θ
2
)

ν(E + E′cos(θ))

]
,

g1 =
A‖F1

d′

[
E + E′

E + E′cos(θ)

]
+ g2

[
2Mx

E + E′cos(θ)

]
(5)

In the resonance region, g1 and g2 are well defined but are more properly interpreted in
terms of the helicity structure of the resonance transition amplitudes. The γ∗NN∗ vertex
for electro-excitation of the resonance N∗ is generally given in terms of three amplitudes,
A1/2(Q

2), A3/2(Q
2) and S1/2(Q

2) [18,19]. Here, A denotes transverse photon polarization
and S indicates longitudinal photons. The index 1/2 or 3/2 refers again to the total γ∗N
helicity. The virtual photon-nucleon cross sections for an isolated resonance can then be
written in terms of helicity amplitudes as

σT1/2 =
4π2α

KM
(F1 + g1 −

2Mx

ν
g2) = 2π

M

W
b|A 1

2
|2,

σT3/2 =
4π2α

KM
(F1 − g1 +

2Mx

ν
g2) = 2π

M

W
b|A 3

2
|2,

σL1/2 = σL =
4π2α

K

[
F2

ν
(1 +

ν2

Q2
) − F1

M

]
= 2π

M

W
b
Q2

q∗2
|S 1

2
|2, (6)

σLT1/2 = σLT =
4π2α

K

√
Q2

Mν
(g1 + g2) = π

M

W

√
2b
Q

q∗
S∗1

2
A 1

2
,

in which K is the incoming photon flux which is chosen using the Hand convention such that
the invariant mass squared of the final state is W 2 = M2 + 2MK, b is the resonance line
shape (unit area), and q∗2 = Q2 + (W 2 −M2 − Q2)/4W 2 is the squared magnitude of the
3-momentum transfer measured in the resonance rest frame. The electron scattering cross
sections are then written

dσ

dE′dΩ
= ΓV [σT + εσL],

dσ↓↑

dE′dΩ
− dσ↑↑

dE′dΩ
= 2ΓVD(1 + εR)[σTT + ησLT ], (7)

dσ↓→

dE′dΩ
− dσ↑→

dE′dΩ
= 2ΓV d(1 + εR)[σLT − ζσTT ],

where

ΓV =
α

4π2

K

Q2

E′

E

2

1− ε. (8)

B. The Deep-Inelastic Spin Structure Function g1(x, Q2)

As will be shown below, the first moment of the spin structure function g1(x,Q2) is related
to the net quark helicity ∆Σ which contributes to the proton spin. Angular momentum
conservation requires that

1

2
=

∆Σ

2
+ ∆G+ Lz, (9)

where ∆G is the net gluon helicity, and Lz is the orbital angular momentum.
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1. The Quark-Parton Model

In the naive quark-parton model (QPM) the nucleon is composed of quarks which have
no orbital angular momentum, and there are no polarized gluons present. In this simple
picture, the unpolarized structure function F1(x,Q2) and the polarized structure function
g1(x,Q2) can be simply expressed as the charge-weighted sum and difference between
momentum distributions for quark helicities aligned parallel (q↑) and antiparallel (q↓) to
the longitudinally polarized nucleon:

F1(x) =
1

2

∑
i

e2
i [q
↑
i (x) + q↓i (x)],

g1(x) =
1

2

∑
i

e2
i [q
↑
i (x)− q↓i (x)] ≡

∑
i

e2
i∆qi(x) . (10)

The charge of quark flavor u, d, and s is denoted by ei, and q
↑(↓)
i (x) are the quark plus

antiquark momentum distributions. The quantity
∫ 1
0 ∆qi(x)dx = ∆qi refers to the helicity

of quark flavor i in the proton, and ∆Σ = ∆u+ ∆d+ ∆s is the net helicity of quarks. Since
∆G = 0 and Lz = 0, it follows from Eq. 9, that ∆Σ is expected to be unity in this model. In
a relativistic quark-parton model [20,21,22] (with no polarized gluons), the orbital angular
momentum contribution is no longer zero and the quark helicity contributions to the proton
helicity are suppressed by a factor of about 0.75.

2. Perturbative QCD and the Role of the Gluons

The quark-parton model is useful for understanding some properties of the nucleon such
as charge and isospin. However, it fails to adequately describe all properties, and it falls short
in explaining the dynamics of particle interactions. For this we need a more comprehensive
theory such as Quantum Chromodynamics (QCD) which can account for gluons and their
interactions with the quarks.

The operator product expansion (OPE) [23,24,25] is a useful technique within QCD
because it separates the physics into a perturbative part that is easily treatable and
a non-perturbative part that is parameterized in terms of unknown matrix elements of
Lorentz-covariant operators. At leading twist the first moment of g1(x,Q2) can be expressed
in terms of singlet (a0) and nonsinglet (a3 and a8) proton matrix elements of the axial current:

Γp1(Q2) =
∫ 1

0
gp1(x,Q2)dx =

(
1

12
a3 +

1

36
a8

)
Cns +

1

9
a0Cs,

Γd1(Q2) =
∫ 1

0
gd1(x,Q2)dx =

(
1− 3

2
ωD

)[
1

36
a8Cns +

1

9
a0Cs

]
, (11)

where ωD is the D-state probability in the deuteron, and the factors Cns and Cs are the
Q2-dependent non-singlet and singlet QCD corrections, which are discussed in more detail
below.

Assuming that there are no polarized gluons contributing to the proton spin, the singlet
and nonsinglet proton matrix elements given in Eq. 11 can be related to the quark helicities:
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a0 = ∆u+ ∆d+ ∆s = ∆Σ,

a3 = ∆u−∆d = F +D, (12)

a8 = ∆u+ ∆d− 2∆s = 3F −D.

Here, F and D are weak hyperon decay constants which can be extracted from data assuming
SU(3) symmetry [26,27]

F +D = gA = 1.2601± 0.0025,

3F −D = 0.588± 0.033. (13)

The error quoted above on 3F − D is the experimental error assuming SU(3) symmetry.
It may be an underestimate because possible SU(3) symmetry breaking effects could
be significant. There have been a number of attempts to estimate these effects
[20,28,29,30,31,32]. According to Ratcliffe [29], symmetry breaking effects in the past have
always been found to be at most 10%. Assuming a generous 20% systematic error from
symmetry breaking combined with the above error in quadrature yields an error of 0.12
on 3F − D. This error is somewhat smaller than the range of possible values (0.40–0.84)
presented under various assumptions [28,29,31,32], some of which have come under criticism
[29].

After combining Eq. 11 and Eq. 12 [27] it is straightforward to extract the singlet matrix
element from the measured first moments of the proton:

a0 =
9

Cs

[
Γp1(Q2)− 1

18
(3F +D)Cns

]
, (14)

and the deuteron:

a0 =
9

Cs

[
Γd1(Q2)

1− 3
2
ωD
− 1

36
(3F −D)Cns

]
. (15)

The nonsinglet QCD correction Cns [33] calculated in the MS scheme to order three for three
quark flavors is given by

Cns = 1− αs(Q2)

π
− 3.58

(
αs(Q2)

π

)2

− 20.22

(
αs(Q2)

π

)3

, (16)

where αs(Q2) is the strong coupling constant. Fourth order QCD corrections have been
estimated [34] to be small at the kinematics of this experiment. The singlet QCD correction
exists in two forms [33], one which yields a Q2-dependent a0(Q2) in Eqs. 14-15 and one which
yields ainv0 which is the asymptotic high Q2 limit of a0(Q2). These singlet QCD corrections
have been calculated in the MS scheme [33]:

Cs(Q
2) = 1− αs(Q2)

π
− 1.10

(
αs(Q2)

π

)2

,

C inv
s = 1− 0.3333

(
αs(Q2)

π

)
− 0.5495

(
αs(Q2)

π

)2

. (17)
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The contribution of ∆G to a0 (and thus to the first moment of g1) is a factorization
scheme-dependent quantity. In a gauge-invariant scheme such as the MS scheme gluons do
not contribute to the first moment of g1 which means that a0 = ∆Σ. For chiral-invariant
schemes such as the Adler-Bardeen scheme [35] the gluons do contribute to Γ1. The physical
quantity g1(x) is independent of the factorization scheme, however. In the Adler-Bardeen
scheme [35], the quantity a0 6= ∆Σ, and is instead written as

a0 = ∆Σ− 3

2π
αs(Q

2)∆G(Q2). (18)

This contribution of ∆G is called the gluon axial anomaly [36] or the Adler-Bell-Jackiw
anomaly (as applied to QCD from QED). The product αs(Q2)∆G(Q2) is independent of Q2

in leading order which implies that ∆G(Q2) grows in Q2 like 1/αs(Q2), and Lz compensates
to satisfy Eq. 9. Physically, this means that as each quark radiates a gluon with some
preferential helicity the orbital angular momentum of the quark-gluon system must increase
to conserve the total angular momentum. Thus, as more gluons are emitted, both ∆G and
Lz will grow, but with opposite signs.

Other quantities of interest are the helicity contributions from the individual quarks.
These quantities can be extracted from the measured a0, but may be subject to possible
gluon contributions as in Eq. 18. Allowing for the possibility of gluon contributions, these
quark helicities are calculated using:

∆u =
1

3
(a0 + 3F +D) +

1

2π
αs(Q

2)∆G(Q2),

∆d =
1

3
(a0 − 2D) +

1

2π
αs(Q

2)∆G(Q2), (19)

∆s =
1

3
(a0 − 3F +D) +

1

2π
αs(Q

2)∆G(Q2).

If we include a contribution of ∆G(1 (GeV/c)2) = 1.6 ± 0.9 [37], and use αs(MZ) =
0.118 ± 0.003 [26], we calculate αs∆G/2π = 0.13 ± 0.08 and find good agreement with
existing data. This model along with quark-parton model expectations are summarized in
Table I and can be compared with data from this experiment in Table XXIX. Note that the
value used above for ∆G agrees well with a theoretical prediction based on QCD sum rules
[38] which yields ∆G(1 (GeV/c)2) = 2.1± 1.0 and on an earlier parameterization [39] which
yields ∆G(1 (GeV/c)2) = 1.7.

There are a number of other theoretical models which attempt to explain how the quark
helicity is distributed within the nucleon. Non-perturbative effects enhancing the role of
intrinsic sea quarks have been proposed by several authors. Halperin and Zhitnitsky [40]
argue that a large portion of the nucleon spin comes from charm quarks by adding a term
2∆c to the ao term in Eq. 11. Brodsky and Ma [41] contend that asymmetries in the
light quark sea could generate the observed ∆Σ. The Skyrme model [42] predicts that
∆Σ = ∆u + ∆d + ∆s=0 and ∆G = 0 and Lz = 1/2, and should be accurate to O(1/Nc)
where Nc = 3, the number of colors. Within its uncertainty this is consistent with the small
observed value of ∆Σ. Other models include the chiral bag model [43], the chiral quark
model [32], calculations based on QCD spectral sum rules [44], or Pauli-exclusion principles
[45], and also lattice QCD predictions [46,47,48,49].
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3. The Bjorken Sum Rule

This sum rule was originated by Bjorken [17] using current algebra and isospin symmetry.
It has since been re-derived in QCD and is a strict prediction made by this theory. It relates
the integral over all x at fixed Q2 of the difference between gp1(x,Q2) and gn1 (x,Q2) to the
well-measured neutron beta decay coupling constant gA = 1.2601 ± 0.0025 [26],

Γp1(Q2)− Γn1 (Q2) =
∫ (

gp1(x,Q2)− gn1 (x,Q2)
)
dx =

1

6
gA Cns. (20)

An experimental test of this sum rule provides a test of fundamental QCD assumptions. In
addition, it is possible to use the measurement to extract a relatively accurate determination
of αs(Q2) at low Q2 (on the order of 2 to 10 (GeV/c)2) [50]. A significant difference from
other αs(Q2) determinations could indicate the presence of interesting new physics.

4. The Ellis-Jaffe Sum Rule

The other sum rules of interest for g1, although less rigorous than the Bjorken sum rule,
are the Ellis-Jaffe sum rules [51] which were derived using SU(3) symmetry and assuming
the strange sea in the nucleons is unpolarized. These sum rules, including the necessary
QCD corrections, follow naturally from Eqs. 11 and 12 with ∆s = ∆G = 0 such that
a0 = a8 = 3F −D:

Γp1(Q2) =
∫ 1

0
gp1(x,Q2)dx =

1

18
[Cns(3F +D) + 2Cs(3F −D)] ,

Γn1 (Q2) =
∫ 1

0
gn1 (x,Q2)dx =

1

9
[−DCns + Cs(3F −D)] . (21)

5. Q2 Dependence: Evolution and Higher Twist

The quark-parton model does not inherently include gluons, and it is the interaction
between the quarks and gluons which generates the observed Q2 dependence of both the
polarized and unpolarized nucleon structure functions. The QCD theory which describes
the quark-gluon dynamics gives predictions about how the parton distribution functions
(and thus structure functions) evolve in Q2 in the perturbative limit of small αs. The Q2

evolution of the polarized parton densities is governed by the DGLAP [1] equations which
embody the emission of gluons by quarks. This gluon emission is responsible for the leading
logarithmic Q2 dependence. In addition, there are higher-twist contributions to the Q2

dependence which are suppressed by powers of 1/
√
Q2. Higher twist corrections to g1 have

been estimated to be small [52,53,54,55] while higher twist corrections for g2 have been
estimated to be significant [49,52,56,57,58]. Fits to ∆u(x,Q2), ∆d(x,Q2), ∆s(x,Q2), and
∆G(x,Q2) have been made [35,59] using next-to-leading-order (NLO) DGLAP equations
[60]. The results indicate that NLO fits are more sensitive to the strength of the polarized
gluon distribution function ∆G(x,Q2) than leading order fits.
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C. The Deep-Inelastic Spin Structure Function g2(x, Q2)

1. Physical Interpretation

The interpretation of g2 in the naive parton model is less straightforward than that of g1.
Feynman related the quantity gT (x) = g1(x) + g2(x) = A2F1/γ to the distribution of quark
polarizations aligned parallel (k↑) and antiparallel (k↓) to that of a transversely polarized
proton [24,61] by the expression

gT (x) =
∑
i

e2
i

mq

2xM
[k↑i (x)− k↓i (x)], (22)

where mq is the quark mass. Leader and Anselmino [62] subsequently derived the parton
model expressions for g1 and g2 for a nucleon polarized at an arbitrary angle θ relative to
the incident electron direction. Evaluated at θ = 0 their expression for gT (x) is

gT (x) =
∑
i

e2
i

mq

2xM
[q↑i (x)− q↓i (x)], (23)

where qi are the same as in Eq. 10. Jaffe and Ji [24] pointed out that claims [63,64] that gT is
small were generated by setting mq = 0 in Eq. 22. For consistency, if the quark momenta are
taken to be along the longitudinal direction then mq = xM [24,62], which yields g2(x) = 0.
Because of Fermi motion, however, the quarks are off-shell and mq 6= xM in general. It is
this large off-shell nature of the quark which produces large twist-3 effects in the MIT bag
model calculation [24].

The naive parton model does not include transverse momentum or quark-gluon
interactions. For this we can turn to a more advanced light-cone parton model, [65,66]
or an OPE analysis, [24,67] which indicates that there are three components (up to twist-3)
contributing to g2. These components include the leading twist-2 part gWW

2 (x,Q2) [68],
coming from the same set of operators that contribute to g1, another twist-2 part coming
from the quark transverse-polarization distribution hT (x,Q2), and a twist-3 part coming
from quark-gluon interactions ξ(x,Q2):

g2(x,Q2) = gWW
2 (x,Q2)−

∫ 1

x

∂

∂y

(
mq

M
hT (y,Q2) + ξ(y,Q2)

)
dy

y
. (24)

The term containing hT (y,Q2) is usually neglected because it is suppressed by the quark
mass mq, and the gWW

2 expression of Wandzura-Wilczek [68] is given by

gWW
2 (x,Q2) = −g1(x,Q2) +

∫ 1

x

g1(y,Q2)

y
dy . (25)

2. OPE Sum Rules and the Twist-3 Matrix Element

Keeping terms up to twist-3, the OPE analysis of g1 and g2 yields an infinite number of
sum rules:
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Γ
(n)
1 =

∫ 1

0
xn g1(x,Q2) dx = an

2 , n = 0, 2, 4, . . . ,

Γ(n)
2 =

∫ 1

0
xn g2(x,Q2) dx =

1

2

n

n+ 1
(dn − an) , n = 2, 4, . . . , (26)

where an are the twist-2 and dn are the twist-3 matrix elements of the renormalized operators.
The OPE only gives information on the odd moments of the spin structure functions. Note
that contributions involving mq/M (see Eq. 24) have been left out of Eq. 26 as have target
mass effects discussed below. The twist-3 matrix elements follow from Eq. 26:

dn = 2
∫ 1

0
xn
[
g1(x,Q2) +

n+ 1

n
g2(x,Q2)

]
dx n = 2, 4, . . . ,

= 2
∫ 1

0
xn
(
n+ 1

n

)
g2(x,Q2)dx n = 2, 4, . . . , (27)

where g2 = g2−gWW
2 . We see from Eq. 27 that if all dn = 0 then g2 is completely determined

by g1 because there are an infinite number of sum rules. This is how the quantity gWW
2 was

originally derived.
There are a number of theoretical predictions for d2 for both proton and neutron targets

[49,52,56,57,58]. Some are based on bag models [56,57], others on QCD sum rules [52,58],
and there is also a lattice QCD calculation [49]. Many of these models have predicted large
values for d2 which means there could be significant twist-3 contributions to g2. This makes
the study of g2 particularly interesting.

3. The Burkhardt-Cottingham Sum Rule

The Burkhardt-Cottingham sum rule [69] for g2 at large Q2, namely∫ 1

0
g2(x)dx = 0 , (28)

was derived from virtual Compton scattering dispersion relations. This sum rule does not
follow from the OPE since the n = 0 sum rule is not defined for g2 in Eq. 26. The validity of
the Burkhardt-Cottingham sum rule relies on g2 obeying Regge theory at low x, which may
not be a good assumption. A non-Regge divergence of g2 at low x would invalidate this sum
rule [23,24], although such a divergence could be very difficult to detect experimentally.

4. Target Mass Effects

The OPE sum rules as given in Eq. 26 were derived in the limit M2x2/Q2 → 0. These
target mass effects can become significant when M2/Q2 is of order unity which is certainly
the case for a subset of the data presented in this paper. These target mass effects for
polarized electroproduction have been determined [70,71]. The corrected Bjorken sum rule
derived from these formulae is given by [71]

1

9

∫ 1

0
dx
ξ2

x2

[
5 + 4

√
1 + 4M2x2/Q2

][
gp1(x,Q2)− gn1 (x,Q2)

]
−4

3

∫ 1

0
dx
M2ξ2

Q2

[
gp2(x,Q2)− gn2 (x,Q2)

]
=

1

6
gA CNS, (29)
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where the Nachtmann variable ξ = 2x/(1 +
√

1 + 4M2x2/Q2). This sum rule is now

dependent on g2. The size of the target mass effects [72,73] to the uncorrected Bjorken
sum rule formula are estimated to be of the same magnitude as higher-twist effects which
are typically small. The target mass effects for the gWW

2 calculation (missing in Eq. 25) have
been investigated and are negligible for our kinematics [74].

D. Resonance Region Polarized Structure Functions

The values of A1 in the resonance region are a combination of the asymmetries for
individual resonances and for the nonresonant background. Resonance helicity amplitudes
A1/2 and A3/2 are reasonably well measured at Q2 = 0 for the prominent resonances [26].
Sparse data exist also for virtual photons [75]. The excitation of the ∆(1232) resonance
(spin-3

2
) includes both 1

2
and 3

2
spin projections. At low Q2 the ∆(1232) excitation is

expected to be primarily a magnetic dipole transition for which A3/2/A1/2 =
√

3 and

A1 = (|A1/2|2 − |A3/2|2)/(|A1/2|2 + |A3/2|2) = −1
2
. For real photons A3/2/A1/2 = 1.064

√
3

[26]. Perturbative QCD predicts that the ratio A3/2/A1/2 should go as 1/Q2 and A1 should
approach unity as Q2 →∞. However, a recent analysis of pion electroproduction [76] data
shows that the magnetic dipole transition still dominates at Q2 = 3.2 (GeV/c)2. On the
other hand, the S11(1535) resonance has no spin-3

2
projection, so A1 should be unity at all

Q2. Data [75] from Bonn, Daresbury and DESY have been used to extract A1/2 and A3/2 up
to Q2 = 3 (GeV/c)2 for the S11, D13, and F15 resonances. Because of the large uncertainties
of these extractions, our knowledge of the Q2 dependence of the helicity amplitudes is still
rudimentary. The asymmetries A1 for both D13 and F15 make a transition from A1 ≈ −1 to
A1 ≈ 1 somewhere in the range 0 < Q2 < 3 (GeV/c)2 [75].

Less is known about σLT and A2. The positivity limit A2 <
√
R(x,Q2) constrains A2.

The world average value [77] for R in the resonance region is 0.06 ± 0.02 for 1 < Q2 < 8
(GeV/c)2 and W 2 < 3 GeV2. Since this is smaller by half than the deep-inelastic fit to
R(x,Q2) [78] extrapolated into the resonance region, one might argue that R(x,Q2) for the
resonances themselves is small. However, little is known for Q2 < 1.3 (GeV/c)2.

A complete mapping of g1(x,Q2) at low Q2 where the resonances dominate is useful
for two reasons. First, these data provide important input for radiative corrections
of the deep-inelastic data. Second, the evolution of the integral (defined to exclude
elastic scattering) Γ1(Q2) =

∫ 1
0 g1(x,Q2)dx for Q2 → 0 should be determined by the

Gerasimov-Drell-Hearn (GDH) sum rule [79] for real photons:

∫ ∞
νth

2σTTdν/ν = −2π2ακ2

M2
(30)

in which ν is the photon energy, νth is the threshold energy for pion production, κ is the
nucleon anomalous magnetic moment, and M is the nucleon mass. A simple change of
variables from ν to x in Eq. 30 and a reformulation of σTT in terms of g1 and g2 yields

lim
Q2→0

Γ1(Q2)

Q2
= − κ2

8M2
. (31)
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One important feature of Eq. 31 is the sign. Γp1 for the proton is positive for Q2 above
3 (GeV/c)2 as measured in the deep-inelastic regime. However, the GDH sum rule predicts
that Γp1 should become negative at small Q2. This implies that somewhere in the region
0 < Q2 < 3 (GeV/c)2, Γp1 must cross zero. Exactly where this occurs depends crucially on
the Q2 evolution of the resonance helicity amplitudes which are presently not well known.
Predictions about how Γ1(Q2) goes from the deep-inelastic values to the GDH limit have
taken one of two paths: 1) theoretically motivated interpolation and 2) computations that
include all available knowledge of the resonance behavior. Both need to be checked with
direct measurements of Γ1(Q2) at low Q2.

Recent theoretical work [80] indicates that at low Q2, Γ1(Q2) corrected to include the
elastic contribution,

Γel1 (Q2) =
1

2
F1(Q

2)[F1(Q
2) + F2(Q

2)], (32)

provides the twist-4 (1/Q2) corrections to the Ellis-Jaffe sum rule. F1 and F2 in Eq. 32 are
the Dirac and Pauli elastic form factors (not the deep-inelastic structure functions).

III. THE EXPERIMENT

The goal of the E143 experiment was to determine the longitudinal and transverse
cross-section asymmetries via deep-inelastic scattering of longitudinally polarized electrons
from polarized protons and deuterons. Over a period of three calendar months data were
taken at beam energies of 29.13 GeV (122 million events), 16.18 GeV (56 million events)
and 9.71 GeV (58 million events). The longitudinal asymmetry A‖ was obtained with the
target polarization parallel to the beam momentum, whereas the transverse asymmetry A⊥
(at E = 29.1 GeV only) was obtained with the target polarization transverse to the beam
momentum (right or left of the beam).

The experimental apparatus employed consisted of five components: the polarized source,
the accelerator and beam transport, the Møller polarimeter to measure the beam polarization
in the End Station A (ESA), the polarized proton/deuteron target, and the two spectrometer
arms to detect the scattered electrons. These components are discussed in the sections which
follow.

A. The SLAC Polarized Electron Source

A polarized electron source for the SLAC Linear Accelerator was first developed in the
early 1970’s for experiments on the spin structure of the proton. Since 1978 the SLAC
polarized electron source has been based on the principle of laser photoemission from a
gallium arsenide (GaAs) photocathode. Strained GaAs photocathodes, which effectively
doubled the polarization obtainable from an unstrained GaAs photocathode, were developed
in 1991 [81,82] and first used in a SLAC experiment in 1993. The design and operational
characteristics of the SLAC polarized electron source are fully described in Ref. [83].

Figure. 1 is a schematic of the layout of the laser and gun structure at the SLAC injector.
Electrons are photo-emitted from a GaAs photocathode by illuminating the surface with
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a laser. The electrons are polarized with a helicity defined by the sign of the circular
polarization of the incident laser light. Spin reversals are achieved at the source by reversing
the circular polarization of the laser light with a Pockels cell. The pattern for the sign of
the polarization is chosen to be a known pseudo-random sequence, permitting validation of
the sign of each pulse in the offline data stream.

The polarization of the electrons is a consequence of the band structure of GaAs and
the angular momentum selection rules that apply to this system. The presence of strain
changes the lattice constant of the GaAs, shifts the energy levels, and breaks a spin state
degeneracy in the valence band. Excitation by circularly polarized light near the band gap
edge (λ ≈ 850 nm) will then result in only one set of spin states populating the conduction
band provided the strain is sufficiently large. The strain in the active GaAs layer is achieved
by growing a 100 nm thick epitaxial layer of GaAs on a substrate of GaAs(1−x)Px (x=0.28).
The lattice spacing for the GaAsP is about 1% smaller than for GaAs, and the resulting
lattice mismatch puts the GaAs epitaxial layer under a compressive strain sufficiently high
to remove the spin state degeneracy. Under these conditions one expects that photo-emitted
electrons will have close to 100% polarization. In practice, the electron polarization averaged
85% for the E143 experiment.

The laser system was designed and built at SLAC. It consisted of a flash-lamp pumped
titanium sapphire rod, producing light pulses which were optically chopped to a 2.3 µsec
long pulse. The laser beam was transmitted through a lens system which allowed for steering
and focusing on the cathode. For the E143 experiment, the amount of laser power available
was larger than needed, so the power was attenuated to about 10 watts peak, yielding
approximately 4 × 109 electrons per pulse. At this low electron intensity, the accelerator
control system was unable to sense the presence of beam. To allow the accelerator controls
to operate, the beam was intentionally intensified to about 2× 1010 in one of the 120 pulses
generated per second. This “witness pulse” was then sent into a beam dump before reaching
the target, and the experiment operated on the remaining 119 pulses per second.

Possible systematic errors associated with reversal of the electron spin are important to
this type of experiment. Correlations between beam current, beam energy, beam positions,
and beam angles on the target were available to the experimenters on a short time basis
from beam monitors. For this laser-driven photoemission source, the reversal of the laser
polarization is sufficiently free of unwanted effects such that all systematic errors from the
source were negligible.

B. The Electron Beam

1. Production and Transport

The electrons produced by the polarized source were accelerated to energies between 9
and 30 GeV in the linear accelerator. The electrons were then deflected through an angle of
24.5◦ in the A-line beam transport and were directed onto the polarized target in the ESA.

Because of its anomalous magnetic moment, the spin of the electron precesses by an
angle larger than that of the bend angle of the beam, according to the formula:

∆φ = π
(

24.5◦

180◦

)(
g − 2

2

)(
E

m

)
=
(

E

3.237

)
π, (33)
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where g is the gyromagnetic ratio, E is the energy (in GeV), m is the mass of the electron,
and ∆φ is the angle between the electron spin and the momentum at the target. When ∆φ is
an integral multiple of π, the electron spin is longitudinal at the target. The experiment was
run at energies of 9.71, 16.18 and 29.13 GeV, corresponding to 3π, 5π and 9π respectively.
By varying the energy around the nominal value and measuring the longitudinal polarization
in the Møller polarimeter, we verified that the chosen energy produced the maximum
polarization.

2. Beam Monitoring

The incident flux of electrons was measured independently in two identical precision
toroidal charge monitors in the ESA. These were frequently calibrated with a known charge
and agreed to better than 1%. The response of the toroids is independent of the polarity of
the beam.

The position of the beam at the target was monitored in two devices: a traveling-wave
radio-frequency beam position monitor which was non-interfering and was placed just in
front of the target, and a pair of secondary emission foil arrays with 1 mm spacing located
10.8 m downstream from the target. The former provided a direct measurement of beam
centroid position, and was used in an automatic feedback system to keep the beam on target;
the latter allowed a measurement of both the position and the transverse dimensions of the
beam by comparing the charge collected on the individual foils.

3. Beam Rastering

To minimize effects such as target depolarization from local beam heating and radiation
damage, the beam was moved or “rastered” across the face of the target. The beam position
was changed between pulses by means of a pair of air-core magnet coils located 67 m
upstream of the target. The lack of iron in these magnets allowed the fields to be quickly
changed under computer control. The beam at the target was rastered on a grid with a
spacing of 1.2 mm inside a circle of radius 10.8 mm for a total of 253 points. Thus, each
point in the target was illuminated only once every 2.1 seconds. The raster pattern skipped
every other point and row, so that subsequent pulses did not overlap, and the entire raster
pattern was completed in four passes. Because the dimensions of the beam (Gaussian σ of
2 mm horizontally and 1 mm vertically) were comparable to the raster spacing, the overall
illumination of the target was quite uniform inside the circle of the raster.

4. The Beam Chicane

For the measurement of g2, the target was rotated by 90◦ so that the target nucleons were
polarized transversely to the beam direction in the scattering plane. In this configuration,
the electrons in the beam passed through

∫
Bdl = 1.52 T-m as they traversed the target.

This was enough to deflect them through an angle of 0.90◦ at 29.1 GeV and to rotate the
polarization vector through an angle of 60◦. As a result, the beam after the target would
have no longer been parallel to the nominal beam-line, and in fact would have been about 30
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cm low at the exit of the ESA. More significantly, the deep-inelastic scattering would have
taken place at a different average angle and longitudinal polarization than in the parallel
case.

To compensate for the effects of this magnetic field, we inserted four identical dipole
magnets (the chicane) into the beam-line, three upstream and one downstream of the target.
The first magnet deflected the beam down by 0.45◦, and the second pair bent the beam back
up by twice this amount. This caused the beam to arrive at the center of the target with
both the momentum and polarization vectors horizontal. After exiting the target, the beam
was tilted downward, and the fourth magnet returned the beam to the horizontal so that it
left the ESA parallel to the nominal beam-line displaced vertically by only 3.5 cm at 29.1
GeV.

C. Beam Polarimetry

A Møller polarimeter was used to measure the beam polarization during the E143
experiment. This is a practical and reliable approach based on ~e + ~e → e + e scattering, a
spin-dependent QED process with large a cross-section and analyzing power. The expected
cross-section asymmetry can be calculated with high precision [84] and is not significantly
modified by radiative processes [85].

For a beam with longitudinal polarization PB and target with longitudinal polarization
PT , the beam polarization is measured by comparing the relative cross-section asymmetry
for beam and target spins aligned parallel (↑↑) and anti-parallel (↑↓):

ε =
dσ↑↑/dΩ− dσ↑↓/dΩ

dσ↑↑/dΩ + dσ↑↓/dΩ
= AZZ(θ)PBPT . (34)

The relative cross-sections are determined by detecting either of the scattered electrons or
both in coincidence.

1. Layout

A schematic of the polarimeter is shown in Fig. 2. The major components are a polarized
electron target, an acceptance-defining collimator, a dipole magnet spectrometer, and two
independent detector systems. One system detected the Møller electrons in coincidence,
whereas the other integrated the single electrons over the duration of the beam spill.

The polarized electron target consisted of six magnetized ferromagnetic foils of different
thickness which could be moved into the beam. The foils were magnetized to near saturation
by Helmholtz coils providing nearly 100 gauss at the target center. The permendur (49% Fe,
49% Co, 2% V) foils were 3 cm wide and varied in thickness from 20 µm to 150 µm.
The target electron polarization (typically 0.082) was determined to a relative accuracy of
1.7% [86] from foil magnetization measurements.

The tungsten collimator which was 20 radiation lengths thick (see Fig. 2) had a central
opening to allow the main beam to pass and wedge shaped apertures of constant azimuthal
acceptance (0.2 radian top, 0.22 radian bottom) above and below the beam-line to select
Møller electrons scattered transverse to the bend plane of the downstream dipole magnet.
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The vertical acceptance was 3.6–9 mrad in the lab (corresponding to 70–116◦ . in the
center-of-mass). The 2.1 T-m dipole field separated the scattered electrons according to
momenta. Since Møller scattering is elastic, the x and y position of the scattered electrons
at the detector plane are correlated as shown in Fig. 2.

The detector hut was situated 27 m downstream from the Møller target. The single-arm
detector package of three radiation lengths of lead and a single plane of position-sensitive
silicon detectors was placed immediately in front of the coincidence detectors. The
coincidence package consisted of two arrays of seven lead glass blocks (SF-6), each with
a 10×10 cm2 entrance area and 25 cm of depth (∼15 radiation lengths).

2. The Measurements

Measurements of the beam polarization were performed every one to two days. Each
measurement period typically consisted of four runs using two target foils (thin and thick)
and opposite target polarization directions. This made it possible to look for rate or helicity
dependent effects in the data. For polarization measurements, the beam rastering was turned
off and the beam focus was moved to the Møller target. Otherwise, the beam conditions
were identical to that of the main experiment. Data were obtained from almost 200 runs
over a range of luminosities (more than a factor of 8) through different combinations of
foil thickness and beam current. The coincidence polarimeter obtained a typical statistical
precision of 0.010 (absolute) per run whereas the single arm polarimeter achieved 0.019 per
run. Both detector systems took data at 29.1 and 16.2 GeV. The single arm collected data
with the 9.7 GeV beam.

3. The Coincidence Polarimeter

The segmented lead glass arrays provided good energy and timing information and made
it possible to accommodate the high instantaneous rates of several 10s of MHz characteristic
of the low duty factor (10−4) at SLAC. The combination of Čerenkov light in the glass blocks,
fast photomultiplier tubes, and a clipping circuit resulted in signal pulse widths as narrow
as five nanoseconds. The signals were fed into an Ortec 935 constant fraction discriminator
with the threshold set at 30–40% of typical Møller signal amplitude. The discriminator
output was then fed into a fast multiplexing circuit with a fanout to three or four TDC
channels. The time of each event was recorded by a LeCroy 2277 multi-hit TDC which has
a least significant bit time of one nanosecond. The multiplexor was required to decrease
the dead-time and increase the maximum hit capability of the individual TDC channels. A
laser pulser, triggered randomly ≤1/spill, was fed into each detector block simultaneously
through fibers to provide both time calibration and detector dead-time information for the
analysis.

The data were recorded on tape on a spill-by-spill basis as a series of event times and
corresponding TDC channels. The analysis identified coincidence events by the arrival of
single event times within a predefined time window of ±4 ns, determined by the resolution of
the TDC’s. Frequently, the analysis encountered ambiguous coincidence pair combinations
where a single event of one detector could be combined with events in two or more other
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detectors. Such ambiguities arose as a result of cross-talk between adjacent detectors due
to shower sharing or due to random coincidences, particularly at higher luminosities. In the
case of ambiguities, the cluster of all possible coincidences was subjected to a decision making
routine which selected the most probable combinations of events. In the case of cross-talk
events the full weight of the single coincidence event was shared with the adjacent coincidence
pairs. Background contributions consisted of random coincidences between Møller or Mott
type electron events. Their contribution, typically ≤1% was estimated from the product of
the singles rates in each conjugate detector.

The dead-time measurement was obtained using the laser pulser system which sent a
known pulse to all 14 detectors simultaneously. The efficiency at which both detectors of a
pair saw the pulser event yielded the live-time for that pair. It was also necessary to correct
for the possibility of two Møller events occurring in a given pair within the same coincidence
window. In such a case the system is only capable of seeing one of the pairs, an inefficiency
which would be unaccounted for in the dead-time correction. To correct for this effect an
estimate of the number of Møller coincidence events occurring during the pulser event was
added to the known number of pulser events for each pair.

A typical Møller coincidence time difference spectrum is shown in Fig. 3a. Two views of
a typical distribution of coincidence events in the two detector arms are given in Figs. 3b-c
for a run at 29 GeV. True Møller events were kinematically restricted to occur only in 11 (9
for the 16 GeV data) of the possible (7×7) 49 pairs. Radiative effects did allow some true
Møller coincidences to occur on the low momentum side of the ridge seen in Fig. 3c, but
these events were not considered in the total event yield due to poor signal-to-noise ratio
and greater uncertainties in the analyzing powers.

The beam polarization for each coincidence pair was determined from the asymmetry
in the yield corrected for background, dead-time, charge asymmetry, the effective analyzing
power of each pair, the target polarization and the target angle. The polarization for a run
was taken from the weighted average over all the pairs.

A Monte Carlo analysis [87] was used to determine the effective analyzing powers of
each coincidence pair and to evaluate the sensitivity of the analyzing powers to possible
systematic influences such as the atomic motion of the target electrons [88] and typical
shifts in the beam position or focus. The analyzing powers were found to range from 0.776
to 0.690 for the different pairs. The effect of the target electron motion was to increase the
average analyzing power by <0.5%. Typical beam parameter shifts resulted in changes to
the average analyzing power within ±0.6%. Since only one set of analyzing powers was used
at each beam energy, the ±0.6% variation was included as a source of systematic error. The
large acceptance of the detectors reduced the sensitivity of the analyzing powers to these
systematic influences.

The possibility of rate dependence was investigated in two studies. One study compared
low and high luminosity runs taken during a run set where little variation in polarization
was expected during the set. In this study the internal agreement between all measurements
of a run set was very good, resulting in an average χ2 per degree of freedom (df) of 1.1 for
all the run sets. Another study tested the effectiveness of the analysis routine in dealing
with ambiguities in the data which were most prevalent at high luminosity. Data taken from
subsequent spills of a low luminosity run were artificially superimposed to create a fictitious
spill of high luminosity. After imposing the detector dead-time on the single events the
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data were analyzed as a normal run, and the yields could be compared with the original
luminosity analysis. In both studies it was possible to rule out a rate dependence at better
than ±0.5%.

Despite the excellent agreement of the polarization results within a run set, a large
fluctuation in the average polarization values obtained from each coincidence pair was
observed. Although the sources of these fluctuations likely cancel in the average, their
origins are not clear. As a result a maximum error contribution of 1.3% was included. This
contribution reduced the χ2/df of the pair-dependent polarization distribution to unity. This
uncertainty was combined in quadrature with the uncertainties estimated for the analyzing
powers and the limit on a possible rate dependence to obtain a total systematic uncertainty
of 1.5% for the coincidence polarimeter measurement.

4. The Single-Arm Polarimeter

The single arm detectors had four silicon pad detectors above and below the beam height.
A lead converter absorbed soft photon backgrounds and amplified the Møller signal. Each
detector consisted of two 4 (x) by 6 (y) cm silicon devices approximately 300 µm thick.
Each device was segmented into 7 pads (channels) 8.70 mm wide and 40 mm long. Only
12 contiguous channels were instrumented in each detector. The detectors were tilted by
−10.5◦ (top) and +11.0◦ (bottom) to align the channels along the Møller scattered electron
stripe. Since each detector was formed from two silicon devices there was a 5.3 mm gap
between channels seven and eight.

The silicon detector channels were connected to 96 charge sensitive preamplifiers which
integrated over the entire 2300 ns beam pulse. The preamplifier outputs were brought into
ADCs to measure the peak of the preamplifier signal and were recorded together with the
sign of the beam polarization for each beam pulse.

The Møller analysis proceeded through two steps. The first-pass analysis calculated
average pedestal subtracted pulse heights and errors for each channel from the pulse-by-pulse
data. Separate averages were made for pulses tagged by right (R) and left (L) handed
polarization bits. Correlations between channels were calculated and recorded. A very loose
beam current requirement was made before including the pulse in the overall averages. A
summary file containing the ADC averages and errors as well as useful beam and polarimeter
parameters was written for each run. A second-pass analysis read the summary file, applied
channel by channel gain corrections, and formed sum (R+L) and difference (R–L) averages
and errors for each channel. Typical (R+L) and (R–L) line-shapes are shown in Fig. 4 for
data at 29.1 GeV.

The background under the unpolarized (R+L) Møller scatters was estimated by fitting
the (R+L) line-shape to an arbitrary quadratic background plus the line-shape expected from
unpolarized Møller scattering. The technique for estimating the unpolarized line-shape used
the observed (R–L) line-shape and angular smearing functions [86] to generate a predicted
(R+L) line-shape for Møller scatters. The observed (R+L) distribution was then fit by this
predicted line-shape and a quadratic background. Since the observed (R–L) line-shape is
already broadened by multiple scattering in the target material, beam windows, air, and
helium, only corrections to the line-shape which are different [88] for scatters from polarized
and unpolarized target electrons are included in the smearing function.
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An analyzing power for each detector was calculated from the target polarization and
the expected Møller asymmetry determined by Monte Carlo simulations of the scattering
process [87] and detector response. The effect of the target electron momentum distribution
[88] was to modify the expected asymmetries by 1.4%. The measured asymmetry for each
detector was calculated from the ADC averages by:

Ameas. =

∑
i(R− L)i −

∑
i(BKG)R−L∑

i(R + L)i −
∑
i(BKG)R+L

, (35)

where the sum is over the central five channels including the Møller peak. The (R–L)
background was estimated by averaging the channels far from the Møller peak. The (R+L)
background subtraction increased the measured asymmetry by 17–24%. The full covariance
matrix calculated from the pulse-by-pulse data was used to determine the statistical error
of Ameas. The beam polarization was calculated from the measured asymmetry divided by
the analyzing power.

To check for possible systematic biases in the single arm analysis, both the number of
channels included in the sum over the Møller peak and the shape of the background fit to
the unpolarized (R+L) line shapes were varied. From the observed spread in calculated
polarizations, the sensitivity of the single arm analysis to the choice of fit parameters
was estimated to be 1.3%. The polarization determined individually by each detector
agreed with the overall mean within statistical errors. The total systematic error of the
single arm analysis includes contributions from: the detector analyzing power, known to
≈ 0.5%, possible nonlinearities in the preamplifier and ADC response which could change
the computed polarization by ≤ 1.0%, and the sensitivity to analysis parameters, 1.3% as
discussed above. The total systematic error of the single arm analysis is estimated to be
1.7%.

5. Results

The polarization values measured by the single and coincidence arm polarimeters were
in good agreement, although the results from the coincidence system were on average 0.6%
lower than the single arm. Both systems measured the same polarization dependence on
the quantum efficiency of the polarized source, resulting in a linear decrease of source
polarization with increasing quantum efficiency. The polarized source quantum efficiency
time history is shown in Fig. 5. The variations in polarized source quantum efficiency were
related to the frequent cesiation treatments which were applied to the source in order to
maintain the source quantum efficiency at an acceptable level.

To obtain the beam polarization for the main analysis, the average polarization value
for each run set was computed separately for each polarimeter. The results from both
polarimeters are shown in Fig. 6 plotted as a function of source quantum efficiency. The
plotted errors are a combination of the computed statistical errors and an additional 0.8%
systematic error to account for non-statistical fluctuations in the data.

A linear fit to the single arm and coincidence data as a function of polarized source
quantum efficiency (QE) yields:

PB = (0.866− 0.34×QE)± 0.003 ± 0.022, (36)
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where the first error term is statistical while the second and dominant term is systematic.
The systematic error includes a contribution of ±0.8%, as discussed above, a ±1.6%
contribution from the average of the single arm and coincidence Møller systematic errors,
and a ±1.7% contribution from the uncertainty assigned to the target foil polarization. The
resultant systematic error is ±2.5%.

D. The Polarized Target

The polarized target required a high-power 4He evaporation refrigerator operating near 1
K, and a 5 T superconducting split pair magnet.1 The target material, frozen 15N ammonia,
was polarized using dynamic nuclear polarization (DNP). A schematic diagram of the target
is shown in Fig. 7 [89]. The magnet is shown with its field direction along the beam
momentum direction. The refrigerator is positioned vertically and along the axis of the
magnet. It is connected to a large Roots blower pumping system. The target insert lies along
the central axis of the refrigerator. This insert was slid up and down to position any one of
four targets in the beam. The targets were (from the top position) 15ND3, 15NH3, an empty
cell, and either carbon or aluminum. A fifth position having no target was also available.
The target insert also carried coaxial cables for the NMR measurement, a waveguide to
transmit microwaves to the target(s) for DNP, and various temperature sensors. A diagram
of the target insert is shown in Fig. 8.

1. DNP and Ammonia

The DNP process for polarizing protons, deuterons, or any nucleus possessing a magnetic
moment, requires temperatures of ∼1 K or less and large magnetic holding fields. For
thermal equilibrium at 1 K and 5 T, the proton polarization is only about 0.5%. However,
the polarization of the “free” electrons, associated with the paramagnetic radicals introduced
into the target material, is greater than 99%. The electron polarization can be transferred
to the proton through a hyperfine transition by irradiating the target with microwaves at
appropriate frequencies. The two polarization directions for the proton are reached by
irradiation at frequencies slightly above or below the electron Larmor frequency, ≈ 140
GHz at 5 T. Details of the DNP process can be found in the literature, e.g., Abragam and
Goldman [90] or Borghini [91]. In our case the magnetic field was held at 4.87 T to match
the frequency range (136 - 137 GHz) of the microwave tube2 being used.

Ammonia was chosen as the target material because of its relatively large dilution factor
compared to most other polarized target materials, its high polarizability, and its resistance
to radiation damage. Furthermore, 15N ammonia (spin 1

2
) was chosen over 14N (spin 1)

because in 15N the spin is carried by an unpaired proton, in contrast to 14N where the
spin is carried by a proton-neutron pair. Using 15NH3 reduces the systematic errors on the

1Oxford Instruments, Eynsham,UK

2CPI, Georgetown, Ont., Canada
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proton spin structure functions by eliminating unwanted contributions from the neutron
asymmetry. In addition, the 15N polarization is easier to measure.

The 15NH3 and 15ND3 targets were both prepared in the same way: First, the ammonia
gas was slowly frozen in a test tube; the resulting solid lump of ammonia ice was crushed
while immersed in liquid nitrogen and sifted to select granules of approximately 2 mm size.
Smaller pieces were recycled in the same apparatus.

The paramagnetic radicals necessary for DNP were introduced by irradiation using
various electron beams. Each sample was immersed in liquid argon and given a dose of
about 3−5×1016 electrons cm−2. Targets for E143 were irradiated at Bates (at an electron
energy of 350 MeV), at the Naval Postgraduate School, Monterey (65 MeV), and at the
High Energy Physics Laboratory at Stanford (30 MeV). Samples of 14N ammonia were
irradiated at Saskatoon (250 MeV) for the initial tests. All irradiated samples were packed
into thin-walled (0.0127 cm) torlon cylinders with 0.0025 cm aluminum end-cap windows.
Each cylinder was 3 cm long and 2.5 cm in diameter, and contained two NMR coils made
from 70/30 Cu/Ni tubing of 0.5 mm outer diameter and 0.0178 cm wall thickness. A straight
piece of tubing was used to measure the proton polarization in the NH3 cell and the residual
proton polarization in the ND3 cell. A coil of three to four turns with a 1 cm diameter
measured the deuteron polarization and 15N polarization in the ND3 target, while a similar
one measured the 15N polarization in the NH3 cell. During the course of E143 only the
proton and deuteron polarizations were measured; the 15N and residual proton polarizations
were checked after the experiment.

2. Polarization Measurement and Performance

The polarization was measured via NMR with a series-tuned Liverpool Q-meter [92].
Each spin species in the targets was measured with its own separately tuned Q-meter. Only
one Q-meter could measure at a given time, taking one polarization measurement per minute.
The Q of the tuned circuit is changed by the presence of the appropriate polarized nuclei,
and the integral of this response is proportional to the polarization. The response function
was determined by subtracting the Q-curve measured when the magnetic field was moved off
resonance from the Q-curve obtained when the magnetic field was moved on resonance. The
integral is normalized by comparing to the signal area at thermal equilibrium (TE) where

the polarization (PTE) can be calculated. For the proton, PTE = tanh
[
µB
kT

]
, where µ is the

magnetic moment of the proton and k is Boltzmann’s constant. Therefore, PTE = 0.0034
for B = 5 T and T = 1.5 K.

The TE signal for the proton is relatively easy to observe and measure, but the deuteron
TE signal is about 500 times smaller than this, and thus requires advanced techniques of noise
and drift suppression and signal averaging for a credible measurement [93]. Measurements
were made of the proton TE signal area to a precision of about 0.2%, but repeated
measurements, over a period of many weeks, showed considerable fluctuations in the mean
value. Including this scatter, the overall precision of measuring the TE polarization was ±
2.5%. For the deuteron the precision of measuring the TE signal area was ± 3% and ± 4%
overall. The fluctuation in signal area was attributed to small changes in the distribution
of ammonia granules around the NMR coils. Typical TE signals for polarized protons and
deuterons are shown in Fig. 9.
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In our initial measurements of 15N ammonia, the proton polarization performance was
similar to that seen previously [94] (>90%), but the deuteron only reached 13%. The
maximum deuteron polarization was expected to increase with in situ irradiation [95].
Figure 10, which verifies this expectation, shows how the proton and deuteron polarizations
performed as a function of beam dose for 5 x 1011 electrons/sec rastered over the face of a
target.

The polarization decayed with beam dose as the ammonia became radiation-damaged.
Once the polarization fell below a predetermined value, the other target was put into the
beam until its polarization dropped to a specified level. Then both targets were annealed
by warming them up to a temperature between 80 and 90 K. The sequence of polarization,
irradiation and annealing affected 15NH3 and 15ND3 differently. For the proton, annealing
brings the target back to its starting polarization, and there was no evidence of change over
the period of irradiation. On the other hand, the deuteron polarization improved after each
anneal, ultimately reaching a polarization of 42%. This value was obtained with frequency
modulation of the microwave source. Previously, at CERN, in the SMC experiment [96],
frequency modulation had been found to improve the polarization of deuterated butanol by
almost a factor of two. In deuterated ammonia the gain is more modest, with a factor of
two improvement in the rate of polarization which leads to a gain in absolute polarization
of 3− 5%. The level of proton polarization in Fig. 10 is lower than the expected maximum
of more than 90% seen in the early measurements. This was because the NH3 target was
situated below the ND3 target which absorbed some fraction of the microwave power.

After the experiment the 15N polarizations were measured as a function of both proton
and deuteron polarizations. Residual proton polarizations were measured in the deuteron
case. In addition, the protons in the torlon target cups became polarized once the electron
beam created paramagnetic centers in that material. This led to a 3% correction of the
proton polarization. The polarization values were also corrected for effects arising from
inhomogeneities in target polarization due to local beam heating as discussed below.

The average polarizations for the entire experiment were 0.70 with a relative precision
of 2.5% for the proton and 0.25 with a relative precision of 4% for the deuteron.

3. Beam Heating Corrections

As the beam passes through the polarized target, the temperature of the ammonia
granules increases, and the polarization drops. By rastering the beam over the face of
the target, this depolarization effect is greatly reduced. The average polarization measured
by the standard NMR technique is generally not the same as what the beam sees locally.
One reason for this is that ammonia granules outside the raster radius do not experience
the same depolarization from beam heating as the granules inside the raster radius. The
measured polarization, however, reflects a combined polarization of all the target granules.
Another reason is that the polarization during the beam spill may be lower than during the
time between spills when no beam heats the target. This latter effect has been studied in
detail [97] and has been shown to be very small. Hence, it has been neglected in the present
analysis.

If z is the relative contribution of the rastered granules to the NMR signal, then
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Pm = zPT + (1− z)Pi, (37)

where Pi is the initial polarization with no incident beam, Pm is the measured polarization
with incident beam, and PT is the true polarization of the rastered granules. We define a
correction to the measured polarization Cheat as

1− Cheat ≡ PT /Pm =
Pm − (1− z)Pi

zPm
. (38)

The parameter z depends on the geometry of the NMR coils, which is different for NH3 and
ND3 targets, and on the direction of the target polarization (longitudinal or transverse).
Values for Pi, Pm, PT , z, and Cheat and the corresponding errors are given in Table II for a
maximum beam intensity of 4× 109 electrons/pulse. The errors on z include uncertainties
for the target granule settling effect and for the rastering radius due to the finite size of the
beam spot. For the ND3 targets there is an additional uncertainty in the diameter of the
4 turns of the NMR coil. The corresponding corrections at other beam intensities can be
extracted using the knowledge that the measured target depolarization is proportional to
beam intensity.

E. Spectrometers

Two large acceptance spectrometers, situated at 4.5◦ and 7.0◦, were used to detect
the electrons scattered from the polarized target. The momentum acceptance of each
spectrometer arm ranged from 7 to 20 GeV/c. Each spectrometer contained two dipole
magnets, bending in opposite directions in the vertical plane, two gas threshold Čerenkov
detectors, two scintillation hodoscope packages, each consisting of several planes, and an
array of lead glass total absorption shower counters which were 24 radiation lengths in depth.
The 4.5◦ spectrometer also contained a quadrupole magnet which was needed to spread the
scattered electrons over a larger detector area. A schematic of the spectrometers is shown
in Fig. 11.

The two-bend design was chosen to have maximum acceptance over a wide momentum
range, and to shield the detectors from the considerable photon background produced by the
electron beam interacting in the thick target. The Čerenkov detectors allowed discrimination
against a large pion background. The hodoscopes were used to reconstruct the trajectory of
each particle, which in turn could be used to determine the momentum and other kinematic
variables. Finally the shower array provided the energy measurement as well as particle
identification information.

The spectrometers were almost identical to those used in the E142 experiment [10].
The magnets, however, were operated at somewhat higher fields to accommodate the larger
momenta of scattered electrons due to the higher beam energy. Also, the hodoscopes were
modified to handle a higher instantaneous rate.

The two scintillator hodoscope arrays provided the track information of the incident
particles for each spectrometer, and consisted of horizontal (y), vertical (x), and slanting
(u) planes of fingers. The upstream hodoscope array contained four planes: u, x, and two y;
the downstream hodoscope array contained an x, y, and u plane. The first y plane in each
hodoscope array consisted of scintillator elements of 3.0 cm width, while the elements of the
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second y plane in the upstream hodoscopes were 4.76 cm wide. The elements in the first x
plane of the 4.5◦ spectrometer were 2.0 cm wide, and the remaining x plane elements were
3.0 cm wide. The u planes contained elements that were 4.5 cm and 7.5 cm wide for the
front and back hodoscopes respectively. Within each plane the hodoscope fingers overlapped
by 1/3 of the width on both edges, resulting in a bin width of 1/3 of the element width.
The moderately fine hodoscope segmentation (∼210 scintillator elements per spectrometer)
was chosen to tolerate the large photon and neutron backgrounds and to reconstruct with
sufficient resolution the trajectory of the scattered particles. The signal from each finger was
discriminated and fed into a multi-hit TDC which recorded all signals in a 100 ns window
around each trigger.

The separation of the two hodoscopes was 5.0 m in the 4.5◦ spectrometer arm and 5.1 m
in the 7.0◦ arm. The scattering angle resolution at the target in the non-bend plane was
0.3 mrad for both spectrometers, whereas for the bend plane, it was ±0.9 mrad for the 4.5◦

arm and ±0.3 mrad for the 7.0◦ arm. The ideal momentum resolution was dependent on the
absolute value of momentum and varied from ±0.3% to ±3.2% for the 4.5◦ arm and from
±0.6% to ±3.8% for the 7.0◦ arm.

The upstream Čerenkov counters were 2.24 m long aluminum tanks filled with nitrogen
gas at a pressure of 6.3 psi for a pion threshold of 9 GeV, and the downstream counters were
4.3 m tanks containing nitrogen at 3.0 psi for a 13 GeV pion threshold. Pions below these
threshold momenta did not emit Čerenkov light. The shorter tanks had inner radii of 60
cm and effective radiator lengths of 2.0 m, while the larger tanks had inner radii of 80 cm
to cover the large spectrometer acceptances, and had effective radiator lengths of 4.0 m. To
minimize δ-ray production and multiple scattering effects, thin tank entrance/exit windows
were made from 1 mm thick aluminum.

Inside the tanks, spherical mirrors were positioned to reflect all of the emitted Čerenkov
light back onto a single Hamamatsu R1584-01 five-inch photomultiplier tube coated with a
p-terphenyl wavelength shifter and maintained at a base voltage of -2600 V. The mirrors had
a radius of curvature of 1.63 m and 1.2 m for the large and small counters, respectively, and
had reflectivity close to 90%. The large counters contained three mirrors vertically stacked
and mounted on an adjustable frame for focusing purposes, and the small counters contained
two mirrors mounted similarly. Signals from each photomultiplier tube were discriminated
at four levels corresponding to 0.6, 1.5, 3, and 4 photoelectrons and fed into four channels
of multi-hit TDC’s as well as an ADC.

An electromagnetic shower calorimeter was positioned at the downstream end of each
spectrometer. Each detector consisted of two hundred 6.2 × 6.2× 75.0 cm Schott type F2
lead glass blocks stacked 10 wide and 20 high in a fly’s eye configuration. The glass had
a radiation length of 3.17 cm and refractive index of 1.58. The incident electrons created
showers via bremsstrahlung and e+/e− pair production in the lead glass. Electrons (and
positrons) produced Čerenkov light in an amount proportional to the incident energy. The
light was collected by phototubes attached to the back of the glass. To monitor the blocks, a
high intensity Xe flash lamp system (Hamamatsu L2360) was installed in each calorimeter.
The lamp delivered a luminous signal to each block via plastic optical fibers. The signal
from one of the fibers, as well as that from a 241Am source, was read out by a monitoring
photomultiplier tube and sent to ADCs to detect possible Xe lamp intensity fluctuations
and to monitor ADC gain changes by looking at shifts in averaged signals.
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F. Trigger

The trigger consisted of a triple coincidence between discriminated signals from the
two Čerenkov counters and the analog sum of the shower counter elements. The shower
discriminator threshold was set to be greater than 99% efficient for the lowest energy
electrons and the Čerenkov thresholds were set to be efficient for one photoelectron signals.
Up to four triggers could be generated in each beam spill. Each shower and Čerenkov
counter signal was fanned out to four separate ADCs, and each trigger gated a different set
of these ADCs. The detector signals to the multi-hit TDC’s were filtered by a sub-trigger
to reduce noise hits. Additional triggers were used to record a small fraction of the pions
and to measure detector efficiencies.

G. Data Acquisition

The data acquisition (daq) was distributed over a number of computers linked together by
an ethernet-based network which implemented DECnet for communications. The distributed
nature of the daq allowed us to build a system which could service interrupts at 120 Hz,
read typically 3 KB of data for each interrupt, write data to tape at a sustained rate of
nearly 300 KB/sec, control the electron beam position on target on a pulse-to-pulse basis,
and analyze a substantial fraction of the event data online.

A VAX4000.200 qbus computer, referred to as real time front end (RTFE), was
interrupted at 120 Hz, read data from three CAMAC branches, built an event, and then
sent it via network to the data logger computer, a VAX4000.60 workstation. The RTFE ran
an application which was developed with DEC’s VAXeln development toolkit. The VAXeln
application was able to access hardware resources more efficiently than usually possible
under the DEC VMS operating system. Also, task scheduling was under programmer
control. The data logger computer controlled two SCSI EXB8500 Exabyte tape drives.
Event data received from the RTFE were packed into record-size buffers (approximately 32
KB in size) and written to tape. The data logger computer also distributed a sample of
the event data via network to two VAX4000.60 workstations, one for online data analysis
in each spectrometer. The event data were analyzed and various histograms and tables
were presented for viewing in X11/Motif windows. Special purpose analyses could be
performed by other VAX workstations which connected to the network. The electron beam
was monitored and controlled by a microVAX II computer which, like the RTFE, was
loaded with a VAXeln application specially developed for this task. A VAX cluster boot
node, VAX4000.300 computer, was used to control, monitor, and log information on the
spectrometer magnets and their power supplies, detector high voltage power supplies, NIM
and CAMAC crate voltages, scalers, target parameters, pedestals, etc.
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IV. DATA ANALYSIS

A. Event Selection

Events which produced a trigger were further analyzed to identify electrons amid a
background of mostly pions, and to determine the energy, momentum, and scattering angle.
Raw asymmetries were then formed from the number of scattered electrons coming from
each of the two states of incident electron polarization directions. These asymmetries are a
function of x, Q2, and beam energy.

Particle tracking was performed using the spatial and timing information provided by
the hodoscopes and shower counter. Once a track was found, the particle’s momentum and
scattering angle were reconstructed. The efficiency of the hodoscope package was found to
be 91% for the 4.5◦ spectrometer and 96% for the 7.0◦ spectrometer. The tracking efficiency
was about 98% for the 4.5◦ and 99% for the 7◦ spectrometer. The hodoscope and tracking
efficiencies were worse for the small angle spectrometer due to the higher count rate.

The shower counter was used to measure the energy deposited by the incident particle
and to provide electron identification. In order to use the shower counter for energy
measurements, it was necessary to calibrate each block for differences in phototube, lead
glass, and ADC channel responses to the electrons. This was achieved using clean electron
events which were selected using knowledge from the other detectors. In an iterative process,
a set of calibration constants for the glass blocks was determined by requiring that the total
energy of the cluster be equal, on average, to the momentum of the event.

Once calibrated, the shower counter was used to select electrons by comparing the energy
of the particle as measured by the shower counter (E′) to the momentum of the particle
as measured by the hodoscope tracking system (P ). Rejection of pions was achieved since
typically electrons deposit all of their energy in the shower counter while pions do not. Thus,
the electron events had an E′/P peak centered around unity, whereas the E′/P values for
pions were in general much less than one. By making a cut around the electron peak of
0.8 < E′/P < 1.25, we were able to reject the majority of pion contaminants left in our
data sample. The E′/P requirement was approximately 96% efficient for electrons, and left
a pion contamination of less than 1%. A sample plot of E′/P for this experiment is shown
in Fig. 12.

Electrons could also be identified over pions using the spatial profile of the shower formed
by the incident particle. These profiles vary significantly depending on the type of incident
particle. In particular, pion shower clusters are much smaller than electron clusters, and
many of them are fully contained in one block. Electron clusters are typically contained in
nine glass blocks. For electrons, the central block contained 50% to 90% of the energy and
the eight neighbors contained the rest. We used a shower counter neural network algorithm
[99] which modeled a typical electron cluster profile to determine which events were electron
events and which were background. The neural network was approximately 98% efficient for
identifying electrons and left a pion contamination of about 0.5%.

To further ensure a clean electron sample, spatial, timing, and pulse height cuts were
made. A cut requiring a minimum Čerenkov ADC pulse height of 40 (more than two
photoelectrons) was made yielding an efficiency of 95-99% for the four counters. Next,
we required that the track used for the momentum measurement was within 40 mm,
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horizontally and vertically, of the cluster from the shower counter that was used for the
energy measurement. The track and the cluster were required to be within 10 ns of each
other, and the track was required to point back to the target to within 13 mm to eliminate
bad tracks. In addition, the few events with clusters on the outer edges of the shower counter
were rejected due to the possibility of energy leakage from the sides of the counter.

B. Asymmetries and Corrections

Electrons passing the event selection cuts were binned in x such that the resolution in
x was slightly finer than the binning. The electrons were also tagged according to their
relative target and beam helicity states, N↑↓(↑↑), and which spectrometer they entered. The
asymmetries A‖ and A⊥ were formed:

A‖ (or A⊥) = C1

(
1

fPbPt

NL −NR

NL +NR
− C2

)
+Arc. (39)

Here f is the dilution factor, Pb and Pt are the beam and target polarizations, Arc is the
radiative correction to the asymmetry, and C1(2) are the corrections needed due to the
presence of nitrogen in the targets, with C2 disappearing for the proton target. These
corrections are discussed in more detail below. Here NL(R) is the number of left or
right-handed helicity events corrected as

NL(R) = N (raw)
L(R)

dL(R)

QL(R)

(40)

where dL(R) is the appropriate dead time correction and QL(R) is the appropriate incident
charge.

1. Polarized Nitrogen and Residual Proton Corrections

In measuring the proton and the deuteron asymmetries, it was necessary to correct for
events which scattered from other polarizable nuclei in the target aside from the desired
protons or deuterons [100]. The targets were made of 15NH3 and 15ND3, and both the 15N
and the ≈2% contamination of 14N were polarizable. In addition, the 15ND3 target contained
≈1.5% of unsubstituted or residual polarizable protons from 15NH3.

The polarization of 15N and the residual protons was measured after the experiment. The
unpaired proton in 15N contributes to the measured proton asymmetry proportionally to the
nitrogen polarization and with a negative sign because of the negative magnetic moment of
15N. For the target material 15NH3, the following fit was used to express the 15N polarization
PN in terms of the polarization of the protons Pp:

PN = 0.136Pp − 0.183P 2
p + 0.335P 3

p ≈ 0.12. (41)

The correction Cp
1 to the proton asymmetry (Cp

2 = 0) which is referred to in Eq. (39) is
given by:
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Cp
1 = 1− 1

3

1

3

PN
Pp
gEMC(x) ≈ 0.98. (42)

Here gEMC(x) is the correction for the EMC effect [101] taken at atomic mass number 15.
The first factor −1

3
comes from Clebsch-Gordan coefficients involving the nitrogen wave

function. The second factor 1
3

reflects the fact that ammonia has three hydrogen atoms for
each nitrogen atom. The error on the second term in Cp

1 was estimated to be about 20%
relative which yields a systematic error of 0.004 on Cp

1 . Here the contribution of 14N to the
asymmetry was neglected.

For the target material 15ND3, the corrections were more complicated because they
account for both the residual protons and the unpaired proton in the 15N. For each case,
the correction involved the measured proton asymmetry.

The 15N polarization PN is given by

PN = −0.40Pd, (43)

where Pd is the polarization of the deuterons. The residual proton polarization is expressed
as:

P res
p = 0.191 + 0.683 Pd for Pd > 0.16

= 1.875 Pd for Pd ≤ 0.16 (44)

The polarization of 14N was obtained from the measured 15N polarization by assuming that
the polarization was equal and opposite in sign to that of 15N. The corrections used in
Eq. (39) for the 15ND3 target are given by:

Cd
1 =

1

1− ηp +Dn/(1− 1.5ωD)
≈ 1.02 ,

Cd
2 =

UpF
p
2

UdF d
2

(Dn −Dp)(A
p − Arc) ≈ −0.03(Ap − Arc). (45)

Ap is the final proton (Born) asymmetry A‖ or A⊥, and by subtracting the appropriate
proton radiative correction Arc we are left with the radiated asymmetry. Up and Ud are the
radiative corrections to the unpolarized cross-sections. The remaining factors are defined as

ηp =
number of protons

number of deuterons + number of protons
≈ 0.015 ,

Dn = ηN
PN
Pd

g
EMC

(x)

9
,

Dp = ηp
P res
p

Pd
+ (2ηN − 1)

PN
Pd

g
EMC

(x)

9
, (46)

ηN =
number of 14N

number of 14N + number of 15N
≈ 0.02 .

The error on Cd
1 was neglected since this value was very small and stable. The factor Cd

2

contains the proton asymmetry and was calculated for each x-bin using the measured proton
asymmetry and its error.
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2. Background Subtraction of Positrons and Pions

The data collected in each of the spectrometers included background events coming
from a small number of misidentified pions and from electrons produced in pair-symmetric
processes (mostly π0 → 2γ, γ → e− + e+). This background (mostly pair-symmetric) was
responsible for up to 10% of the events in the lowest x-bin, but close to zero events for x > 0.3.
To measure the background, data were taken with the spectrometer magnets’ polarity flipped
to measure π+ and e+. The same cuts were applied to eliminate the majority of pions as in
the electron runs. A positive particle asymmetry A+ was formed and was corrected just as
in the case of the electron asymmetry A− for varying experimental conditions such as beam
and target polarizations. This positive particle asymmetry was found to be consistent with
zero. The background-corrected electron asymmetry was determined by

A = A−
N−

N− −N+
− A+

N+

N− −N+
, (47)

where N−, N+ are the number of events per incoming charge for electron and positron
runs. The misidentified pion background was subtracted along with that of the positron
background since A+ also contained a measure of the misidentified pions and assuming
Aπ+ ∼ Aπ−.

3. False Asymmetries

It is important to make sure that our experimental data are free from significant false
asymmetries which could systematically shift the data. During the experiment, data were
taken (either longitudinal or transverse) with the target B-field pointing in either one of the
two possible directions. For each field direction, two different target polarization directions
were used, parallel or antiparallel to the B-field. We then had four different configurations,
and approximately the same amount of data were taken for each configuration, thus
cancelling out the electroweak contributions to our measurement so that no correction to the
data was necessary. The asymmetries in each configuration were compared by looking at the
χ2 distributions of the asymmetry differences. For the proton, the χ2 distributions were all
nicely centered at one, and the mean value of the asymmetry differences was approximately
one standard deviation from zero. For the deuteron the results were slightly worse, yet still
very reasonable. The χ2 distributions were centered around one with a few points greater
than two, and the mean values of the asymmetry differences were within two standard
deviations of zero. We conclude that there were no significant systematic effects on the
asymmetry due to changes in target B-field or target enhancement field directions. Also, no
statistically significant variation of the asymmetry was found for either NH3 or ND3 targets
as a function of raster position.

4. Dilution Factor

In general, incident electrons will scatter both from polarized target nucleons and
unpolarized nuclei that are part of the target assembly. These unpolarized materials include
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liquid helium, 15N, NMR pick-up coils, and vacuum windows. Scattering from unpolarized
materials will dilute the measured asymmetry, and a correction must be applied. The
dilution factor f is a function of x and Q2, and is defined as the ratio of the total event rate
from polarizable nucleons, to the total event rate from all target materials. The measured
asymmetry is then corrected for unpolarized events by dividing by the dilution factor.

For a material of density ρ and thickness z, the event rate from Born processes was
calculated as follows:

r(x,Q2) = ρz
[
ZF p

2 (x,Q2) +NF n
2 (x,Q2)

]
gEMC(x,Q2), (48)

where Z and N are the number of protons and neutrons in the nucleus. F p
2 and F n

2 are
unpolarized proton and neutron deep-inelastic structure functions. They were obtained
from a parameterization of the NMC data [102]. The factor g corrects for the “EMC effect”
which accounts for the difference in nucleon cross sections for free and bound nucleons.

With this model for rates, the dilution factor can then be calculated as follows:

f(x,Q2) =

(
rpol(x,Q2)

rpol(x,Q2) +
∑
i ri(x,Q2)

)
× rc, (49)

where we are summing the rates from all unpolarized materials which contribute to the
overall event rate. The factor rc corrects the dilution factor for radiative effects and was
typically less than a 5% correction.

The target material was in the form of frozen granules which were tightly packed into a
target cell. The volume fraction of the target cell which the target material occupied is known
as the packing fraction, and was determined independently by three different methods. The
first consisted of studying the difference in event rates for empty, carbon, and full target
cells. The second method was a measurement of the attenuation of a mono-energetic X-ray
beam as it passed through the target material. The attenuation of the incident beam is
directly related to the thickness and attenuation coefficient of material it passes through,
and was therefore sensitive to the packing fraction. Finally, the target material was weighed,
and the packing fraction was determined using the known volume of the target cell. The
measured packing fraction was different for each target used, and varied from 0.57 to 0.64.

Over the kinematic range of interest, the dilution factor typically varied from 0.15−0.19
for the NH3 target and from 0.23− 0.25 for the ND3 target, with relative errors of 2% and
1.5%, respectively. The error on the dilution factor comes from several sources. The packing
fraction was known to 4% for both targets. The relative error from the cross-section ratio
σn/σp was 1.0% [103]. This was one of the dominant errors for the NH3 target and did not
contribute to the ND3 target. The ratio of nuclear to deuterium cross sections, the EMC
effect, is known to 1.5% relative and was another large source of error. This effect has a 1%
overall normalization and another 1% uncorrelated error [101]. The small mass of the NMR
coil (∼0.1 gm) was known to 20% but did not contribute significantly to the overall error.

5. Dead Time

All the signals from various detectors went through discriminators before forming the
various triggers. These discriminators have an output pulse width of 25 ns and a double
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pulse resolution of 8 ns. They were operated in an updating mode such that a second
signal entering the discriminator after 8 ns and before 25 ns produced a single output pulse
with an extended width. The effective dead time was 32 ns instead of 25 ns, due to slight
mis-timing between various signals and signal jitter, especially from the shower counters.
Rates measured with each beam helicity were corrected separately.

Using a Monte Carlo simulation, the probability matrix M(i, j) for observing i hits when
there were really j hits was generated using a typical spill length of 2200 ns and a dead time
of 32 ns as inputs. The observed trigger frequency distribution To(i) is related to the true
distribution (without dead time) Tt(i) by

To(i) =
∑
j

M(i, j)× Tt(j). (50)

Since there are practically no hits beyond 10, the sum is safely truncated at j = 16. The
matrix M is inverted to solve for Tt(i), and the dead time correction factor d to the measured
rates is defined as

d =

∑16
i=1 iTt(i)∑4

i=1 iTo(i) + 4
∑16
i=5 To(i)

. (51)

Here, the sum over To is split into two parts because only four triggers could be recorded
per beam spill.

The correction factor varies smoothly from 1 at very low rates to 1.07 at an average rate
of 2 events/pulse. The systematic error on the corrections was calculated assuming upper
and lower limits to the beam width of 2600 ns and 1800 ns. The dead time was found to be
accurate to a few parts in 1000, and the error for the corrected asymmetry by applying these
factors is found to be less than 2× 10−5, which is completely negligible. No uncertainty in
the dead time itself was considered because only the ratio of the beam spill length to the
dead time is important.

6. Radiative Corrections

Our experimental goal was to measure a single photon exchange process (Born) at specific
kinematics. In reality there are higher order contributing processes (internal), and the actual
scattering kinematics can change due to energy losses in materials along the electrons’ paths
(external). The radiative corrections account for these unwanted effects.

The radiative correction calculation is different for the unpolarized (σu) and polarized
(σp) components of the helicity-dependent cross sections which are given by σ↑↓ and σ↑↑ for
a longitudinally polarized target, and σ→↓ and σ→↑ for a transversely polarized target. The
longitudinal and transverse asymmetries can be written as

A‖ =
σ↑↓ − σ↑↑
σ↑↓ + σ↑↑

=
(σu + σp↑)− (σu − σp↑)
(σu + σp↑) + (σu − σp↑) =

σp↑

σu
,

A⊥ =
σ→↓ − σ→↑
σ→↓ + σ→↑

=
(σu + σp→)− (σu − σp→)

(σu + σp→) + (σu − σp→)
=
σp→

σu
, (52)

which is equally valid for Born, internally radiated, or fully radiated cross sections and
asymmetries. For the remainder of the radiative correction discussion, quantities which are
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Born, internally radiated, or fully radiated are subscripted with 0, r, and R respectively.
Also, for simplicity, references to a particular target polarization are dropped such that A
could be either A‖ or A⊥, and σp could be either σp↑ or σp→.

Calculation of the polarization-dependent internal corrections was done using code based
on the work of Kuchto, Shumeiko, and Akusevich [104], who are also responsible for the
development of their own code POLRAD. The two codes were carefully compared and found
to be completely equivalent when the same input models were used. The calculation of the
internally radiated cross sections can be decomposed into components:

σpr = σp0(1 + δv) + σpel + σpq + σpin,

σur = σu0 (1 + δv) + σuel + σuq + σuin, (53)

where δv includes corrections for the electron vertex and vacuum polarization contributions,
as well as a term that is left after the infrared-divergent contributions are cancelled out. The
vacuum polarization correction includes contributions from both leptons and light quarks.
The terms σel, σq, and σin are the radiative tails due to internal bremsstrahlung (occurring
within the field of the scattering nucleon) for elastic, quasielastic, and inelastic scattering
processes.

The nuclear elastic tail for the deuteron was evaluated using fits to data [105] over a large
range inQ2. The elastic tail for the proton (and quasielastic for the deuteron) were evaluated
using various form factor models [106] which agree well with existing data over the kinematic
region. Note that some of these models agree well with data for some of the four elastic form
factors and not others, so different models were combined for the best representation of all
four nucleon elastic form factors. Quasielastic cross sections were Fermi-smeared only for
corrections to our resonance data since this smearing has a negligible impact on the radiative
correction in the deep-inelastic region. Unpolarized cross sections were modeled using fits
to structure function data in the deep-inelastic region [102,78], and fits to cross sections in
the resonance region [107,108]. The polarized component to the deep-inelastic cross sections
was modeled using Q2-dependent fits to A1 as given in this paper. The polarized resonance
region model was based on parameterizations of previous data and data presented here. For
the transverse contributions, we used g2 = gWW

2 [68] or g2 = 0 which are both consistent
with our data.

The external corrections account for bremsstrahlung radiative effects which occur as the
electrons pass through material in their path. Ionization effects were completely negligible
at our kinematics. At any given interaction point within the target the radiative correction
depends on the amount of material (in radiation lengths) the electron sees before (tb) and
after (ta) scattering. Because the radiation lengths before and after scattering did not
vary significantly over the beam raster area, it was not necessary to integrate the external
corrections over the raster area. Also, it was an excellent approximation to replace the
target integration over the length of the target with the evaluation of the external radiative
corrections at one point, namely the center of the target. At this point, tb = 0.026, ta = 0.047
for the 4.5◦ spectrometer, and ta = 0.040 for the 7◦ spectrometer. These radiation lengths,
which are valid for both our proton and deuteron polarized target, are dominated by the
target material, but also include contributions from various windows which are not part of
the polarized target itself. The external corrections were thus calculated using [109]

34



σpR(E0, E
′
F , θ) =

∫ Eo

Emin

∫ E′max

E′F

Ib(E0, E, tb)σ
p
r(E,E

′, θ)Ib(E
′, E′F , ta)[1−D(E0, E, Z)]dEdE′

σuR(E0, E
′
F , θ) =

∫ Eo

Emin

∫ E′max

E′
F

Ib(E0, E, tb)σ
u
r (E,E′, θ)Ib(E

′, E′F , ta)dEdE
′ (54)

where E0 is the electron initial energy, E′F is the final scattered electron momentum, and
Emin and E′max are the minimum incident energy and maximum scattered energy as defined
by elastic scattering. Ib(E1, E2, t) is the probability [109] that a particle with initial energy
E1 ends up with energy E2 after passing through a radiator of thickness t, and D(E0, E, Z)
is the electron depolarization correction [110] which corrects for the depolarization of the
electron beam due to the bremsstrahlung emission of polarized photons. This correction
depends weakly on the Z of the target material.

An additive correction Arc to the data was formed by taking the difference between the
fully radiated and Born model asymmetries

Arc = A0 − AR =
σp0
σu0
− σpR
σuR
. (55)

Our fits to A1 and the radiative corrections were iterated until they converged. For
the purposes of statistical error propagation on our measured asymmetries, a “radiative
correction dilution factor” frc was evaluated. This dilution factor is simply a ratio of events
coming from deep-inelastic processes to all events and multiplies the usual dilution factor in
Eq. 39. We only used frc for the error propagation and not for correcting the data directly.
Systematic uncertainties were estimated by varying input models within reasonable limits
and measuring how much the radiative correction changed. These uncertainties for the
various models were then combined in quadrature for each x bin. Results for Arc are listed
with data in Tables III-VIII, XVI-XIX, and XXXVI-XXXVII.

C. Analysis of Resonance Region Data

The resonance data [111] were taken with a 9.7 GeV beam. The spectrometer angles
of 4.5◦ and 7◦ corresponded to Q2 ' 0.5 and 1.2 (GeV/c)2 in the resonance region
(W 2 < 5 GeV2), respectively. We have extracted g1 from the measured asymmetries A‖,
and from the absolute cross-section differences given in Eq. 7. Each method has its own
set of systematic errors. The difference method requires good knowledge of spectrometer
acceptances, the number density of polarizable protons or deuterons in the target, and
detector efficiencies. The asymmetry method requires knowledge of the dilution factor for
the resonance region, which means an accurate model of the rapidly varying unpolarized
cross sections is needed. We found that the two methods agreed to within a fraction of the
statistical errors on each point (typically better than 3%). In our previous report [16] we have
used the difference method. The current reanalysis uses the asymmetry method, since we
now believe that the systematic errors are slightly better in this case. Other improvements
on Ref. [16] include better modeling of the resonance region for radiative and resolution
effects.

The resonance asymmetries were calculated as specified in Section IV.B for the
deep-inelastic analysis. In the present case, we have determined the dilution factor f using a
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Monte Carlo routine as described below. The term Arc also included a resolution correction
in the resonance region.

We developed a Monte Carlo code which simulated all relevant aspects of the experiment.
It was used to predict total count rates and count rate differences from a set of tables
of cross sections and asymmetries generated by the radiative corrections routine. The
unpolarized cross sections came from parameterizations for the resonance region [107] and
the deep-inelastic region [102,78]. The asymmetries contain both resonant and non-resonant
contributions. The resonance contribution was calculated using the code AO [112], which
includes parameterizations of all of the existing resonance data; however, the helicity
amplitudes A 1

2
and A 3

2
for S11 and D13 were tuned to agree with our data. The non-resonant

part came from a parameterization of all existing deep-inelastic data (Fit III of Ref. [5]),
which was extrapolated into the resonance region. Specifically, for W 2 < 2.5 GeV2, A1

was given by the tuned AO result alone; above W 2 = 3.0 GeV2, A1 was taken as the sum
of the AO resonant contribution and the Fit III inelastic background; and in the region
2.5 < W 2 < 3.0 GeV2 the two extremes were linearly interpolated. A2 was calculated using
gWW

2 , which yields values close to zero. The model-dependence of this choice for A2 was
determined by alternately considering g2 = 0 and A2 = 0.

The observed raw parallel asymmetry Araw
‖ is proportional to the combination of photon

asymmetries A1 + ηA2. Therefore, we first extracted A1 + ηA2 from the data, and then
deduced g1 from this using various assumptions about g2. The following steps were required
to produce A1 + ηA2 and g1:

1) The radiative corrections code was run with the options as specified above to create the
Born cross sections, the Born asymmetries, and the predicted values of A1, A2, g1 and g2

for both NH3 and ND3 targets at E143 kinematics.

2) The radiative corrections code was run to create tables of cross sections and asymmetries
over a wide range of kinematics, fully internally radiated, to use as input to the Monte Carlo
generator.

3) The Monte Carlo routine was run for both polarized protons and deuterons alone, and
for full ND3 and NH3 targets. This simulation included external radiation, spectrometer
acceptance, resolution, multiple scattering and Fermi motion, as well as the reconstructed
kinematic variables and raw asymmetries.

4) The raw data was corrected for efficiencies, polarization, polarized nitrogen and polarized
protons in ND3 using the standard E143 procedure. Then, the data was corrected by the
dilution factor (the ratio of Monte Carlo events from polarizable protons or deuterons
to those from all target components), and the additive radiative correction term Arc

(obtained from the difference between fully radiated Monte Carlo results and the model
Born asymmetry) was applied in order to generate the fully corrected values of A‖.

5) The ratios (A1 + ηA2)/A‖ and g1/A‖ were used as calculated in the Born version of the
radiative correction routine to find g1 and A1 + ηA2 for our data.

This extraction method required that the Monte Carlo routine provide a detailed and
realistic simulation of the data, including resolution effects which are very important in
the resonance region. Therefore, we performed a series of tests to insure that the Monte
Carlo simulation described the data well, and provided radiative and resolution corrections
with sufficient precision compared to the statistical accuracy of our data. Without any
normalization factors, the generated unpolarized counts versus W 2 agree with the data to
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better than 2.2% (3.4%) in the 4.5◦ (7◦) spectrometer. The shape as a function of W 2 is
in even better agreement in the region of the resonances. This provides confidence that the
acceptance and resolution of the spectrometer are properly modeled. In addition, we have
found that the measured and simulated count-rate differences agree well with each other.
These rates were integrated over the (quasi-)elastic region (W 2 < 1 GeV2) where model
uncertainties are minimal because of reasonably good knowledge of elastic form factors and
radiative corrections. The overall χ2 for the four degrees of freedom corresponding to p(4.5◦),
p(7◦), d(4.5◦) and d(7◦) is 3.85.

V. RESULTS AND COMPARISON TO THEORY

Table III gives the results for Ap
‖ and Ap

⊥ with the proton target for the beam energy of
29.1 GeV and for the 4.5◦ and 7◦ spectrometers, respectively, along with the total radiative
corrections to each point. Tables IV-V give the results for Ap

‖ and radiative corrections for
the beam energies of 16.2 and 9.7 GeV and for the two spectrometers. Tables VI-VIII give
the corresponding results for the deuteron target. Since the 29 GeV data include both A‖ and
A⊥, Eqs. 4 are used determine the asymmetries A1 and A2, and Eqs. 2 are used to determine
the structure functions g1 and g2 and the ratio of structure functions g1/F1. The NMC fit
[102] was used for F2. The SLAC global analysis [78] was used for R. While the fit to R was
made to data with a limitedQ2 range and x ≥ 0.1, it is consistent with recent measurements
at lower x [113,114] and different Q2 [115]. Estimated errors on these unpolarized structure
functions are given in Section V B. The neutron spin structure function can be extracted
from the deuteron and proton results in a manner similar to that used for the unpolarized
structure functions. For both g1 and g2 we use the relation:

gn(x,Q2) = 2gd(x,Q2)/(1− 1.5ωD)− gp(x,Q2), (56)

where ωD is the probability that the deuteron will be in a D-state. We use ωD = 0.05± 0.01
[116] given by N-N potential calculations. No other nuclear contributions to ωD are included.
The neutron asymmetries can then be calculated using Eqs. 4.

A. A1 and g1

For beam energies of 16.2 and 9.7 GeV there are no A⊥ data available. We have assumed
that g2(x,Q2) is given by either gWW

2 or g2=0, both of which are consistent with our g2

data at 29 GeV. These different assumptions lead to very similar results. We have then
determined A1 and g1 using Eq. 5.

Tables IX and X show the values of g1/F1 and A1 for deep-inelastic scattering (W 2 ≥
4 GeV2) for all three beam energies and both spectrometers using g2 = gWW

2 for the 16.2
and 9.7 GeV data and A‖ and A⊥ for the 29.1 GeV data. Figures 13 and 14 show g1/F1 for
proton and deuteron as functions of Q2 averaged into 8 x bins. Data from EMC [6], SMC
[7,9,14], SLAC E80 [2], and SLAC E130 [3] are also included. The results are consistent
with g1/F1 and A1 being independent of Q2 for Q2 ≥1 (GeV/c)2. We fit all the deuteron
and proton data, (including the SMC data at Q2 ≤ 1) with the empirical parameterization
axα(1 + bx+ cx2)[1 +Cf(Q2)]. The coefficients of the fit are shown in Table XI, and the fits
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are shown in Figs. 13 and 14. We chose three forms for f(Q2) shown in Column 3 of the
table. They are

• f(Q2) = 0: no Q2 dependence.

• f(Q2) = 1/Q2: higher twist behavior.

• f(Q2) = ln(1/Q2): pQCD behavior.

The minimum Q2 of the fits is shown in Column 2 and is either 0.3 or 1.0 (GeV/c)2.
For the proton data, the χ2/df is less than unity for all the fits except fit I, indicating that
there is Q2 dependence for Q2 ≤ 1 (GeV/c)2. Fit II indicates that there is no need for any
Q2-dependent term for Q2 ≥ 1 (GeV/c)2, which is our cut-off for deep-inelastic scattering.
For the deuteron data, the fits are not as good, but still have a confidence level of about
10%. Fit V, which has Q2

min = 0.3 (GeV/c)2, is used to evaluate gWW
2 and to iterate the

radiative corrections described above.
Also shown in Figs. 13 and 14 are the results from the E154 [117] leading order pQCD

evolution fit to world data including preliminary results from this experiment. It is in good
agreement with the data, including the data for Q2 ≤ 1 (GeV/c)2 which was not used in the
fit. However, for the proton it does have an exaggerated Q2 dependence at the highest x.
Since g1/F1 and A1 are both consistent with being independent of Q2 for Q2 ≥ 1 (GeV/c)2,
we choose to combine our data at fixed x by averaging them over all measured values for
Q2 ≥ 1 (GeV/c)2. Tables XII and XIII and Fig. 15 show these averaged values as a function
of x. The band at the bottom of Fig. 15 represents the size of the systematic errors. Also
shown are results from other experiments [6,7,9,14] averaged in a similar way. The various
experiments are in agreement with each other. Results for g1/F1 and A1 are similar at low
x and diverge slightly at high x. For the proton, both g1/F1 and A1 are small and positive
at low x and rise steeply toward unity as x → 1. For the deuteron, both g1/F1 and A1 are
close to zero at low x and increase slowly with increasing x. For the neutron, both g1/F1

and A1 are negative over most of the x region, showing almost no indication of becoming
positive at high x as expected from earlier predictions [27].

Table XIV shows g1 at the averaged measured value of Q2 obtained from the average
value of g1/F1. The quantity gn1 was obtained using Eq. 56. Figure 16 shows xg1 as a
function of log x. The area between the data and zero is the integral forming the sum rules∫ 1

0 g(x)dx =
∫ 0
−∞ xg(x)d lnx.

B. Systematic Errors

The systematic errors were calculated for g1/F1, A1, and g1. Only the systematic error due
to A‖ was considered since the systematic errors due to A⊥ were negligible compared to the
statistical errors. Some of the errors were multiplicative and independent of x while others
were x-dependent. The errors due to multiplicative factors (beam and target polarization)
are shown in Table XV. The errors on g1 and g1/F1 from these normalizations were obtained
using a smoothed fit to g1/F1. The breakdown of the major sources of error for a sample of
our x bins is shown in Tables XVI-XIX for deuteron and proton targets for both g1 and g1/F1.
The radiative correction error dominated at low x. The errors due to multiplicative factors
were only significant when either g1 or g1/F1 were large at middle and high x, respectively.
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Multiplicative systematic errors:

• The error of the beam polarization PB was estimated to be 0.024 (relative). See
Section III C 5.

• The error of the target polarization PT had a relative systematic error of 0.025
for protons and 0.04 for deuterons. The error was assumed to be 100% correlated
between runs, since the systematic error was obtained from the spread of the thermal
equilibrium measurement results, each of which provided the calibration constants for
large groups of runs. See Section III D 2.

• The proton in nitrogen correction (see Eq. 42) contributed with a 0.004 relative
systematic error since the correction C1 was always around 0.02, while the relative
error on C1 was estimated to be 0.2.

Systematic errors dependent on x:

• The error of the dilution factor f came from several sources. The component dependent
on our experimental setup (the amount of ammonia in the target cell) was known to
4% for both targets. The relative error from the cross-section ratio σn/σp was 1% [103].
It was one of the dominant errors for the NH3 target and did not contribute for the
ND3 target. The ratio of nuclear to deuterium cross sections, the EMC effect, is known
to 1.5% relative and was another large error source. It has a 1% overall normalization
and another 1% of uncorrelated error [101]. The small mass of the NMR coil was
known to 20% but did not contribute significantly to the overall error. This leads to
an average error on f of 2% for NH3 and 1.5% for ND3.

• The nitrogen correction was applied via two factors, C1 and C2 (see Eq. 45). The error
on C1 was neglected since this value was very small and stable. The factor C2 (ND3

only) contained the proton asymmetry and was calculated for each x bin using our
measured proton asymmetry and its error.

• The systematic error on the radiative corrections was calculated for each x bin by
varying several classes of input models. See Section IV B 6 for details. It is shown in
Tables XVI-XIX for typical values of x at 29 GeV beam energy for g1 and g1/F1.

• The error due to the structure function R(x,Q2) contributed to g1/F1 and g1 quite
differently due to the relationship between F1 and F2. For g1 the effect of R is negligible
whereas for g1/F1 it is one of the significant errors. Its systematic error was taken from
the SLAC global analysis [78] and ranged from 3% to about 7.5%. While this fit to
R was made to data with a limited Q2 range and x ≥ 0.1, it is consistent with recent
measurements at lower x [113,114] and different Q2 [115].

• The error in the structure function F2 was obtained from the NMC fit [102]. The error
returned from the fit was taken as completely correlated point-to-point.

• Pion and charge-symmetric backgrounds were treated as statistical errors from the
measurement with spectrometers set at opposite polarity. No systematic error was
assigned to the model of charge symmetry.
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When averaging g1/F1 over spectrometers and beam energies, the weight of each
data point included statistical and point-to-point uncorrelated systematic errors. For the
systematic error of the neutron structure function gn1 as well as of the difference gp1− gn1 , the
beam polarization error and the dilution factor errors due to the unpolarized cross sections
were assumed to be 100% correlated, while the other errors were assumed to be uncorrelated.

The systematic error on the integral was calculated using the separated correlated and
uncorrelated systematic errors. The systematic errors of the low-x and high-x extrapolations
were added together with the systematic error for the data region. The sum was then
quadratically combined with the fit errors for the low- and high-x extrapolations to yield
the total systematic error on the integral.

C. Integrals

The Ellis-Jaffe (Eq. 21) and Bjorken (Eq. 20) sum rules involve integrals over all values
of x at a fixed Q2. The experimental results do not cover all x at any single Q2. In the
measured region of x we must either interpolate or extrapolate our results from the measured
Q2 to some fixed Q2

o. In the regions of x above and below the measured region, we use
model-dependent extrapolations.

1. Measured Region

Several methods have been used to determine g1 at fixed Q2
0.

• 1) Assume g1/F1 is independent of Q2 and determine g1 from g1(x,Q2
o) = g1/F1 ×

F1(x,Q
2
o).

• 2) Assume A1 is independent of Q2 and determine g1 from [g1(x,Q2
o) = A1(x) ×

F1(x,Q2
0) + γ2

og
WW
2 (x,Q2)].

• 3) Fit the data to a functional form which has semi-empirical dependencies on x and
Q2 such as the fits described above.

• 4) Do a pQCD fit to determine the quark and gluon distributions and then calculate
the change in g1 going from the measured to the desired kinematics.

In this paper we will pursue the first two options with emphasis on the first. We note
that the pQCD fits indicated in Fig. 13 and 14 show little Q2 dependence (compared to
the errors of the experiments) for g1/F1 at x ≤ 0.5 in the relevant Q2 range. For x ≥ 0.6,
theoretical papers often use approximations in defining the relationship between F2 and F1

and sometimes use pQCD fits to F2 instead of empirical fits to the data. At x = 0.75
typical pQCD fits [59,117,118] show gp1/F

p
1 differing by 30-50% between the measured

Q2 ∼ 9.5 (GeV/c)2 and Q2 = 3 (GeV/c)2, but these predictions are questionable due to the
assumptions used.

Tables XX-XXII list g1 as a function of x at fixed Q2 values of 2, 3, and 5 (GeV/c)2

for proton, deuteron, and neutron. These results were evaluated by method 1 (g1/F1

independent of Q2). Figure 17 shows the corresponding method 1 results for g1 at
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Q2=3 (GeV/c)2. Results for
∫ 0.8
0.03 g1(x)dx using methods 1 and 2 (A1 independent of Q2,

gWW
2 ) at the same three values of Q2 are given in table XXIII. Method 1 yields slightly

larger results in magnitude than method 2, but the difference is smaller than the total error
for all targets at fixed Q2 ≥ 3 (GeV/c)2. The components of the systematic error on the
integral are shown in Table XXIV. The correlated systematic errors due to beam and target
polarization and F2 dominate. The radiative correction errors tend to be anti-correlated
between low and high x and thus partly cancel in the integral.

2. Low x

The evaluation of
∫ 0.03

0 g1(x,Q2
o)dx can be done by several methods.

• 1) Using Regge trajectory-type behavior, g1 = xαg0
1 at fixed Q2 and low x. The

difference gp1-gn1 has isospin 1 and only one Regge trajectory contributes. The value
of α is in the general range 0.5 ≥ α ≥ 0 [119,120,121]. For the individual proton and
deuteron targets there may be more than one pole contributing [119]. There also may
be even more complex behavior of the singlet term.

• 2) Using SMC data from 0.003 ≤ x ≤ 0.03 and Regge extrapolations below x = 0.003.

• 3) Using the form g1 ∝ ln(1/x) [121, 122].

• 4) Using the parameterization II from Table XI (the form is Regge inspired at low x).

• 5) Using pQCD fits.

The Regge method requires a choice of x range to determine the pole parameter and
a choice of other possible Regge trajectories. In addition, if g1 has Regge behavior at a
given Q2, it will not have Regge behavior at other Q2 since g1 evolves with Q2 differently at
different values of x. Table XXV shows the results of various options, including using the
Regge form at Q2=1 and 3 (GeV/c)2. Constraining α = 0 gives good fits at both Q2=1 and
3 (GeV/c)2. However, requiring α = 0.5 gives a rather poor fit (χ2/df ≈ 2) for the proton.
We take the average of the four fits in Table XXV with α = 0 as the central value of the
low x extrapolation. The error encompasses all the other models indicated. These averages
are shown in Table XXVI. The values of the integral for proton, deuteron, neutron, and
proton–neutron (p–n) may not add up exactly due to the non-linearity of the fits.

Recent results from SLAC [11] indicate that gn1 may be behaving as ∼ x−0.8 at low x.
If the proton behaves in a similar way, then the above extrapolations would be open to
question.

3. High x

The extrapolation to high x was done by two methods: 1) assuming g1 ∝ (1 − x)3

[123] and fitting to the four highest x bins; 2) assuming Ap
1 = 0.75(19 − 16F n

2 /F
p
2 )/15 and

An
1 = 0.75(2 − 3F n

2 /F
p
2 )/(5F n

2 /F
p
2 ) [27]. For both gd1 and gp1 , both methods gave almost

identical values of
∫ 1
0.8 g1(x)dx. For the deuteron the value is 0.000 and for the proton 0.001.
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We assign an error of ±0.001 in both cases. For the neutron the value of the integral is
0.001 ± 0.001 where rounding errors account for inexact match with proton and deuteron
results. The small value of the integral is mostly due to the small value of F1 and not the
properties of the individual models. The average values are shown in Table XXVI.

4. Total Integral

Table XXVI shows Γ1, the total integral from x = 0 to 1, in the last column for proton,
deuteron, neutron, and the difference proton–neutron. The experimentally measured portion
of the integral makes the largest contribution to δΓ1 with the low x extrapolation error a
close second. The correlation between the measurement errors at low x and the extrapolation
errors is small compared to the model dependence of the extrapolation.

The integrals from this experiment, E142 [10], and SMC [7,9,14] are compared in
Table XXVII at Q2 values reported by the other experiments. Comparisons are made
for the full range in x of 0 to 1, as well as for the common measured x range between
experiments. For each comparison, we evaluated the integral using the same assumptions
about Q2 dependence that the other experimenters used. (SMC results were calculated
by us from their tables). In the experimental range there is good agreement between this
experiment and the other results. Γ1 for each experiment, as shown in Table XXVII, are also
in excellent agreement with the caveat that different x ranges were measured and different
extrapolations used in the unmeasured region.

5. Ellis-Jaffe Sum Rule

Ellis-Jaffe sum rule predictions for the integrals (Eq. 21) are shown at three values of Q2 in
Table XXVIII. We use αs(MZ) = 0.118±0.003 [26], three active flavors, and 3F −D = 0.58
[27] with uncertainties of either 0.03 (small) [27] or 0.12 (large) [20]. This larger error, as
discussed in Section II B 1, is likely to be an overestimate. For the Ellis-Jaffe sum rule, the
values for both the “invariant” and Q2-dependent singlet pQCD corrections (see Eq. 17) are
given. They differ by an amount which is larger than the theoretical error due to αs. In the
case of the deuteron, the experimental errors are comparable to the theoretical difference.
The measured values of Γp1 and Γd1 are shown in the table along with the derived value of Γn1 .
Using the small errors on 3F −D and the “invariant” singlet term the Ellis-Jaffe sum rules
are violated by 0.023±0.007 (deuteron) and 0.032±0.012 (proton). A violation implies that
there could be a significant SU(3) symmetry breaking effect or that there is strange and/or
gluon spin contributing to the proton spin. If we consider the large 3F −D errors (larger
error due to possible symmetry breaking) combined with the Q2-dependent singlet term, the
deviations from the sum rule reduce to 0.018± 0.015 (deuteron) and 0.027± 0.019 (proton).

6. Bjorken Sum Rule

The Bjorken sum rule integral (Eq. 20) is given in Table XXVIII for three different
values of Q2. The theoretical value involves only non-singlet pQCD corrections and
is thus independent of ambiguities associated with the singlet corrections (invariant or
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Q2-dependent). Theoretical errors depend only on the uncertainty in αs. The measured
values are from this experiment only and the errors include all correlations. The experimental
errors are considerably larger than the theoretical errors. Experiment and theory agree
within one standard deviation.

A more precise result can be obtained by combining all the experiments [7,9,6,11] which
published a value of the integrals. SLAC experiment E154 [11] on the neutron was not
included because they did not publish an integral of their data alone. We consistently
used the method with g1/F1 independent of Q2 to evolve the results to constant Q2. In all
experiments, the low-x extrapolation errors were limited to g1 being constant or approaching
zero as x → 0. At Q2=5 (GeV/c)2, the combined results are: ΓBj1 = 0.170 ± 0.012,
Γp1 = 0.130± 0.006, and Γn1 = −0.040± 0.008 with a very small χ2/df. ΓBj1 is one standard
deviation from the theoretical value of 0.182 determined from Eq. 20 with αs(MZ) = 0.118.
The addition of higher twist and other effects described below make the agreement even
better. If we assume the Bjorken sum rule is true and solve Eq. 20 for αs we obtain
αs(Mz) = 0.123+0.010

−0.006.

D. Quark Polarization

We used Eqs. 14-15 to extract our measured value of a0 from the proton and deuteron
first moments. Then using Eq. 20 (with ∆G = 0), we extracted the individual polarizations
of the quarks. It is important to remember that these polarizations have meaning
within the quark-parton model where a0 = ∆Σ. In pQCD the interpretation becomes
scheme-dependent and depends on whether ∆G(x) contributes to Γ1. The results are shown
in Table XXIX and Fig. 18. Results for both the “invariant” and Q2-dependent pQCD
singlet coefficients are shown in the table while the figure shows “invariant” results. The
quantities a0, ∆u, and ∆d are relatively insensitive to the values of F and D, but ∆s is very
dependent on them. The last two columns of Table XXIX show the errors on ∆s with two
different estimates on the errors on 3F −D. As seen in Fig. 18 the results from the deuteron
and proton targets are consistent with each other (there is only a small correlation between
the errors). The differences between the “invariant” and Q2-dependent results are smaller
than the present experimental errors. The negative polarization of the strange quark sea
of about −0.08 is very significant only if the smaller estimates of F and D are used. Our
averaged proton and deuteron results for ainv0 = 0.33± 0.06, while the world average yields
a0 ∼ 0.31 ± 0.04. The results for a0 are significantly smaller than the naive parton model
prediction of ∆Σ = 1, the relativistic parton model prediction of 0.75, the Ellis-Jaffe sum
rule prediction of 0.58, and a Quenched Lattice Calculation of 0.60± 0.05 [124]. With such
a low value of a0, angular momentum conservation (see Eq. 9) requires that the nucleon spin
be dominated by a combination of gluon polarization and orbital angular momentum, or a
large charm polarization not included in the formalism above (Eqs. 14-20). There have been
several approaches to understanding the low value of a0. These are described in Section II.
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E. A2 and g2

Tables XXX-XXXII show A2 and g2 for each target and spectrometer (and the derived
neutron) with beam energy of 29.1 GeV. Figures 19-20 show A2 and xg2 for each target and
spectrometer. The systematic errors are indicated by the bands. Also shown in Fig. 19 are
the results from SMC [9,14] for the deuteron and proton and from E142 [10] and E154 [15] for
the neutron. All results are shown at their measured Q2. There is good agreement between
the various experiments. As seen in Fig. 19, the values of Ad

2 are consistent with zero, while
the values of Ap

2 deviate significantly from zero for x ≥ 0.1. For this experiment the average
value for all x of A2 is 0.031 ± 0.007 for the proton, 0.003 ± 0.013 for the deuteron, and
−0.03± 0.03 for the neutron. The measured A2 obeys the

√
R bound within errors, and at

almost all kinematics the absolute value of the measured values are significantly lower than
the bound. The dashed curve is a calculation of gWW

2 from Eq. 25 using g1 evaluated from a
fit to world data discussed in Sec. V A of this paper. The gWW

2 curves for the 7◦ and the 4.5◦

kinematics are indistinguishable on the figure. The other theoretical curves are bag model
predictions [56,57] which include twist-2 and twist-3 contributions for Q2 = 5 (GeV/c)2. At
high x the E143 results for gp2 indicate a negative trend consistent with the expectations for
gWW

2 with a χ2 of 43 for 48 degrees of freedom. However, the results are also consistent with
gp2=0 with a χ2 of 52. The deuteron and neutron results are less conclusive because of the
larger errors and are also consistent with both gWW

2 and g2 = 0. The moments of g2 will be
discussed below along with the moments of g1.

F. Higher Moments of g1 and g2

Using our results for both g1 and g2, we have computed the third moment of the OPE
sum rules (Eq. 26), and solved for the twist-3 matrix element d2 and the twist-2 matrix
element a2. For the measured region 0.03 < x < 0.8, we evaluated g1, corrected the twist-2
part of g2 to fixed Q2=5 (GeV/c)2 assuming g1/F1 is independent of Q2, and have averaged
the two spectrometer results. Possible Q2 dependence of g2 was neglected. We neglect
the contribution from the region 0 ≤ x < 0.03 because of the x2 suppression factor. For
0.8 < x ≤ 1, we assume that both g1 and g2 behave as (1−x)3 since at high x, g2 ≈ −g1 from
Eq. 4 and F1 → 0, and we fit the data for x > 0.56. The uncertainty in the extrapolated
contribution is taken to be the same as the contribution itself. The results are shown in
Table XXXIII. Our extracted values for d2 are consistent with zero, but the errors are large.
For comparison, in Table XXXIV we quote theoretical predictions [52,55,56,57,58] for dp2 and
dd2. For dd2 the proton and neutron results were averaged and a deuteron D-state correction
was applied. We note that the results for dp2 and dd2 differ in sign from the theoretical QCD
sum rule calculations [52,55,58]. The bag model predictions [56,57], however, are of the same
sign as the data. Ali, Braun and Hiller [125] showed that g2 obeys an evolution equation in
the limit that Nc →∞. However, this program of calculation has not been carried out yet.

To test the Burkhardt-Cottingham sum rule, Eq. 28, we have evaluated the integrals∫ 1
0.03 g

p
2(x)dx = −0.014 ± 0.028 and

∫ 1
0.03 g

d
2(x)dx = −0.034 ± 0.082 using the same high-x

extrapolation as discussed above. These results are consistent with zero. To evaluate the
integral for x ≤ 0.03 is theoretically challenging. A double logarithmic approximation has
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been used [126] to calculate both g1 and g2 in the low-x region yielding g2 ∝ x−0.75 at a fixed
Q2 of a few (GeV/c)2. Then

∫ 0.03
0 g2(x)dx is negligible and the sum rule is confirmed.

G. Higher Twist Effects

We have compared our experimental integrals with theoretical predictions using pQCD
for the finite Q2 corrections to various sum rules, which were originally derived at infinite Q2.
At low Q2 it is possible that higher twist effects could also influence the evolution of g1. These
terms generate a multiplicative term of the form {1 +C/[Q2(1− x)]} [127]. When going to
very high order in pQCD there is a confusion between resummation effects generating 1/Q2

terms and the higher twist terms. There have been several calculations of the corrections
to Γ1 using QCD sum rules and the bag model (see the reviews [128]). These take the form
of an additive correction to the sum rule of the form µt/Q2 where t=p, n, or d for proton,
neutron, or deuteron. From QCD sum rules [25,54] the higher twist contribution to Γ1 is:

ΓHT1 =
M2

N

Q2
(a2 + 4d2 + 4f2) +O(

M4
N

Q4
) =

µ

Q2
+O(

M4
N

Q4
) (57)

where a2 (twist-2) and d2 (twist-3) have been calculated from data above and f2 is twist-4.
The contribution to µ from a2 and d2 is 0.004 for the proton and 0.002 for the deuteron,
which are quite negligible at our average Q2 = 3 (GeV/c)2 and small compared to the
estimated contributions from f2. Table XXXIV shows calculated values of µp2 and µd2 using
bag models and QCD sum rules. The sum rule calculations average about −0.02 for the
proton and −0.013 for the deuteron and thus would have an effect on the calculation of
Γ1 at our average Q2 of 3 (GeV/c)2 comparable to our experimental error. The bag model
calculations are similar in magnitude but opposite in sign to the sum rule calculations. A
different type of calculation, using a diquark model [130] gives a higher twist contribution
of a different form than Eq. 57, which numerically is 1% or less of both ΓBj1 and Γp1 for
Q2 ≥ 2 (GeV/c)2. Using data from this experiment, Ji and Melnitchouk [80] have extracted
values for the twist-4 matrix element f2. Combining this with results for a2 and d2 they find
for the proton µp2 = 0.04± 0.02, and for the neutron µn2 = 0.03± 0.04.

The QCD sum rule higher-twist correction and a Pade summation of the perturbative
terms have been applied to the Bjorken sum rule (Eq. 20) by Ellis et al. [129]. They then
use world data, including the preliminary results from this experiment, and find excellent
agreement between experiment and theory. Working backwards, they determine the best
value of αs is 0.117+0.004

−0.007± 0.002 where the first set of errors is experimental and the second
theoretical, in excellent agreement with the world average of 0.118± 0.003.

H. Pion Asymmetry

The asymmetries for π+ and π− for our primary energy of 29 GeV corresponding to target
polarization parallel and anti-parallel to the beam direction (Aπ

‖) are shown in Figs. 21-22.
These data were measured using our polarized NH3 and ND3 targets, and were corrected for
beam and target polarizations as well as dilution to obtain the asymmetries from polarized
protons and deuterons. The asymmetries are small, but for the proton may be slightly
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positive for both signs of pions at small momentum. Table XXXV gives the pion asymmetry
at the beam energy of 29.1 GeV for proton and deuteron targets. Data for other beam
energies and for the target spins oriented perpendicular to the beam direction have much
larger statistical errors and are consistent with zero.

I. Resonance Region

Results for A1 + ηA2 extracted via the asymmetry method for the resonance region
(W 2 < 5 GeV2) are shown in Table XXXVI and in Fig. 23. Also shown in Fig. 23 is the
data of Baum at al. [132]. The two data sets agree within the errors of both measurements.
The asymmetry is negative and close to the expected value A1 = −1

2
for the ∆ resonance.

In the region of the D13 and the S11 resonances (W 2 ∼ 2.34 GeV2) A1 + ηA2 is large and
positive. Although η is large for our kinematics, a small value of A2 would imply that
A1 + ηA2 is ≈ A1.

Table XXXVII lists the systematic errors on A1 + ηA2 by category. The procedure for
estimating these is as follows: a) radiative corrections (Arc): the maximum deviation in
the radiative correction resulting from a 50% change in the input asymmetries; b) model
dependence (model): the worst-case change due to using various cross-section models in
the extraction of A1 + ηA2 from A‖; c) central angle (θ): uncertainty due to the location
of the central angle of the spectrometers; d) energy calibration (E′): uncertainty due to
the spectrometer energy calibration; e) spectrometer resolution (Resol): the maximum
difference obtained by varying the width of the hodoscope fingers by 20% and re-running the
Monte Carlo routine; f) polarization (PbPt): combined uncertainty in the beam and target
polarizations; g) dilution factor (f): uncertainty based on the variations in the calculated
dilution factor with various cross-section models and the stated uncertainty in the target
composition; h) R(x,Q2) (R): uncertainty arising from lack of knowledge of R = σL/σT ; i)
no transverse data (g2): uncertainty in the extraction of g1 from A1 + ηA2 due to the lack
of knowledge about A2. This was estimated using the maximum deviations in g1 assuming
A2 = 0 and g2 = 0. Even if A2 were as large as 0.3, the extracted values of g1 would shift
by less than 0.014, which is small compared to the statistical errors on each point. By far
the largest error comes from radiative and resolution corrections.

In addition to A1 + ηA2, Table XXXVI also shows the results for g1 for the resonance
region. Figure 24 shows g1 for proton and deuteron (per nucleon) measured with the two
spectrometers as a function of W 2. The data of Baum et al. [132] are taken at similar
kinematics and converted to g1 for comparison by assuming A2 = 0. Within errors, the two
measurements agree well. Both data sets show a negative contribution in the region of the
∆(1232) resonance at W 2≈1.5 GeV2, and a strongly positive contribution just above W 2 = 2
GeV2 where the S11 and D13 resonances are important. This peak is less pronounced for
the deuteron. The solid lines show the Monte Carlo simulation.

Figure 25 shows the integrals Γ1(Q2) for proton and neutron, evaluated at the average Q2

for the resonance region (M2 < W 2 < 4 GeV2). We summed our resonance results directly
(where Q2 does not vary much) and then added a contribution from smaller x (larger W 2)
at the same fixed Q2 by interpolating the 9.7 and 16 GeV data to the appropriate Q2. The
neutron integrals were derived assuming a 5% D-state probability for the deuteron. The
statistical errors assigned to the integral over the deep-inelastic region (ΓDIS

1 ) correspond to

46



the weighted average of the statistical errors on the corresponding 9.7 and 16.2 GeV data
points used in the interpolation. Systematic errors on the total integral Γtot

1 were calculated
using the systematic uncertainties for the measured g1 in the resonance region added linearly
to the systematic errors for the deep-inelastic region, which are highly correlated with each
other. For the x < 0.03 extrapolation we simply took the overall parameterization of the
data and integrated it from x = 0 to x = 0.03. Extrapolation errors for the region below
the last measured datum at x = 0.03 were taken to be as large as the values themselves.
Table XXXVIII lists for each target the numerical values for the integrals in the resonance
region alone (Γres

1 ), in the deep-inelastic region (ΓDIS
1 ), for the low-x extrapolation (Γext

1 ),
and for the combined total (Γtot

1 ).
Although several models for the Q2 evolution of Γ1(Q2) exist [53,133,134,135,136], we

show here only two representative ones, together with the evolution [33] of the world’s
deep-inelastic data due to the changing coupling constant αS. Although the GDH sum rule
is strictly valid only at Q2 = 0 where Γ1(Q2) vanishes, it can be used to predict the slope
of Γ1(Q2) for small Q2. The solid line at low Q2 shows Γ1 = −κ2Q2/8M2 in which κ is
the anomalous magnetic moment of either the proton or neutron. Burkert and Ioffe [135]
consider the contributions from the resonances using the code AO, and the nonresonant
contributions using a simple higher-twist-type form fitted to the deep-inelastic data. Their
model is constrained to fit both the GDH and the deep-inelastic limits, and it describes
the data quite well. Soffer and Teryaev [136] assume that the integral over g1 + g2 varies
smoothly from high Q2 where g2 ≈ 0 down to Q2 = 0. Using their simple prediction for this
integral and subtracting the contribution from g2 using the Burkhardt-Cottingham sum rule
[69] gives the dashed curves in Fig. 25, which also agree quite well with our data.

The present spin structure function data in the region of the nucleon resonances allow
us to determine the integrals Γ1(Q2) for the first time at Q2 below 2 (GeV/c)2. In contrast
to the nearly flat behavior in the deep-inelastic region above Q2 = 2 (GeV/c)2, Γ1 varies
rapidly below Q2 = 2 (GeV/c)2. Models that interpolate between the deep-inelastic and
GDH limits describe the data quite well in this non-perturbative regime.

VI. CONCLUSION

In summary, we have presented final results from SLAC Experiment E143 on the spin
structure functions g1 and g2 for proton and deuteron targets covering a wide range of
kinematics from the deep-inelastic to the resonance region. For deep-inelastic data the ratio
g1/F1 is consistent with being independent of Q2 for Q2 ≥ 1 (GeV/c)2, but also consistent
with pQCD NLO fits which show a weak Q2 dependence. We have evaluated the first
moments of g1, using a Regge form for the unmeasured low x region. The Ellis-Jaffe sum
rules are a function of the SU(3) parameters F and D and the validity of the sum rules
depend critically on the errors assigned to these parameters. We find ainv0 = 0.33 ± 0.06,
and in the parton model interpretation we find the average results: ∆u = 0.84 ± 0.02,
∆d = −0.42 ± 0.02, and ∆s = −0.09 ± 0.02 or ±0.05 depending on δF/D. Combined
world data are consistent with the Bjorken sum rule at the one standard deviation level
of 7%. Results for the twist-3 matrix element extracted from the higher moments of g1

and g2 are consistent with calculations within the large errors. The resonance region data
show the theoretically expected asymmetries at the ∆(1232) peak and larger than expected
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asymmetries (at least at low Q2) in the region of the S11 and D13 resonances. The first
moment of gp1(Q2) decreases with decreasing Q2 at low Q2 toward the GDH sum rule limit
as predicted by several models. The asymmetry of pions is close to zero.

With the current round of experiments we now have good knowledge of the distribution
of quark spins for x ≥ 0.003. A complete understanding of the spin structure of the nucleon
awaits experiments to measure directly the gluon spin distribution and to probe the quark
spin distribution at lower x.
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TABLE I. Quark helicity predictions from the nonrelativistic quark-parton model (NR QPM)
where ∆G = 0 and from the relativistic quark-parton model (R QPM) [21,22] with ∆G = 0 and
∆G(Q2 = 1 (GeV/c)2) = 1.6± 0.9 [37].

NR QPM R QPM R QPM + gluons
αs∆G/2π 0 0 0.13± 0.08

∆u− αs∆G/2π 1.33 1.0 0.87± 0.08
∆d− αs∆G/2π −0.33 −0.25 −0.38± 0.08
∆s− αs∆G/2π 0 0 −0.13± 0.08

a0 = ∆Σ− 3αs∆G/2π 1.0 0.75 0.36± 0.24

TABLE II. Beam heating correction results at beam intensity of 4× 109 electrons/pulse.

Target NH3 NH3 ND3 ND3

Polarization Long. Tran. Long. Tran.
Pi (%) 75± 1.9 75± 1.9 30± 1.2 30± 1.2
Pm (%) 68.3± 1.7 68.5± 1.7 24.9± 1.0 24.8± 1.0

z 0.924± 0.029 0.903± 0.033 0.912± 0.023 0.931± 0.021
PT (%) 67.7± 1.7 67.8± 1.7 24.4± 1.0 24.4± 1.0
Cheat 0.0081± 0.0036 0.0103± 0.0040 0.0197± 0.0064 0.0157± 0.0053

53



TABLE III. Proton A‖ and A⊥ results with statistical errors for E=29.1 GeV at the measured

Q2 in (GeV/c)2. Also shown are the radiative corrections A‖rc and A⊥rc which were applied to the
data.

x < Q2 > A‖ A
‖
rc A⊥ A⊥rc

θ = 4.5◦

0.028 1.17 −0.026± 0.054 0.014 0.031± 0.063 0.004
0.031 1.27 0.048± 0.026 0.014 0.010± 0.032 0.004
0.035 1.40 0.091± 0.019 0.013 0.012± 0.024 0.004
0.039 1.52 0.060± 0.016 0.012 0.007± 0.020 0.004
0.044 1.65 0.076± 0.015 0.011 0.004± 0.018 0.004
0.049 1.78 0.083± 0.014 0.010 0.008± 0.017 0.004
0.056 1.92 0.082± 0.013 0.009 0.003± 0.016 0.004
0.063 2.07 0.082± 0.012 0.008 0.014± 0.015 0.004
0.071 2.22 0.086± 0.011 0.007 0.012± 0.014 0.004
0.079 2.38 0.102± 0.012 0.006 −0.009± 0.014 0.004
0.090 2.53 0.081± 0.012 0.005 −0.006± 0.014 0.004
0.101 2.69 0.114± 0.012 0.004 0.004± 0.014 0.004
0.113 2.84 0.108± 0.013 0.004 −0.012± 0.015 0.004
0.128 3.00 0.097± 0.013 0.003 0.010± 0.015 0.004
0.144 3.15 0.086± 0.013 0.003 −0.031± 0.015 0.004
0.162 3.30 0.113± 0.013 0.003 0.023± 0.016 0.004
0.182 3.45 0.110± 0.014 0.002 −0.021± 0.016 0.004
0.205 3.59 0.097± 0.014 0.002 0.043± 0.017 0.004
0.230 3.73 0.118± 0.015 0.002 −0.005± 0.018 0.004
0.259 3.85 0.107± 0.015 0.002 0.017± 0.019 0.004
0.292 3.98 0.096± 0.016 0.002 −0.055± 0.020 0.004
0.329 4.09 0.110± 0.018 0.002 −0.005± 0.022 0.004
0.370 4.20 0.080± 0.020 0.002 0.012± 0.024 0.003
0.416 4.30 0.140± 0.023 0.002 0.002± 0.028 0.003
0.468 4.40 0.140± 0.026 0.002 −0.048± 0.032 0.003
0.526 4.47 0.134± 0.031 0.002 −0.037± 0.038 0.002
0.592 4.55 0.066± 0.037 0.003 −0.029± 0.045 0.002
0.666 4.63 0.075± 0.045 0.000 −0.013± 0.055 0.002
0.749 4.70 0.128± 0.062 −0.007 −0.114± 0.074 0.004

θ = 7.0◦

0.071 2.91 0.261± 0.095 0.018 −0.122± 0.102 0.006
0.079 3.17 0.159± 0.043 0.015 −0.002± 0.049 0.006
0.090 3.48 0.115± 0.029 0.012 0.040± 0.034 0.006
0.101 3.79 0.143± 0.024 0.010 −0.016± 0.027 0.006
0.113 4.11 0.158± 0.022 0.008 0.011± 0.025 0.006
0.128 4.43 0.164± 0.021 0.006 −0.026± 0.023 0.006
0.144 4.78 0.159± 0.020 0.005 0.007± 0.022 0.006
0.162 5.13 0.171± 0.019 0.004 0.018± 0.021 0.006
0.182 5.49 0.192± 0.019 0.003 0.052± 0.021 0.006
0.205 5.86 0.215± 0.019 0.003 0.012± 0.021 0.006
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0.230 6.24 0.150± 0.019 0.002 0.007± 0.022 0.006
0.259 6.60 0.250± 0.020 0.002 0.001± 0.022 0.006
0.292 6.97 0.197± 0.021 0.002 −0.023± 0.023 0.005
0.329 7.34 0.195± 0.022 0.002 −0.012± 0.025 0.005
0.370 7.69 0.190± 0.024 0.002 −0.018± 0.027 0.005
0.416 8.04 0.244± 0.026 0.002 −0.009± 0.030 0.004
0.468 8.37 0.223± 0.030 0.002 0.005± 0.034 0.004
0.526 8.68 0.233± 0.034 0.002 −0.015± 0.039 0.003
0.592 8.99 0.224± 0.041 0.002 −0.011± 0.047 0.003
0.666 9.26 0.155± 0.051 0.002 −0.093± 0.063 0.002
0.749 9.53 0.223± 0.069 0.005 −0.097± 0.094 0.001
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TABLE IV. Proton A‖ results with statistical errors for E=16.2 GeV at the measured Q2 in

(GeV/c)2. Also shown are the radiative corrections A‖rc which were applied to the data.

x < Q2 > A‖ A
‖
rc

θ = 4.5◦

0.022 0.47 0.023± 0.024 0.005
0.024 0.51 0.066± 0.019 0.005
0.027 0.55 0.058± 0.018 0.005
0.031 0.59 0.054± 0.016 0.005
0.035 0.64 0.036± 0.015 0.005
0.039 0.68 0.041± 0.014 0.005
0.044 0.73 0.051± 0.013 0.005
0.049 0.78 0.074± 0.012 0.005
0.056 0.83 0.052± 0.012 0.004
0.063 0.88 0.068± 0.012 0.004
0.071 0.92 0.043± 0.012 0.004
0.079 0.97 0.046± 0.012 0.003
0.090 1.01 0.062± 0.012 0.003
0.101 1.06 0.071± 0.012 0.003
0.113 1.10 0.049± 0.012 0.003
0.128 1.14 0.060± 0.012 0.002
0.144 1.18 0.056± 0.012 0.002
0.162 1.22 0.068± 0.013 0.002
0.182 1.26 0.051± 0.013 0.002
0.205 1.29 0.060± 0.013 0.002
0.230 1.32 0.047± 0.014 0.002
0.259 1.35 0.041± 0.014 0.002
0.292 1.38 0.055± 0.015 0.002
0.329 1.40 0.043± 0.016 0.003
0.370 1.43 0.055± 0.017 0.003
0.416 1.45 0.079± 0.019 0.000
0.468 1.46 0.094± 0.021 0.003
0.527 1.48 0.082± 0.024 0.010
0.593 1.49 0.089± 0.028 0.004
0.668 1.51 0.052± 0.031 −0.009
0.752 1.52 0.258± 0.449 −0.029

θ = 7.0◦

0.044 0.98 0.072± 0.390 0.012
0.049 1.06 0.055± 0.078 0.012
0.056 1.16 0.091± 0.043 0.011
0.063 1.26 0.034± 0.031 0.010
0.071 1.37 0.092± 0.026 0.009
0.079 1.47 0.082± 0.023 0.008
0.090 1.58 0.113± 0.022 0.007
0.101 1.69 0.101± 0.021 0.006

56



0.113 1.80 0.108± 0.019 0.005
0.128 1.91 0.115± 0.018 0.005
0.144 2.03 0.120± 0.018 0.004
0.162 2.14 0.103± 0.017 0.003
0.182 2.26 0.105± 0.018 0.003
0.205 2.36 0.116± 0.018 0.003
0.230 2.47 0.136± 0.018 0.002
0.259 2.57 0.165± 0.019 0.002
0.292 2.67 0.159± 0.019 0.002
0.329 2.76 0.127± 0.020 0.002
0.370 2.85 0.157± 0.022 0.002
0.416 2.94 0.142± 0.023 0.003
0.468 3.02 0.150± 0.025 0.003
0.527 3.08 0.127± 0.029 0.004
0.593 3.15 0.070± 0.032 −0.001
0.668 3.21 0.136± 0.038 0.003
0.752 3.27 −0.280± 0.242 0.009
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TABLE V. Proton A‖ results with statistical errors for E= 9.7 GeV at the measured Q2 in

(GeV/c)2. Also shown are the radiative corrections A‖rc which were applied to the data.

x < Q2 > A‖ A
‖
rc

θ = 4.5◦

0.028 0.28 0.021± 0.046 0.003
0.031 0.30 0.021± 0.022 0.002
0.035 0.31 0.048± 0.019 0.002
0.039 0.33 0.011± 0.017 0.002
0.044 0.35 0.046± 0.016 0.001
0.049 0.36 0.043± 0.016 0.001
0.056 0.38 0.040± 0.015 0.001
0.063 0.40 0.026± 0.015 0.001
0.071 0.41 0.030± 0.015 0.001
0.080 0.43 0.032± 0.015 0.001
0.090 0.44 0.018± 0.014 0.000
0.101 0.45 0.024± 0.014 0.000
0.113 0.47 0.041± 0.013 0.000
0.128 0.48 0.002± 0.013 0.000
0.144 0.49 0.002± 0.013 0.000
0.162 0.50 0.018± 0.013 0.000
0.182 0.51 0.024± 0.013 −0.002
0.205 0.52 0.015± 0.013 −0.008
0.231 0.53 0.054± 0.014 −0.004
0.259 0.53 0.047± 0.014 0.015
0.292 0.54 0.051± 0.016 0.014
0.329 0.55 0.020± 0.018 0.001
0.370 0.55 −0.002± 0.019 −0.007
0.417 0.56 −0.004± 0.021 −0.015
0.469 0.56 −0.034± 0.021 −0.020
0.527 0.57 0.007± 0.029 −0.034
0.594 0.57 −0.013± 0.064 −0.043
0.669 0.57 0.010± 0.179 −0.039
0.753 0.58 0.021± 0.214 −0.036
0.847 0.58 0.031± 0.257 −0.032

θ = 7.0◦

0.063 0.60 −0.013± 0.093 0.003
0.071 0.64 0.031± 0.038 0.003
0.080 0.69 0.076± 0.025 0.003
0.090 0.74 0.064± 0.019 0.003
0.101 0.78 0.057± 0.016 0.003
0.113 0.82 0.073± 0.015 0.003
0.128 0.86 0.048± 0.015 0.003
0.144 0.90 0.047± 0.014 0.002
0.162 0.93 0.065± 0.013 0.002
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0.182 0.97 0.087± 0.013 0.002
0.205 1.00 0.068± 0.013 0.002
0.231 1.03 0.084± 0.013 0.002
0.259 1.06 0.070± 0.013 0.003
0.292 1.09 0.055± 0.013 0.004
0.329 1.12 0.088± 0.014 0.005
0.370 1.14 0.088± 0.014 −0.004
0.417 1.16 0.082± 0.016 0.001
0.469 1.18 0.084± 0.016 0.018
0.527 1.21 0.086± 0.018 0.010
0.594 1.22 −0.001± 0.018 −0.004
0.669 1.23 0.022± 0.018 −0.026
0.753 1.25 −0.044± 0.047 −0.061
0.847 1.26 −0.018± 0.149 −0.064
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TABLE VI. Deuteron A‖ and A⊥ results with statistical errors for E=29.1 GeV at the measured

Q2 in (GeV/c)2. Also shown are the radiative corrections A‖rc and A⊥rc which were applied to the
data.

x < Q2 > A‖ A
‖
rc A⊥ A⊥rc

θ = 4.5◦

0.028 1.17 −0.042± 0.075 −0.004 −0.138± 0.175 0.002
0.031 1.27 0.035± 0.030 −0.004 −0.114± 0.146 0.002
0.035 1.40 0.004± 0.021 −0.004 0.060± 0.083 0.002
0.039 1.52 0.043± 0.019 −0.004 0.038± 0.046 0.002
0.044 1.65 −0.011± 0.017 −0.004 0.050± 0.038 0.002
0.049 1.78 −0.009± 0.016 −0.004 0.022± 0.034 0.002
0.056 1.92 0.012± 0.015 −0.003 −0.043± 0.031 0.002
0.063 2.07 0.010± 0.014 −0.003 −0.040± 0.029 0.002
0.071 2.22 0.014± 0.013 −0.003 0.009± 0.028 0.002
0.079 2.38 0.023± 0.013 −0.003 −0.009± 0.029 0.002
0.090 2.53 0.038± 0.014 −0.003 0.032± 0.029 0.002
0.101 2.69 0.028± 0.014 −0.003 −0.031± 0.030 0.002
0.113 2.84 0.037± 0.015 −0.002 0.012± 0.031 0.002
0.128 3.00 0.079± 0.015 −0.002 −0.001± 0.032 0.002
0.144 3.15 0.053± 0.016 −0.002 −0.023± 0.033 0.002
0.162 3.30 0.046± 0.016 −0.001 0.043± 0.035 0.002
0.182 3.45 0.054± 0.017 −0.001 −0.042± 0.036 0.002
0.205 3.59 0.049± 0.017 0.000 −0.013± 0.038 0.002
0.230 3.73 0.020± 0.019 0.000 0.008± 0.040 0.002
0.259 3.85 0.021± 0.020 0.000 0.095± 0.043 0.002
0.292 3.98 0.054± 0.021 0.001 −0.016± 0.047 0.002
0.329 4.09 0.078± 0.023 0.001 −0.025± 0.052 0.002
0.370 4.20 0.072± 0.026 0.001 −0.026± 0.059 0.002
0.416 4.30 0.063± 0.030 0.001 −0.050± 0.068 0.001
0.468 4.40 0.010± 0.036 0.001 −0.071± 0.081 0.001
0.526 4.47 0.065± 0.043 0.001 0.077± 0.098 0.001
0.592 4.55 0.057± 0.052 0.001 −0.116± 0.120 0.001
0.666 4.62 0.023± 0.066 −0.002 0.160± 0.150 0.002
0.749 4.70 −0.190± 0.091 −0.006 0.150± 0.203 0.004

θ = 7.0◦

0.071 2.91 0.044± 0.108 −0.004 0.088± 0.237 0.003
0.079 3.17 −0.020± 0.049 −0.004 0.081± 0.094 0.003
0.090 3.48 0.044± 0.033 −0.004 −0.024± 0.062 0.003
0.101 3.79 0.044± 0.027 −0.004 0.075± 0.050 0.003
0.113 4.11 0.023± 0.025 −0.004 −0.036± 0.046 0.003
0.128 4.44 0.053± 0.023 −0.003 −0.014± 0.043 0.003
0.144 4.78 0.110± 0.023 −0.003 −0.038± 0.041 0.003
0.162 5.13 0.051± 0.022 −0.003 −0.027± 0.041 0.003
0.182 5.49 0.133± 0.022 −0.002 0.035± 0.040 0.003
0.205 5.86 0.067± 0.022 −0.002 −0.085± 0.041 0.003
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0.230 6.23 0.088± 0.023 −0.001 −0.056± 0.043 0.003
0.259 6.60 0.051± 0.024 0.000 0.065± 0.045 0.003
0.292 6.97 0.102± 0.026 0.000 −0.028± 0.048 0.003
0.329 7.33 0.108± 0.028 0.001 −0.034± 0.052 0.002
0.370 7.69 0.143± 0.030 0.001 −0.024± 0.057 0.002
0.416 8.03 0.089± 0.034 0.001 −0.018± 0.064 0.002
0.468 8.37 0.125± 0.039 0.000 −0.003± 0.073 0.002
0.526 8.67 0.172± 0.046 0.000 −0.023± 0.086 0.002
0.592 8.98 0.094± 0.056 −0.001 0.235± 0.108 0.002
0.666 9.26 0.086± 0.070 −0.001 −0.125± 0.147 0.002
0.749 9.52 0.193± 0.096 0.000 −0.068± 0.212 0.002
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TABLE VII. Deuteron A‖ results with statistical errors for E=16.2 GeV at the measured Q2 in

(GeV/c)2. Also shown are the radiative corrections A‖rc which were applied to the data.

x < Q2 > A‖ A
‖
rc

θ = 4.5◦

0.022 0.47 −0.018± 0.064 −0.006
0.024 0.51 −0.035± 0.049 −0.006
0.027 0.55 −0.012± 0.045 −0.005
0.031 0.59 0.012± 0.041 −0.005
0.035 0.64 −0.009± 0.038 −0.004
0.039 0.68 0.056± 0.034 −0.004
0.044 0.73 −0.021± 0.028 −0.004
0.049 0.78 0.046± 0.026 −0.003
0.056 0.83 0.003± 0.025 −0.003
0.063 0.87 0.021± 0.025 −0.003
0.071 0.92 0.026± 0.025 −0.003
0.079 0.97 −0.016± 0.025 −0.002
0.090 1.01 0.038± 0.025 −0.002
0.101 1.06 0.019± 0.025 −0.002
0.113 1.10 0.016± 0.025 −0.001
0.128 1.14 0.063± 0.025 −0.001
0.144 1.18 0.050± 0.025 −0.001
0.162 1.22 −0.025± 0.025 −0.001
0.182 1.25 0.043± 0.026 0.000
0.205 1.29 0.042± 0.027 0.000
0.230 1.32 0.016± 0.027 0.000
0.259 1.35 0.022± 0.029 0.001
0.292 1.37 0.062± 0.031 0.001
0.329 1.40 0.023± 0.033 0.001
0.370 1.42 −0.031± 0.036 0.001
0.416 1.44 0.013± 0.040 −0.001
0.468 1.46 0.089± 0.045 0.001
0.527 1.48 0.014± 0.053 0.003
0.593 1.49 0.071± 0.063 −0.002
0.668 1.50 0.037± 0.076 −0.013

θ = 7.0◦

0.049 1.06 −0.075± 0.201 −0.005
0.056 1.16 0.062± 0.106 −0.005
0.063 1.26 −0.003± 0.075 −0.004
0.071 1.36 0.054± 0.060 −0.004
0.079 1.47 −0.073± 0.054 −0.004
0.090 1.58 0.121± 0.049 −0.004
0.101 1.69 0.054± 0.046 −0.003
0.113 1.80 0.027± 0.041 −0.003
0.128 1.91 0.018± 0.038 −0.002
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0.144 2.03 0.039± 0.036 −0.002
0.162 2.14 0.060± 0.036 −0.002
0.182 2.25 0.097± 0.036 −0.001
0.205 2.36 0.045± 0.036 −0.001
0.230 2.47 0.041± 0.038 0.000
0.259 2.57 0.041± 0.039 0.000
0.292 2.67 0.115± 0.040 0.001
0.329 2.76 0.160± 0.042 0.001
0.370 2.85 0.039± 0.045 0.001
0.416 2.93 0.055± 0.049 0.001
0.468 3.01 0.168± 0.054 0.001
0.527 3.08 0.139± 0.062 0.001
0.593 3.15 0.055± 0.073 −0.002
0.668 3.21 −0.013± 0.088 −0.001
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TABLE VIII. Deuteron A‖ results with statistical errors for E= 9.7 GeV at the measured Q2 in

(GeV/c)2. Also shown are the radiative corrections A‖rc which were applied to the data.

x < Q2 > A‖ A
‖
rc

θ = 4.5◦

0.028 0.28 0.053± 0.069 −0.005
0.031 0.30 −0.067± 0.034 −0.005
0.035 0.31 −0.014± 0.028 −0.004
0.039 0.33 0.017± 0.025 −0.004
0.044 0.35 0.001± 0.024 −0.004
0.050 0.36 0.022± 0.023 −0.004
0.056 0.38 −0.017± 0.022 −0.003
0.063 0.40 −0.002± 0.021 −0.003
0.071 0.41 0.032± 0.022 −0.003
0.080 0.43 −0.004± 0.022 −0.003
0.090 0.44 0.008± 0.021 −0.002
0.101 0.45 0.038± 0.020 −0.002
0.113 0.47 −0.002± 0.019 −0.002
0.128 0.48 −0.017± 0.019 −0.002
0.144 0.49 −0.004± 0.019 −0.002
0.162 0.50 0.015± 0.019 −0.002
0.182 0.51 0.028± 0.019 −0.002
0.205 0.52 0.012± 0.020 −0.005
0.231 0.53 0.016± 0.021 −0.003
0.259 0.53 0.009± 0.022 0.005
0.292 0.54 0.028± 0.024 0.005
0.329 0.55 0.031± 0.026 −0.004
0.370 0.55 −0.032± 0.027 −0.009
0.417 0.56 0.029± 0.030 −0.014
0.469 0.56 −0.039± 0.032 −0.019
0.527 0.57 −0.005± 0.045 −0.029
0.594 0.57 −0.008± 0.074 −0.036
0.669 0.57 −0.021± 0.110 −0.039
0.753 0.58 0.001± 0.117 −0.042
0.847 0.58 0.010± 0.142 −0.046

θ = 7.0◦

0.063 0.60 0.116± 0.133 −0.005
0.071 0.64 −0.036± 0.054 −0.005
0.080 0.69 0.013± 0.037 −0.004
0.090 0.74 −0.013± 0.028 −0.003
0.101 0.78 0.016± 0.024 −0.003
0.113 0.82 0.024± 0.022 −0.003
0.128 0.86 0.052± 0.021 −0.002
0.144 0.90 0.012± 0.020 −0.002
0.162 0.93 0.036± 0.020 −0.001
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0.182 0.97 0.027± 0.019 −0.001
0.205 1.00 0.005± 0.019 0.000
0.231 1.03 0.044± 0.019 0.000
0.259 1.06 0.019± 0.020 0.001
0.292 1.09 0.021± 0.020 0.002
0.329 1.12 0.034± 0.021 0.002
0.370 1.14 0.036± 0.022 −0.003
0.417 1.16 0.068± 0.023 −0.001
0.469 1.19 0.020± 0.025 0.007
0.527 1.21 0.024± 0.029 0.001
0.594 1.22 0.022± 0.033 −0.011
0.669 1.24 0.028± 0.039 −0.029
0.753 1.25 0.000± 0.068 −0.054
0.847 1.26 −0.018± 0.118 −0.066
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TABLE IX. Results for g1/F1 in the DIS region (W 2 ≥ 4 GeV2). There is an additional
normalization uncertainty due to beam and target polarization shown in Table XV.

x < Q2 > E(GeV) gp1/F
p
1 ± stat± syst gd1/F

d
1 ± stat± syst gn1/F

n
1 ± stat± syst

0.024 0.51 16.2 0.092± 0.027± 0.014 −0.048± 0.068± 0.009 −0.205± 0.153± 0.023
0.027 0.55 16.2 0.086± 0.026± 0.013 −0.018± 0.065± 0.009 −0.131± 0.146± 0.022
0.027 1.17 29.1 −0.032± 0.068± 0.010 −0.058± 0.092± 0.009 −0.099± 0.225± 0.020
0.031 0.59 16.2 0.084± 0.026± 0.012 0.019± 0.065± 0.008 −0.048± 0.144± 0.020
0.031 1.27 29.1 0.064± 0.034± 0.009 0.041± 0.040± 0.008 0.021± 0.095± 0.019
0.035 0.31 9.7 0.096± 0.037± 0.018 −0.027± 0.055± 0.008 −0.161± 0.125± 0.024
0.035 0.64 16.2 0.059± 0.024± 0.011 −0.015± 0.062± 0.007 −0.097± 0.139± 0.018
0.035 1.40 29.1 0.123± 0.025± 0.008 0.008± 0.029± 0.007 −0.115± 0.069± 0.017
0.039 0.33 9.7 0.024± 0.037± 0.018 0.035± 0.053± 0.008 0.050± 0.122± 0.024
0.039 0.68 16.2 0.072± 0.024± 0.011 0.099± 0.060± 0.007 0.140± 0.136± 0.017
0.039 1.52 29.1 0.083± 0.023± 0.008 0.062± 0.026± 0.007 0.049± 0.063± 0.016
0.044 0.35 9.7 0.106± 0.037± 0.019 0.003± 0.054± 0.008 −0.109± 0.126± 0.024
0.044 0.73 16.2 0.096± 0.023± 0.011 −0.038± 0.052± 0.006 −0.191± 0.120± 0.017
0.044 0.98 16.2 0.097± 0.520± 0.010 −0.943± 1.296± 0.008 −2.222± 2.964± 0.019
0.044 1.65 29.1 0.110± 0.021± 0.008 −0.013± 0.025± 0.006 −0.150± 0.060± 0.014
0.049 0.36 9.7 0.108± 0.039± 0.020 0.055± 0.057± 0.008 0.003± 0.134± 0.025
0.049 0.78 16.2 0.147± 0.024± 0.011 0.092± 0.052± 0.006 0.045± 0.121± 0.016
0.049 1.06 16.2 0.078± 0.109± 0.010 −0.104± 0.280± 0.008 −0.321± 0.646± 0.018
0.049 1.78 29.1 0.125± 0.020± 0.008 −0.013± 0.024± 0.005 −0.168± 0.058± 0.013
0.056 0.38 9.7 0.108± 0.041± 0.021 −0.045± 0.059± 0.008 −0.221± 0.141± 0.027
0.056 0.57 9.7 −0.214± 1.891± 0.014 2.992± 2.465± 0.007 7.028± 5.977± 0.020
0.056 0.83 16.2 0.110± 0.025± 0.011 0.007± 0.054± 0.006 −0.106± 0.127± 0.016
0.056 1.16 16.2 0.132± 0.063± 0.010 0.091± 0.153± 0.007 0.060± 0.357± 0.017
0.056 1.92 29.1 0.130± 0.020± 0.008 0.016± 0.023± 0.005 −0.109± 0.058± 0.012
0.063 0.40 9.7 0.078± 0.043± 0.022 −0.006± 0.062± 0.009 −0.101± 0.149± 0.029
0.063 0.60 9.7 −0.024± 0.177± 0.014 0.221± 0.252± 0.007 0.531± 0.609± 0.019
0.063 0.87 16.2 0.157± 0.027± 0.012 0.049± 0.057± 0.005 −0.064± 0.135± 0.016
0.063 1.26 16.2 0.052± 0.046± 0.009 −0.004± 0.112± 0.006 −0.068± 0.262± 0.015
0.063 2.07 29.1 0.138± 0.020± 0.008 0.014± 0.023± 0.004 −0.123± 0.057± 0.011
0.063 2.69 29.1 1.138± 0.833± 0.009 −0.446± 2.060± 0.006 −2.318± 4.857± 0.016
0.071 0.41 9.7 0.096± 0.049± 0.023 0.104± 0.070± 0.011 0.129± 0.171± 0.032
0.071 0.64 9.7 0.064± 0.077± 0.014 −0.072± 0.109± 0.006 −0.240± 0.267± 0.019
0.071 0.92 16.2 0.107± 0.029± 0.012 0.064± 0.061± 0.005 0.026± 0.145± 0.016
0.071 1.36 16.2 0.144± 0.041± 0.009 0.085± 0.095± 0.005 0.033± 0.225± 0.014
0.071 2.22 29.1 0.150± 0.020± 0.008 0.025± 0.023± 0.004 −0.114± 0.059± 0.011
0.071 2.91 29.1 0.324± 0.121± 0.010 0.063± 0.139± 0.006 −0.223± 0.353± 0.015
0.079 0.43 9.7 0.113± 0.053± 0.025 −0.014± 0.075± 0.014 −0.161± 0.185± 0.038
0.079 0.69 9.7 0.164± 0.053± 0.014 0.029± 0.078± 0.006 −0.121± 0.194± 0.019
0.079 0.97 16.2 0.122± 0.031± 0.013 −0.043± 0.066± 0.005 −0.242± 0.159± 0.016
0.079 1.47 16.2 0.135± 0.039± 0.009 −0.119± 0.088± 0.005 −0.436± 0.212± 0.013
0.079 2.38 29.1 0.188± 0.021± 0.009 0.041± 0.025± 0.004 −0.121± 0.063± 0.012
0.079 3.17 29.1 0.209± 0.057± 0.010 −0.020± 0.065± 0.005 −0.289± 0.167± 0.014
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0.090 0.44 9.7 0.069± 0.055± 0.027 0.031± 0.078± 0.018 −0.008± 0.193± 0.045
0.090 0.74 9.7 0.145± 0.043± 0.014 −0.028± 0.062± 0.007 −0.236± 0.156± 0.019
0.090 1.01 16.2 0.178± 0.034± 0.013 0.110± 0.071± 0.006 0.054± 0.173± 0.017
0.090 1.58 16.2 0.196± 0.037± 0.009 0.209± 0.085± 0.004 0.268± 0.207± 0.013
0.090 2.53 29.1 0.159± 0.023± 0.010 0.077± 0.027± 0.004 −0.003± 0.070± 0.013
0.090 3.48 29.1 0.157± 0.040± 0.010 0.057± 0.045± 0.004 −0.049± 0.117± 0.013
0.101 0.45 9.7 0.102± 0.057± 0.030 0.158± 0.081± 0.023 0.252± 0.203± 0.054
0.101 0.78 9.7 0.138± 0.040± 0.014 0.039± 0.058± 0.007 −0.070± 0.147± 0.021
0.101 1.06 16.2 0.221± 0.037± 0.012 0.058± 0.077± 0.006 −0.121± 0.189± 0.017
0.101 1.69 16.2 0.184± 0.037± 0.009 0.098± 0.083± 0.004 0.016± 0.205± 0.012
0.101 2.69 29.1 0.237± 0.025± 0.010 0.056± 0.030± 0.004 −0.148± 0.078± 0.013
0.101 3.79 29.1 0.196± 0.033± 0.010 0.067± 0.038± 0.004 −0.075± 0.099± 0.013
0.113 0.47 9.7 0.185± 0.059± 0.033 −0.008± 0.086± 0.027 −0.237± 0.215± 0.064
0.113 0.82 9.7 0.191± 0.040± 0.015 0.063± 0.057± 0.009 −0.076± 0.147± 0.023
0.113 1.10 16.2 0.168± 0.041± 0.012 0.054± 0.083± 0.007 −0.071± 0.208± 0.018
0.113 1.80 16.2 0.208± 0.037± 0.009 0.052± 0.078± 0.004 −0.126± 0.196± 0.012
0.113 2.84 29.1 0.239± 0.028± 0.012 0.082± 0.033± 0.005 −0.090± 0.087± 0.015
0.113 4.11 29.1 0.225± 0.031± 0.010 0.029± 0.036± 0.004 −0.203± 0.094± 0.013
0.128 0.48 9.7 0.011± 0.064± 0.036 −0.082± 0.092± 0.031 −0.209± 0.233± 0.072
0.128 0.86 9.7 0.135± 0.041± 0.015 0.146± 0.059± 0.010 0.191± 0.152± 0.026
0.128 1.14 16.2 0.221± 0.045± 0.013 0.230± 0.090± 0.008 0.293± 0.227± 0.020
0.128 1.91 16.2 0.234± 0.037± 0.010 0.037± 0.077± 0.005 −0.197± 0.194± 0.013
0.128 3.00 29.1 0.230± 0.030± 0.013 0.186± 0.036± 0.005 0.171± 0.096± 0.017
0.128 4.44 29.1 0.237± 0.030± 0.010 0.077± 0.035± 0.004 −0.106± 0.093± 0.013
0.144 0.90 9.7 0.141± 0.042± 0.016 0.036± 0.060± 0.012 −0.087± 0.158± 0.029
0.144 1.18 16.2 0.222± 0.049± 0.013 0.200± 0.099± 0.009 0.217± 0.251± 0.022
0.144 2.03 16.2 0.259± 0.038± 0.011 0.085± 0.078± 0.005 −0.114± 0.198± 0.015
0.144 3.15 29.1 0.213± 0.033± 0.014 0.132± 0.039± 0.006 0.057± 0.106± 0.018
0.144 4.78 29.1 0.242± 0.030± 0.010 0.163± 0.034± 0.004 0.097± 0.093± 0.013
0.162 0.93 9.7 0.212± 0.043± 0.017 0.117± 0.063± 0.014 0.024± 0.166± 0.032
0.162 1.22 16.2 0.293± 0.054± 0.013 −0.107± 0.108± 0.011 −0.639± 0.279± 0.025
0.162 2.14 16.2 0.237± 0.040± 0.012 0.137± 0.082± 0.007 0.039± 0.211± 0.018
0.162 3.30 29.1 0.306± 0.036± 0.014 0.128± 0.044± 0.007 −0.075± 0.119± 0.020
0.162 5.13 29.1 0.272± 0.030± 0.010 0.078± 0.035± 0.005 −0.159± 0.096± 0.014
0.182 0.97 9.7 0.303± 0.045± 0.018 0.095± 0.067± 0.015 −0.151± 0.178± 0.035
0.182 1.25 16.2 0.239± 0.060± 0.014 0.201± 0.121± 0.012 0.196± 0.315± 0.028
0.182 2.25 16.2 0.257± 0.043± 0.014 0.236± 0.087± 0.008 0.261± 0.227± 0.021
0.182 3.45 29.1 0.313± 0.040± 0.014 0.152± 0.048± 0.008 −0.030± 0.134± 0.021
0.182 5.49 29.1 0.320± 0.031± 0.011 0.222± 0.036± 0.006 0.136± 0.101± 0.016
0.205 1.00 9.7 0.253± 0.048± 0.017 0.017± 0.071± 0.016 −0.291± 0.192± 0.036
0.205 1.29 16.2 0.304± 0.066± 0.015 0.211± 0.135± 0.014 0.135± 0.355± 0.031
0.205 2.36 16.2 0.301± 0.046± 0.015 0.116± 0.094± 0.009 −0.110± 0.250± 0.023
0.205 3.59 29.1 0.303± 0.044± 0.015 0.150± 0.054± 0.009 −0.026± 0.151± 0.023
0.205 5.86 29.1 0.371± 0.032± 0.012 0.107± 0.038± 0.007 −0.235± 0.108± 0.018
0.230 1.03 9.7 0.332± 0.050± 0.018 0.175± 0.075± 0.017 0.001± 0.205± 0.039
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0.230 1.32 16.2 0.255± 0.073± 0.017 0.086± 0.150± 0.015 −0.126± 0.401± 0.034
0.230 2.47 16.2 0.376± 0.050± 0.015 0.112± 0.104± 0.010 −0.230± 0.281± 0.026
0.230 3.73 29.1 0.389± 0.049± 0.015 0.066± 0.062± 0.010 −0.374± 0.176± 0.025
0.230 6.23 29.1 0.273± 0.035± 0.012 0.153± 0.042± 0.009 0.014± 0.120± 0.021
0.259 1.35 16.2 0.236± 0.082± 0.018 0.130± 0.169± 0.015 0.011± 0.459± 0.036
0.259 2.57 16.2 0.485± 0.055± 0.016 0.121± 0.114± 0.012 −0.378± 0.315± 0.028
0.259 3.85 29.1 0.384± 0.055± 0.016 0.089± 0.071± 0.011 −0.321± 0.205± 0.027
0.259 6.60 29.1 0.477± 0.038± 0.014 0.105± 0.046± 0.010 −0.422± 0.137± 0.024
0.292 1.37 16.2 0.340± 0.091± 0.020 0.385± 0.192± 0.015 0.538± 0.530± 0.036
0.292 2.67 16.2 0.498± 0.061± 0.017 0.359± 0.126± 0.013 0.232± 0.355± 0.031
0.292 3.98 29.1 0.361± 0.063± 0.017 0.205± 0.082± 0.013 0.014± 0.243± 0.031
0.292 6.97 29.1 0.395± 0.043± 0.015 0.202± 0.053± 0.012 −0.051± 0.158± 0.028
0.329 2.76 16.2 0.419± 0.068± 0.021 0.533± 0.142± 0.017 0.830± 0.409± 0.040
0.329 4.09 29.1 0.456± 0.075± 0.018 0.317± 0.097± 0.014 0.168± 0.297± 0.034
0.329 7.33 29.1 0.418± 0.048± 0.020 0.227± 0.060± 0.013 −0.031± 0.186± 0.033
0.370 2.85 16.2 0.553± 0.077± 0.023 0.135± 0.161± 0.014 −0.511± 0.477± 0.037
0.370 4.20 29.1 0.362± 0.089± 0.020 0.319± 0.118± 0.016 0.321± 0.371± 0.037
0.370 7.69 29.1 0.432± 0.055± 0.022 0.325± 0.070± 0.015 0.217± 0.225± 0.038
0.416 2.93 16.2 0.529± 0.087± 0.020 0.204± 0.186± 0.014 −0.297± 0.569± 0.035
0.416 4.30 29.1 0.676± 0.108± 0.021 0.295± 0.145± 0.017 −0.298± 0.474± 0.039
0.416 8.03 29.1 0.597± 0.065± 0.021 0.216± 0.083± 0.017 −0.413± 0.278± 0.040
0.468 3.01 16.2 0.590± 0.101± 0.027 0.669± 0.216± 0.013 0.990± 0.689± 0.038
0.468 4.40 29.1 0.713± 0.136± 0.022 0.037± 0.185± 0.017 −1.205± 0.628± 0.040
0.468 8.37 29.1 0.584± 0.078± 0.023 0.328± 0.102± 0.019 −0.077± 0.356± 0.044
0.526 4.47 29.1 0.731± 0.169± 0.022 0.375± 0.237± 0.015 −0.224± 0.838± 0.038
0.526 8.67 29.1 0.652± 0.096± 0.024 0.478± 0.129± 0.020 0.257± 0.471± 0.047
0.592 4.55 29.1 0.382± 0.217± 0.021 0.310± 0.310± 0.012 0.243± 1.129± 0.032
0.592 8.98 29.1 0.670± 0.123± 0.025 0.325± 0.168± 0.021 −0.331± 0.640± 0.048
0.666 9.26 29.1 0.478± 0.165± 0.026 0.251± 0.226± 0.019 −0.192± 0.876± 0.046
0.749 9.52 29.1 0.744± 0.237± 0.031 0.646± 0.331± 0.033 0.569± 1.233± 0.073
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TABLE X. Results for A1 in the DIS region (W 2 ≥ 4 GeV2). There is an additional
normalization uncertainty due to beam and target polarization shown in Table XV.

x < Q2 > E(GeV) Ap1 ± stat± syst Ad1 ± stat± syst An1 ± stat± syst
0.024 0.51 16.2 0.091± 0.027± 0.014 −0.049± 0.068± 0.009 −0.205± 0.153± 0.023
0.027 0.55 16.2 0.085± 0.026± 0.013 −0.018± 0.065± 0.009 −0.131± 0.146± 0.022
0.027 1.17 29.1 −0.034± 0.068± 0.010 −0.048± 0.092± 0.009 −0.073± 0.225± 0.020
0.031 0.59 16.2 0.084± 0.026± 0.012 0.019± 0.065± 0.008 −0.048± 0.144± 0.020
0.031 1.27 29.1 0.063± 0.034± 0.009 0.050± 0.040± 0.008 0.044± 0.095± 0.019
0.035 0.31 9.7 0.093± 0.037± 0.018 −0.027± 0.055± 0.008 −0.159± 0.125± 0.024
0.035 0.64 16.2 0.058± 0.024± 0.011 −0.015± 0.062± 0.007 −0.097± 0.139± 0.018
0.035 1.40 29.1 0.122± 0.025± 0.008 0.002± 0.028± 0.007 −0.126± 0.069± 0.017
0.039 0.33 9.7 0.022± 0.037± 0.018 0.035± 0.053± 0.008 0.053± 0.122± 0.024
0.039 0.68 16.2 0.072± 0.024± 0.011 0.098± 0.060± 0.007 0.140± 0.136± 0.017
0.039 1.52 29.1 0.083± 0.023± 0.008 0.059± 0.026± 0.007 0.041± 0.063± 0.016
0.044 0.35 9.7 0.103± 0.037± 0.019 0.003± 0.054± 0.008 −0.106± 0.126± 0.025
0.044 0.73 16.2 0.095± 0.023± 0.011 −0.039± 0.052± 0.006 −0.191± 0.120± 0.017
0.044 0.98 16.2 0.096± 0.520± 0.010 −0.944± 1.296± 0.008 −2.222± 2.964± 0.019
0.044 1.65 29.1 0.110± 0.021± 0.008 −0.019± 0.025± 0.006 −0.162± 0.060± 0.014
0.049 0.36 9.7 0.103± 0.039± 0.020 0.054± 0.057± 0.008 0.007± 0.135± 0.026
0.049 0.78 16.2 0.146± 0.024± 0.011 0.091± 0.052± 0.006 0.045± 0.121± 0.016
0.049 1.06 16.2 0.077± 0.109± 0.010 −0.104± 0.280± 0.008 −0.321± 0.646± 0.018
0.049 1.78 29.1 0.125± 0.020± 0.008 −0.016± 0.024± 0.005 −0.173± 0.058± 0.013
0.056 0.38 9.7 0.103± 0.041± 0.021 −0.046± 0.059± 0.009 −0.217± 0.141± 0.027
0.056 0.57 9.7 −0.217± 1.891± 0.014 2.991± 2.465± 0.007 7.031± 5.978± 0.020
0.056 0.83 16.2 0.109± 0.025± 0.011 0.007± 0.054± 0.006 −0.106± 0.127± 0.016
0.056 1.16 16.2 0.131± 0.063± 0.010 0.090± 0.153± 0.007 0.061± 0.358± 0.017
0.056 1.92 29.1 0.129± 0.020± 0.008 0.021± 0.023± 0.005 −0.095± 0.058± 0.012
0.063 0.40 9.7 0.071± 0.043± 0.022 −0.007± 0.062± 0.010 −0.096± 0.149± 0.029
0.063 0.60 9.7 −0.027± 0.177± 0.014 0.220± 0.252± 0.007 0.532± 0.609± 0.020
0.063 0.87 16.2 0.155± 0.027± 0.012 0.048± 0.057± 0.005 −0.064± 0.135± 0.016
0.063 1.26 16.2 0.050± 0.046± 0.010 −0.005± 0.112± 0.006 −0.068± 0.262± 0.016
0.063 2.07 29.1 0.136± 0.020± 0.008 0.020± 0.023± 0.004 −0.107± 0.058± 0.012
0.063 2.69 29.1 1.146± 0.834± 0.009 −0.309± 2.063± 0.006 −2.009± 4.864± 0.016
0.071 0.41 9.7 0.088± 0.049± 0.023 0.102± 0.070± 0.012 0.135± 0.171± 0.033
0.071 0.64 9.7 0.060± 0.077± 0.014 −0.074± 0.109± 0.007 −0.239± 0.267± 0.019
0.071 0.92 16.2 0.105± 0.029± 0.012 0.063± 0.061± 0.006 0.026± 0.145± 0.017
0.071 1.36 16.2 0.143± 0.041± 0.009 0.084± 0.095± 0.005 0.033± 0.225± 0.014
0.071 2.22 29.1 0.149± 0.020± 0.008 0.023± 0.023± 0.004 −0.115± 0.059± 0.011
0.071 2.91 29.1 0.340± 0.122± 0.010 0.052± 0.139± 0.006 −0.267± 0.353± 0.015
0.079 0.43 9.7 0.102± 0.053± 0.025 −0.016± 0.075± 0.015 −0.154± 0.186± 0.039
0.079 0.69 9.7 0.160± 0.053± 0.014 0.027± 0.078± 0.007 −0.120± 0.194± 0.019
0.079 0.97 16.2 0.120± 0.031± 0.013 −0.044± 0.066± 0.006 −0.241± 0.159± 0.017
0.079 1.47 16.2 0.134± 0.039± 0.009 −0.120± 0.088± 0.005 −0.437± 0.212± 0.014
0.079 2.38 29.1 0.191± 0.021± 0.009 0.043± 0.025± 0.004 −0.119± 0.064± 0.012
0.079 3.17 29.1 0.210± 0.057± 0.010 −0.031± 0.065± 0.005 −0.316± 0.167± 0.014
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0.090 0.44 9.7 0.057± 0.055± 0.027 0.028± 0.078± 0.018 0.000± 0.193± 0.046
0.090 0.74 9.7 0.140± 0.043± 0.014 −0.030± 0.062± 0.007 −0.235± 0.156± 0.020
0.090 1.01 16.2 0.175± 0.034± 0.013 0.109± 0.071± 0.006 0.054± 0.173± 0.018
0.090 1.58 16.2 0.194± 0.037± 0.010 0.208± 0.085± 0.005 0.268± 0.207± 0.013
0.090 2.53 29.1 0.160± 0.023± 0.010 0.070± 0.027± 0.004 −0.022± 0.071± 0.013
0.090 3.48 29.1 0.152± 0.040± 0.010 0.061± 0.045± 0.004 −0.033± 0.117± 0.014
0.101 0.45 9.7 0.087± 0.057± 0.030 0.154± 0.081± 0.023 0.262± 0.203± 0.055
0.101 0.78 9.7 0.132± 0.040± 0.014 0.037± 0.058± 0.008 −0.069± 0.147± 0.021
0.101 1.06 16.2 0.217± 0.037± 0.012 0.057± 0.077± 0.006 −0.121± 0.189± 0.018
0.101 1.69 16.2 0.183± 0.037± 0.009 0.097± 0.083± 0.004 0.016± 0.205± 0.012
0.101 2.69 29.1 0.237± 0.026± 0.011 0.064± 0.030± 0.004 −0.129± 0.079± 0.014
0.101 3.79 29.1 0.199± 0.033± 0.010 0.055± 0.038± 0.004 −0.106± 0.099± 0.013
0.113 0.47 9.7 0.167± 0.059± 0.033 −0.012± 0.086± 0.028 −0.226± 0.215± 0.064
0.113 0.82 9.7 0.185± 0.040± 0.015 0.061± 0.057± 0.009 −0.075± 0.147± 0.023
0.113 1.10 16.2 0.164± 0.041± 0.013 0.052± 0.083± 0.007 −0.071± 0.208± 0.019
0.113 1.80 16.2 0.206± 0.037± 0.009 0.051± 0.078± 0.004 −0.126± 0.196± 0.012
0.113 2.84 29.1 0.243± 0.028± 0.012 0.079± 0.033± 0.005 −0.103± 0.088± 0.016
0.113 4.11 29.1 0.224± 0.031± 0.010 0.035± 0.036± 0.004 −0.187± 0.094± 0.013
0.128 0.48 9.7 −0.010± 0.064± 0.036 −0.087± 0.092± 0.031 −0.196± 0.233± 0.072
0.128 0.86 9.7 0.129± 0.041± 0.015 0.143± 0.059± 0.011 0.193± 0.152± 0.026
0.128 1.14 16.2 0.217± 0.045± 0.013 0.229± 0.090± 0.008 0.294± 0.227± 0.021
0.128 1.91 16.2 0.233± 0.037± 0.010 0.037± 0.077± 0.005 −0.197± 0.194± 0.014
0.128 3.00 29.1 0.228± 0.031± 0.013 0.187± 0.037± 0.006 0.176± 0.098± 0.018
0.128 4.44 29.1 0.243± 0.031± 0.010 0.080± 0.035± 0.005 −0.106± 0.093± 0.014
0.144 0.90 9.7 0.134± 0.042± 0.016 0.033± 0.060± 0.012 −0.085± 0.158± 0.029
0.144 1.18 16.2 0.218± 0.049± 0.013 0.199± 0.099± 0.009 0.218± 0.251± 0.023
0.144 2.03 16.2 0.258± 0.038± 0.011 0.085± 0.078± 0.006 −0.114± 0.198± 0.016
0.144 3.15 29.1 0.227± 0.033± 0.014 0.141± 0.041± 0.007 0.064± 0.109± 0.020
0.144 4.78 29.1 0.242± 0.030± 0.010 0.171± 0.035± 0.005 0.118± 0.094± 0.014
0.162 0.93 9.7 0.205± 0.043± 0.017 0.115± 0.063± 0.014 0.027± 0.166± 0.033
0.162 1.22 16.2 0.290± 0.054± 0.014 −0.108± 0.108± 0.011 −0.638± 0.279± 0.026
0.162 2.14 16.2 0.237± 0.040± 0.013 0.137± 0.082± 0.007 0.039± 0.211± 0.019
0.162 3.30 29.1 0.297± 0.037± 0.015 0.109± 0.045± 0.008 −0.112± 0.124± 0.021
0.162 5.13 29.1 0.269± 0.030± 0.011 0.084± 0.035± 0.005 −0.138± 0.097± 0.015
0.182 0.97 9.7 0.298± 0.045± 0.018 0.094± 0.067± 0.016 −0.148± 0.178± 0.036
0.182 1.25 16.2 0.237± 0.060± 0.014 0.200± 0.121± 0.012 0.198± 0.315± 0.029
0.182 2.25 16.2 0.258± 0.043± 0.014 0.237± 0.087± 0.008 0.261± 0.227± 0.022
0.182 3.45 29.1 0.326± 0.041± 0.015 0.175± 0.051± 0.009 0.013± 0.140± 0.023
0.182 5.49 29.1 0.309± 0.031± 0.011 0.214± 0.037± 0.006 0.132± 0.102± 0.017
0.205 1.00 9.7 0.251± 0.048± 0.017 0.017± 0.071± 0.016 −0.285± 0.190± 0.037
0.205 1.29 16.2 0.305± 0.066± 0.016 0.213± 0.135± 0.014 0.137± 0.355± 0.032
0.205 2.36 16.2 0.304± 0.046± 0.015 0.117± 0.094± 0.010 −0.109± 0.250± 0.024
0.205 3.59 29.1 0.278± 0.045± 0.015 0.159± 0.057± 0.010 0.032± 0.160± 0.025
0.205 5.86 29.1 0.370± 0.033± 0.012 0.132± 0.039± 0.008 −0.167± 0.110± 0.019
0.230 1.03 9.7 0.335± 0.050± 0.018 0.178± 0.075± 0.017 0.005± 0.204± 0.039
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0.230 1.32 16.2 0.260± 0.073± 0.017 0.090± 0.150± 0.015 −0.123± 0.401± 0.035
0.230 2.47 16.2 0.381± 0.050± 0.016 0.116± 0.104± 0.011 −0.228± 0.281± 0.027
0.230 3.73 29.1 0.396± 0.051± 0.016 0.061± 0.067± 0.011 −0.398± 0.189± 0.027
0.230 6.23 29.1 0.272± 0.036± 0.013 0.173± 0.043± 0.009 0.067± 0.123± 0.022
0.259 1.35 16.2 0.249± 0.082± 0.019 0.138± 0.169± 0.016 0.014± 0.457± 0.037
0.259 2.57 16.2 0.496± 0.055± 0.017 0.127± 0.114± 0.012 −0.373± 0.312± 0.029
0.259 3.85 29.1 0.372± 0.057± 0.017 0.005± 0.078± 0.012 −0.529± 0.225± 0.029
0.259 6.60 29.1 0.480± 0.039± 0.014 0.081± 0.048± 0.011 −0.491± 0.141± 0.025
0.292 1.37 16.2 0.362± 0.091± 0.020 0.398± 0.192± 0.015 0.540± 0.529± 0.037
0.292 2.67 16.2 0.515± 0.061± 0.017 0.369± 0.126± 0.013 0.234± 0.355± 0.031
0.292 3.98 29.1 0.423± 0.067± 0.018 0.225± 0.093± 0.014 −0.026± 0.273± 0.033
0.292 6.97 29.1 0.409± 0.043± 0.016 0.216± 0.055± 0.012 −0.033± 0.164± 0.029
0.329 2.76 16.2 0.446± 0.068± 0.021 0.548± 0.142± 0.018 0.829± 0.408± 0.041
0.329 4.09 29.1 0.468± 0.079± 0.019 0.352± 0.114± 0.015 0.248± 0.343± 0.036
0.329 7.33 29.1 0.428± 0.049± 0.021 0.247± 0.063± 0.014 0.009± 0.196± 0.035
0.370 2.85 16.2 0.594± 0.077± 0.024 0.157± 0.161± 0.015 −0.515± 0.476± 0.038
0.370 4.20 29.1 0.349± 0.096± 0.021 0.362± 0.143± 0.017 0.469± 0.443± 0.040
0.370 7.69 29.1 0.448± 0.057± 0.023 0.343± 0.075± 0.016 0.243± 0.239± 0.040
0.416 2.93 16.2 0.589± 0.087± 0.021 0.235± 0.186± 0.015 −0.310± 0.569± 0.037
0.416 4.30 29.1 0.681± 0.118± 0.023 0.390± 0.184± 0.018 −0.020± 0.588± 0.043
0.416 8.03 29.1 0.611± 0.067± 0.022 0.232± 0.091± 0.018 −0.392± 0.300± 0.043
0.468 3.01 16.2 0.677± 0.101± 0.028 0.710± 0.216± 0.015 0.962± 0.689± 0.040
0.468 4.40 29.1 0.828± 0.151± 0.024 0.190± 0.246± 0.019 −0.940± 0.814± 0.044
0.468 8.37 29.1 0.589± 0.082± 0.025 0.335± 0.113± 0.020 −0.064± 0.392± 0.048
0.526 4.47 29.1 0.841± 0.194± 0.025 0.182± 0.335± 0.018 −1.063± 1.150± 0.044
0.526 8.67 29.1 0.678± 0.102± 0.028 0.508± 0.147± 0.022 0.304± 0.530± 0.053
0.592 4.55 29.1 0.479± 0.255± 0.026 0.672± 0.464± 0.016 1.249± 1.639± 0.042
0.592 8.98 29.1 0.695± 0.133± 0.031 0.065± 0.198± 0.024 −1.283± 0.744± 0.057
0.666 9.26 29.1 0.612± 0.182± 0.033 0.423± 0.284± 0.024 0.112± 1.078± 0.059
0.749 9.52 29.1 0.914± 0.273± 0.041 0.769± 0.443± 0.039 0.613± 1.605± 0.088
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TABLE XI. Coefficients for fits to all available data with Q2 ≥ Q2
min of the form

axα(1 + bx+ cx2)[1 +Cf(Q2)], along with the χ2 for the indicated number of degrees of freedom,
calculated with the statistical errors only. Fits I to IV are to g1/F1, while fit V is to A1.

fit to Q2
min f(Q2) α a b c C χ2 df

I. gp1/F
p
1 0.3 none 0.62 0.641 2.231 −2.666 0.000 145 117

II. gp1/F
p
1 1.0 none 0.64 0.749 1.466 −1.982 0.000 112 106

III. gp1/F
p
1 0.3 1/Q2 0.62 0.762 1.434 −1.917 −0.160 116 116

IV. gp1/F
p
1 0.3 − ln(Q2) 0.66 0.728 0.850 −1.384 −0.100 120 116

V. Ap1 0.3 1/Q2 0.66 0.898 0.595 −0.371 −0.180 118 116
I. gd1/F

d
1 0.3 none 1.52 2.439 −1.718 0.867 0.000 122 111

II. gd1/F
d
1 1.0 none 1.46 2.222 −1.666 0.829 0.000 115 100

III. gd1/F
d
1 0.3 1/Q2 1.44 2.342 −1.724 0.902 −0.260 119 110

IV. gd1/F
d
1 0.3 − ln(Q2) 1.48 2.030 −1.812 0.979 −0.100 120 110

V. Ad1 0.3 1/Q2 1.46 2.493 −1.915 1.376 −0.260 119 110
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TABLE XII. Results for averaged g1/F1 for Q2 ≥ 1 (GeV/c)2.

x < Q2 > gp1/F
p
1 ± stat± syst gd1/F

d
1 ± stat± syst gn1/F

n
1 ± stat± syst

0.031 1.27 0.064± 0.034± 0.009 0.041± 0.040± 0.008 0.021± 0.095± 0.019
0.035 1.40 0.123± 0.025± 0.008 0.008± 0.029± 0.007 −0.115± 0.069± 0.017
0.039 1.52 0.083± 0.023± 0.008 0.062± 0.026± 0.007 0.049± 0.063± 0.016
0.044 1.65 0.110± 0.021± 0.008 −0.013± 0.025± 0.006 −0.150± 0.060± 0.014
0.049 1.78 0.124± 0.020± 0.008 −0.014± 0.024± 0.005 −0.169± 0.058± 0.013
0.056 1.91 0.130± 0.019± 0.008 0.017± 0.023± 0.005 −0.105± 0.057± 0.012
0.063 2.04 0.125± 0.018± 0.008 0.013± 0.022± 0.004 −0.121± 0.056± 0.012
0.071 2.19 0.153± 0.018± 0.008 0.029± 0.022± 0.004 −0.108± 0.056± 0.011
0.079 2.41 0.179± 0.018± 0.009 0.024± 0.022± 0.004 −0.163± 0.057± 0.012
0.090 2.55 0.169± 0.016± 0.011 0.084± 0.021± 0.004 0.012± 0.055± 0.013
0.101 2.85 0.215± 0.016± 0.010 0.063± 0.022± 0.004 −0.110± 0.056± 0.013
0.113 3.13 0.217± 0.016± 0.011 0.057± 0.022± 0.005 −0.135± 0.058± 0.014
0.128 3.41 0.232± 0.017± 0.011 0.128± 0.023± 0.005 0.025± 0.061± 0.015
0.144 3.71 0.235± 0.018± 0.012 0.146± 0.024± 0.005 0.068± 0.064± 0.016
0.162 4.03 0.276± 0.019± 0.012 0.090± 0.025± 0.006 −0.139± 0.068± 0.017
0.182 4.34 0.296± 0.020± 0.013 0.200± 0.027± 0.007 0.102± 0.074± 0.019
0.205 4.15 0.319± 0.020± 0.014 0.109± 0.027± 0.009 −0.165± 0.075± 0.023
0.230 4.37 0.322± 0.021± 0.015 0.130± 0.029± 0.011 −0.103± 0.083± 0.026
0.259 5.26 0.434± 0.026± 0.015 0.103± 0.036± 0.011 −0.369± 0.104± 0.026
0.292 5.53 0.405± 0.029± 0.016 0.227± 0.041± 0.012 0.029± 0.121± 0.029
0.329 6.01 0.427± 0.035± 0.020 0.284± 0.048± 0.014 0.130± 0.147± 0.034
0.370 6.29 0.451± 0.040± 0.022 0.300± 0.056± 0.015 0.139± 0.178± 0.038
0.416 6.56 0.592± 0.047± 0.021 0.232± 0.067± 0.017 −0.371± 0.221± 0.039
0.468 6.79 0.608± 0.056± 0.024 0.319± 0.083± 0.018 −0.126± 0.282± 0.042
0.526 7.72 0.671± 0.083± 0.024 0.455± 0.113± 0.019 0.141± 0.411± 0.045
0.592 7.97 0.600± 0.107± 0.025 0.322± 0.148± 0.019 −0.191± 0.557± 0.045
0.666 9.26 0.478± 0.165± 0.026 0.251± 0.226± 0.019 −0.192± 0.876± 0.046
0.749 9.52 0.744± 0.237± 0.031 0.646± 0.331± 0.033 0.569± 1.233± 0.073
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TABLE XIII. Results for averaged A1 for Q2 ≥ 1 (GeV/c)2.

x < Q2 > Ap1 ± stat± syst Ad1 ± stat± syst An1 ± stat± syst
0.031 1.27 0.063± 0.034± 0.009 0.050± 0.040± 0.008 0.044± 0.095± 0.019
0.035 1.40 0.122± 0.025± 0.008 0.002± 0.028± 0.007 −0.126± 0.069± 0.017
0.039 1.52 0.083± 0.023± 0.008 0.059± 0.026± 0.007 0.041± 0.063± 0.016
0.044 1.65 0.110± 0.021± 0.008 −0.019± 0.025± 0.006 −0.162± 0.060± 0.014
0.049 1.78 0.123± 0.020± 0.008 −0.016± 0.024± 0.005 −0.175± 0.058± 0.013
0.056 1.91 0.130± 0.019± 0.008 0.023± 0.023± 0.005 −0.091± 0.057± 0.012
0.063 2.04 0.123± 0.018± 0.008 0.019± 0.022± 0.004 −0.105± 0.056± 0.012
0.071 2.19 0.152± 0.018± 0.009 0.028± 0.022± 0.004 −0.110± 0.056± 0.012
0.079 2.41 0.180± 0.018± 0.009 0.024± 0.022± 0.004 −0.165± 0.057± 0.012
0.090 2.55 0.168± 0.016± 0.011 0.080± 0.022± 0.004 0.004± 0.055± 0.014
0.101 2.85 0.214± 0.016± 0.011 0.063± 0.022± 0.004 −0.110± 0.057± 0.014
0.113 3.13 0.217± 0.017± 0.011 0.058± 0.022± 0.005 −0.135± 0.059± 0.015
0.128 3.41 0.232± 0.017± 0.011 0.128± 0.023± 0.005 0.025± 0.061± 0.016
0.144 3.71 0.238± 0.018± 0.012 0.154± 0.024± 0.006 0.081± 0.065± 0.017
0.162 4.03 0.272± 0.019± 0.012 0.086± 0.026± 0.007 −0.142± 0.069± 0.018
0.182 4.34 0.294± 0.020± 0.013 0.204± 0.027± 0.008 0.115± 0.075± 0.020
0.205 4.15 0.314± 0.020± 0.014 0.123± 0.027± 0.010 −0.122± 0.076± 0.024
0.230 4.37 0.325± 0.022± 0.015 0.142± 0.030± 0.011 −0.075± 0.085± 0.027
0.259 5.26 0.437± 0.026± 0.016 0.071± 0.038± 0.011 −0.457± 0.108± 0.027
0.292 5.53 0.432± 0.030± 0.017 0.245± 0.043± 0.013 0.036± 0.127± 0.031
0.329 6.01 0.441± 0.036± 0.021 0.308± 0.052± 0.015 0.180± 0.157± 0.036
0.370 6.29 0.471± 0.041± 0.023 0.319± 0.061± 0.016 0.162± 0.192± 0.040
0.416 6.56 0.616± 0.049± 0.022 0.258± 0.074± 0.018 −0.314± 0.242± 0.042
0.468 6.79 0.654± 0.059± 0.026 0.383± 0.093± 0.019 0.019± 0.314± 0.046
0.526 7.72 0.713± 0.090± 0.027 0.456± 0.135± 0.022 0.064± 0.481± 0.051
0.592 7.97 0.649± 0.118± 0.030 0.159± 0.182± 0.023 −0.851± 0.677± 0.054
0.666 9.26 0.612± 0.182± 0.033 0.423± 0.284± 0.024 0.112± 1.078± 0.059
0.749 9.52 0.914± 0.273± 0.041 0.769± 0.443± 0.039 0.613± 1.605± 0.088
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TABLE XIV. Results for g1 obtained from average g1/F1 for Q2 ≥ 1 (GeV/c)2). Not included
in the systematic errors listed are normalization uncertaintird shown in Table XV.

< x > x range < Q2 > gp1 ± stat± syst gd1 ± stat± syst gn1 ± stat± syst
0.031 0.029-0.033 1.27 0.248± 0.132± 0.034 0.150± 0.147± 0.030 0.077± 0.345± 0.074
0.035 0.033-0.037 1.40 0.436± 0.089± 0.032 0.027± 0.097± 0.025 −0.378± 0.227± 0.063
0.039 0.037-0.042 1.52 0.269± 0.073± 0.025 0.191± 0.080± 0.021 0.145± 0.188± 0.054
0.044 0.042-0.047 1.65 0.322± 0.062± 0.022 −0.036± 0.068± 0.017 −0.401± 0.160± 0.043
0.049 0.047-0.053 1.78 0.327± 0.053± 0.019 −0.034± 0.059± 0.013 −0.405± 0.139± 0.036
0.056 0.053-0.059 1.91 0.309± 0.045± 0.017 0.039± 0.052± 0.010 −0.224± 0.121± 0.029
0.063 0.059-0.067 2.04 0.266± 0.039± 0.015 0.027± 0.045± 0.008 −0.230± 0.106± 0.023
0.071 0.067-0.075 2.19 0.294± 0.034± 0.014 0.053± 0.041± 0.006 −0.182± 0.095± 0.021
0.079 0.075-0.084 2.41 0.310± 0.031± 0.014 0.039± 0.037± 0.005 −0.245± 0.086± 0.019
0.090 0.084-0.095 2.55 0.260± 0.024± 0.012 0.123± 0.031± 0.005 0.015± 0.073± 0.019
0.101 0.095-0.107 2.85 0.299± 0.022± 0.012 0.082± 0.029± 0.004 −0.130± 0.067± 0.017
0.113 0.107-0.120 3.13 0.272± 0.021± 0.011 0.067± 0.026± 0.003 −0.142± 0.061± 0.015
0.128 0.120-0.136 3.41 0.262± 0.019± 0.010 0.135± 0.024± 0.004 0.023± 0.057± 0.017
0.144 0.136-0.153 3.71 0.239± 0.018± 0.010 0.138± 0.022± 0.004 0.056± 0.052± 0.017
0.162 0.153-0.172 4.03 0.253± 0.017± 0.010 0.075± 0.021± 0.003 −0.100± 0.049± 0.014
0.182 0.172-0.193 4.34 0.243± 0.016± 0.009 0.147± 0.020± 0.005 0.064± 0.046± 0.018
0.205 0.193-0.218 4.15 0.231± 0.014± 0.009 0.070± 0.017± 0.005 −0.088± 0.040± 0.015
0.230 0.218-0.245 4.37 0.206± 0.014± 0.008 0.072± 0.016± 0.005 −0.047± 0.038± 0.014
0.259 0.245-0.276 5.26 0.242± 0.014± 0.008 0.049± 0.017± 0.004 −0.140± 0.040± 0.013
0.292 0.276-0.310 5.53 0.192± 0.014± 0.007 0.089± 0.016± 0.004 0.009± 0.037± 0.013
0.329 0.310-0.349 6.01 0.168± 0.014± 0.006 0.091± 0.015± 0.004 0.032± 0.036± 0.013
0.370 0.349-0.393 6.29 0.144± 0.013± 0.005 0.076± 0.014± 0.004 0.026± 0.034± 0.011
0.416 0.393-0.442 6.56 0.148± 0.012± 0.005 0.045± 0.013± 0.003 −0.051± 0.030± 0.009
0.468 0.442-0.497 6.79 0.114± 0.011± 0.004 0.045± 0.012± 0.002 −0.012± 0.027± 0.007
0.526 0.497-0.559 7.72 0.084± 0.010± 0.003 0.043± 0.011± 0.002 0.009± 0.025± 0.006
0.592 0.559-0.629 7.97 0.048± 0.009± 0.002 0.019± 0.009± 0.001 −0.007± 0.021± 0.003
0.666 0.629-0.708 9.26 0.021± 0.007± 0.001 0.008± 0.007± 0.001 −0.004± 0.017± 0.001
0.749 0.708-0.791 9.52 0.015± 0.005± 0.001 0.009± 0.005± 0.001 0.005± 0.011± 0.001

TABLE XV. Normalization systematic uncertainties (%).

Parameter Proton Deuteron
Beam Polarization 2.4 2.4
Target Polarization 2.5 4.0
Dilution Factor 1.2 1.4
Nitrogen Correction 0.4 -
Total 3.7 4.9
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TABLE XVI. Significant systematic errors for gd1 for E=29 GeV. The beam and target
polarization errors are each completely correlated and the F2 error includes a correlated
normalization error of ∼ 1%.

x Q2 f F2 R PB PT Arc TOTAL
θ = 4.5◦

0.031 1.30 0.0010 0.0009 0.0016 0.0018 0.0030 0.0298 0.0301
0.035 1.40 0.0010 0.0009 0.0014 0.0018 0.0030 0.0249 0.0252
0.050 1.80 0.0011 0.0012 0.0011 0.0020 0.0033 0.0130 0.0137
0.080 2.30 0.0013 0.0015 0.0007 0.0023 0.0038 0.0044 0.0066
0.125 2.90 0.0014 0.0017 0.0005 0.0025 0.0041 0.0024 0.0058
0.175 3.40 0.0014 0.0018 0.0003 0.0025 0.0042 0.0031 0.0062
0.250 3.80 0.0013 0.0017 0.0001 0.0023 0.0038 0.0039 0.0063
0.350 4.10 0.0009 0.0014 0.0001 0.0017 0.0029 0.0037 0.0053
0.500 4.40 0.0005 0.0008 0.0000 0.0009 0.0015 0.0018 0.0027

θ = 7.0◦

0.080 3.40 0.0013 0.0016 0.0029 0.0024 0.0040 0.0067 0.0089
0.125 4.40 0.0014 0.0017 0.0016 0.0026 0.0044 0.0027 0.0064
0.175 5.30 0.0014 0.0018 0.0009 0.0026 0.0044 0.0028 0.0063
0.250 6.40 0.0013 0.0017 0.0005 0.0023 0.0039 0.0035 0.0061
0.350 7.50 0.0009 0.0013 0.0003 0.0017 0.0028 0.0032 0.0048
0.500 8.60 0.0004 0.0006 0.0001 0.0007 0.0012 0.0018 0.0024
0.700 9.30 0.0001 0.0001 0.0000 0.0002 0.0003 0.0003 0.0005
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TABLE XVII. Significant systematic errors for gd1/F
d
1 for E=29 GeV. The beam and target

polarization errors are each completely correlated.

x Q2 f R PB PT Arc TOTAL
θ = 4.5◦

0.031 1.30 0.0003 0.0005 0.0005 0.0008 0.0080 0.0081
0.035 1.40 0.0003 0.0006 0.0005 0.0009 0.0074 0.0075
0.050 1.80 0.0004 0.0009 0.0008 0.0013 0.0052 0.0055
0.080 2.30 0.0008 0.0020 0.0014 0.0023 0.0027 0.0044
0.125 2.90 0.0013 0.0040 0.0023 0.0039 0.0023 0.0066
0.175 3.40 0.0018 0.0053 0.0033 0.0055 0.0041 0.0095
0.250 3.80 0.0025 0.0063 0.0046 0.0077 0.0080 0.0138
0.350 4.10 0.0032 0.0077 0.0059 0.0099 0.0124 0.0189
0.500 4.40 0.0037 0.0084 0.0068 0.0114 0.0139 0.0213

θ = 7.0◦

0.080 3.40 0.0008 0.0017 0.0014 0.0023 0.0039 0.0051
0.125 4.40 0.0013 0.0030 0.0024 0.0039 0.0024 0.0061
0.175 5.30 0.0019 0.0041 0.0034 0.0056 0.0035 0.0087
0.250 6.40 0.0026 0.0060 0.0047 0.0078 0.0071 0.0132
0.350 7.50 0.0032 0.0082 0.0060 0.0099 0.0115 0.0185
0.500 8.60 0.0037 0.0099 0.0069 0.0114 0.0166 0.0238
0.700 9.30 0.0037 0.0101 0.0069 0.0115 0.0132 0.0217
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TABLE XVIII. Significant systematic errors for gp1 for E=29 GeV. The beam and target
polarization errors are each completely correlated and the F2 error includes a correlated
normalization error of ∼ 1%.

x Q2 f F2 R PB PT Arc TOTAL
θ = 4.5◦

0.031 1.30 0.0052 0.0062 0.0104 0.0071 0.0074 0.0320 0.0361
0.035 1.40 0.0053 0.0061 0.0085 0.0070 0.0073 0.0269 0.0310
0.050 1.80 0.0051 0.0059 0.0049 0.0068 0.0071 0.0156 0.0206
0.080 2.30 0.0047 0.0056 0.0023 0.0064 0.0067 0.0094 0.0153
0.125 2.90 0.0043 0.0055 0.0014 0.0060 0.0063 0.0060 0.0128
0.175 3.40 0.0041 0.0054 0.0008 0.0057 0.0060 0.0047 0.0117
0.250 3.80 0.0036 0.0050 0.0003 0.0052 0.0054 0.0038 0.0104
0.350 4.10 0.0028 0.0039 0.0001 0.0041 0.0043 0.0033 0.0083
0.500 4.40 0.0016 0.0022 0.0000 0.0024 0.0025 0.0017 0.0047

θ = 7.0◦

0.080 3.40 0.0046 0.0059 0.0095 0.0066 0.0069 0.0130 0.0202
0.125 4.40 0.0046 0.0057 0.0042 0.0064 0.0067 0.0070 0.0143
0.175 5.30 0.0043 0.0056 0.0022 0.0060 0.0063 0.0043 0.0122
0.250 6.40 0.0037 0.0050 0.0012 0.0053 0.0055 0.0027 0.0102
0.350 7.50 0.0027 0.0037 0.0006 0.0040 0.0041 0.0020 0.0076
0.500 8.60 0.0014 0.0018 0.0002 0.0020 0.0021 0.0012 0.0039
0.700 9.30 0.0003 0.0005 0.0000 0.0005 0.0005 0.0004 0.0010
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TABLE XIX. Significant systematic errors for gp1/F
p
1 for E=29 GeV. The beam and target

polarization errors are each completely correlated.

x Q2 f R PB PT Arc TOTAL
θ = 4.5◦

0.031 1.30 0.0013 0.0030 0.0018 0.0019 0.0082 0.0092
0.035 1.40 0.0015 0.0034 0.0020 0.0021 0.0076 0.0089
0.050 1.80 0.0019 0.0040 0.0026 0.0027 0.0059 0.0083
0.080 2.30 0.0027 0.0062 0.0037 0.0039 0.0055 0.0102
0.125 2.90 0.0037 0.0095 0.0052 0.0055 0.0052 0.0138
0.175 3.40 0.0048 0.0111 0.0068 0.0071 0.0055 0.0165
0.250 3.80 0.0062 0.0122 0.0089 0.0093 0.0066 0.0199
0.350 4.10 0.0079 0.0146 0.0114 0.0119 0.0091 0.0251
0.500 4.40 0.0096 0.0175 0.0140 0.0146 0.0100 0.0301

θ = 7.0◦

0.080 3.40 0.0025 0.0051 0.0036 0.0038 0.0072 0.0106
0.125 4.40 0.0038 0.0073 0.0053 0.0055 0.0057 0.0126
0.175 5.30 0.0048 0.0086 0.0069 0.0071 0.0049 0.0148
0.250 6.40 0.0063 0.0115 0.0090 0.0094 0.0045 0.0190
0.350 7.50 0.0079 0.0156 0.0115 0.0120 0.0057 0.0248
0.500 8.60 0.0096 0.0206 0.0142 0.0148 0.0081 0.0317
0.700 9.30 0.0100 0.0229 0.0149 0.0156 0.0129 0.0355
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TABLE XX. Deuteron results for g1 at fixed Q2 of 2, 3, and 5 (GeV/c)2 evaluated assuming
g1/F1 is independent of Q2. In addition to the systematic errors shown, there are normalization
uncertainties shown in Table XV.

x gd1(Q2 = 2)± stat± syst gd1(Q2 = 3)± stat± syst gd1(Q2 = 5)± stat± syst
0.031 0.166± 0.162± 0.033 0.180± 0.176± 0.036 0.198± 0.194± 0.040
0.035 0.029± 0.104± 0.027 0.031± 0.112± 0.029 0.034± 0.124± 0.032
0.039 0.202± 0.084± 0.022 0.218± 0.091± 0.024 0.239± 0.100± 0.027
0.044 −0.038± 0.071± 0.017 −0.040± 0.076± 0.019 −0.044± 0.083± 0.020
0.049 −0.035± 0.060± 0.014 −0.037± 0.064± 0.014 −0.040± 0.070± 0.016
0.056 0.040± 0.052± 0.011 0.042± 0.056± 0.011 0.046± 0.061± 0.012
0.063 0.027± 0.045± 0.008 0.028± 0.048± 0.008 0.031± 0.052± 0.009
0.071 0.053± 0.040± 0.006 0.056± 0.042± 0.007 0.060± 0.046± 0.007
0.079 0.038± 0.036± 0.005 0.040± 0.038± 0.005 0.044± 0.041± 0.006
0.090 0.120± 0.030± 0.005 0.125± 0.032± 0.005 0.135± 0.034± 0.005
0.101 0.079± 0.028± 0.004 0.083± 0.029± 0.004 0.089± 0.031± 0.004
0.113 0.064± 0.025± 0.003 0.067± 0.026± 0.004 0.072± 0.028± 0.004
0.128 0.128± 0.023± 0.004 0.133± 0.024± 0.004 0.141± 0.025± 0.004
0.144 0.130± 0.021± 0.004 0.135± 0.022± 0.004 0.142± 0.023± 0.004
0.162 0.071± 0.020± 0.003 0.073± 0.020± 0.004 0.076± 0.021± 0.004
0.182 0.141± 0.019± 0.004 0.143± 0.019± 0.004 0.148± 0.020± 0.005
0.205 0.068± 0.017± 0.005 0.069± 0.017± 0.005 0.070± 0.017± 0.005
0.230 0.071± 0.016± 0.005 0.071± 0.016± 0.005 0.072± 0.016± 0.005
0.259 0.049± 0.017± 0.004 0.049± 0.017± 0.004 0.049± 0.017± 0.004
0.292 0.094± 0.017± 0.004 0.092± 0.016± 0.004 0.090± 0.016± 0.004
0.329 0.100± 0.017± 0.004 0.096± 0.016± 0.004 0.092± 0.016± 0.004
0.370 0.089± 0.017± 0.004 0.083± 0.016± 0.004 0.078± 0.015± 0.004
0.416 0.057± 0.016± 0.004 0.051± 0.015± 0.003 0.047± 0.014± 0.003
0.468 0.064± 0.017± 0.004 0.055± 0.014± 0.003 0.048± 0.012± 0.002
0.526 0.074± 0.019± 0.004 0.060± 0.015± 0.003 0.049± 0.012± 0.002
0.592 0.043± 0.020± 0.002 0.031± 0.014± 0.002 0.023± 0.011± 0.001
0.666 0.026± 0.024± 0.002 0.017± 0.016± 0.001 0.011± 0.010± 0.001
0.749 0.048± 0.025± 0.002 0.028± 0.014± 0.001 0.016± 0.008± 0.001
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TABLE XXI. Proton results for g1 at fixed Q2 of 2, 3, and 5 (GeV/c)2 evaluated assuming
g1/F1 is independent of Q2. In addition to the systematic errors shown, there are normalization
uncertainties shown in Table XV.

x gp1(Q2 = 2)± stat± syst gp1(Q2 = 3)± stat± syst gp1(Q2 = 5)± stat± syst
0.031 0.272± 0.145± 0.037 0.294± 0.157± 0.040 0.322± 0.172± 0.044
0.035 0.468± 0.096± 0.032 0.504± 0.103± 0.035 0.552± 0.113± 0.041
0.039 0.283± 0.077± 0.026 0.304± 0.083± 0.028 0.333± 0.091± 0.031
0.044 0.334± 0.065± 0.022 0.357± 0.069± 0.024 0.390± 0.075± 0.027
0.049 0.334± 0.054± 0.019 0.357± 0.058± 0.020 0.389± 0.063± 0.023
0.056 0.312± 0.046± 0.017 0.332± 0.049± 0.018 0.362± 0.053± 0.020
0.063 0.267± 0.039± 0.014 0.283± 0.041± 0.016 0.308± 0.045± 0.017
0.071 0.292± 0.034± 0.013 0.309± 0.036± 0.014 0.336± 0.039± 0.016
0.079 0.305± 0.030± 0.013 0.322± 0.032± 0.014 0.349± 0.034± 0.015
0.090 0.257± 0.024± 0.011 0.270± 0.025± 0.012 0.292± 0.027± 0.013
0.101 0.292± 0.022± 0.011 0.306± 0.023± 0.012 0.330± 0.025± 0.013
0.113 0.264± 0.020± 0.010 0.276± 0.021± 0.011 0.296± 0.022± 0.011
0.128 0.253± 0.019± 0.010 0.263± 0.019± 0.010 0.281± 0.021± 0.010
0.144 0.229± 0.017± 0.009 0.238± 0.018± 0.009 0.252± 0.019± 0.009
0.162 0.242± 0.016± 0.009 0.250± 0.017± 0.009 0.263± 0.018± 0.009
0.182 0.232± 0.016± 0.008 0.238± 0.016± 0.008 0.248± 0.017± 0.009
0.205 0.225± 0.014± 0.008 0.229± 0.014± 0.008 0.236± 0.014± 0.009
0.230 0.202± 0.013± 0.008 0.204± 0.013± 0.008 0.208± 0.014± 0.008
0.259 0.241± 0.014± 0.008 0.241± 0.014± 0.008 0.242± 0.014± 0.008
0.292 0.197± 0.014± 0.007 0.195± 0.014± 0.007 0.192± 0.014± 0.007
0.329 0.179± 0.015± 0.006 0.174± 0.014± 0.006 0.169± 0.014± 0.006
0.370 0.161± 0.014± 0.005 0.153± 0.014± 0.005 0.146± 0.013± 0.005
0.416 0.177± 0.014± 0.005 0.164± 0.013± 0.005 0.151± 0.012± 0.005
0.468 0.151± 0.014± 0.005 0.134± 0.012± 0.004 0.118± 0.011± 0.004
0.526 0.139± 0.017± 0.004 0.115± 0.014± 0.003 0.095± 0.012± 0.003
0.592 0.105± 0.019± 0.003 0.078± 0.014± 0.002 0.059± 0.011± 0.002
0.666 0.070± 0.024± 0.002 0.046± 0.016± 0.001 0.030± 0.010± 0.001
0.749 0.080± 0.025± 0.002 0.046± 0.014± 0.001 0.026± 0.008± 0.001
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TABLE XXII. Neutron results for g1 at fixed Q2 of 2, 3, and 5 (GeV/c)2 evaluated from gp1 and
gd1 assuming g1/F1 is independent of Q2. In addition there is a normalization uncertainty common
to all data of 2.4% due to beam polarization.

x gn1 (Q2 = 2)± stat± syst gn1 (Q2 = 3)± stat± syst gn1 (Q2 = 5)± stat± syst
0.031 0.085± 0.378± 0.081 0.091± 0.408± 0.088 0.100± 0.448± 0.097
0.035 −0.406± 0.244± 0.067 −0.437± 0.262± 0.072 −0.479± 0.287± 0.080
0.039 0.153± 0.197± 0.056 0.164± 0.212± 0.060 0.180± 0.232± 0.066
0.044 −0.415± 0.166± 0.044 −0.444± 0.177± 0.048 −0.485± 0.194± 0.053
0.049 −0.413± 0.141± 0.036 −0.440± 0.151± 0.039 −0.480± 0.164± 0.043
0.056 −0.225± 0.122± 0.029 −0.240± 0.130± 0.030 −0.261± 0.142± 0.033
0.063 −0.229± 0.106± 0.023 −0.243± 0.112± 0.024 −0.264± 0.122± 0.027
0.071 −0.180± 0.094± 0.019 −0.190± 0.099± 0.021 −0.206± 0.107± 0.022
0.079 −0.240± 0.084± 0.017 −0.252± 0.088± 0.018 −0.273± 0.095± 0.020
0.090 0.015± 0.071± 0.017 0.016± 0.074± 0.018 0.017± 0.080± 0.019
0.101 −0.125± 0.064± 0.015 −0.131± 0.067± 0.016 −0.141± 0.072± 0.017
0.113 −0.136± 0.058± 0.013 −0.141± 0.061± 0.014 −0.151± 0.065± 0.015
0.128 0.022± 0.054± 0.015 0.023± 0.056± 0.016 0.024± 0.059± 0.017
0.144 0.053± 0.050± 0.015 0.055± 0.051± 0.016 0.058± 0.054± 0.016
0.162 −0.095± 0.047± 0.012 −0.098± 0.048± 0.012 −0.102± 0.050± 0.013
0.182 0.061± 0.044± 0.016 0.062± 0.045± 0.016 0.064± 0.046± 0.017
0.205 −0.086± 0.039± 0.014 −0.087± 0.039± 0.014 −0.089± 0.040± 0.014
0.230 −0.047± 0.038± 0.014 −0.047± 0.038± 0.014 −0.047± 0.038± 0.014
0.259 −0.144± 0.041± 0.012 −0.141± 0.040± 0.012 −0.140± 0.040± 0.012
0.292 0.009± 0.040± 0.013 0.009± 0.039± 0.013 0.009± 0.038± 0.013
0.329 0.036± 0.041± 0.013 0.034± 0.039± 0.013 0.032± 0.037± 0.012
0.370 0.031± 0.040± 0.012 0.029± 0.037± 0.011 0.027± 0.035± 0.011
0.416 −0.067± 0.040± 0.010 −0.060± 0.036± 0.009 −0.054± 0.032± 0.009
0.468 −0.018± 0.040± 0.009 −0.015± 0.034± 0.008 −0.013± 0.029± 0.007
0.526 0.016± 0.047± 0.009 0.013± 0.037± 0.008 0.010± 0.029± 0.006
0.592 −0.018± 0.051± 0.007 −0.012± 0.036± 0.005 −0.009± 0.026± 0.004
0.666 −0.015± 0.067± 0.005 −0.009± 0.041± 0.003 −0.006± 0.026± 0.002
0.749 0.034± 0.073± 0.007 0.018± 0.039± 0.004 0.009± 0.021± 0.002
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TABLE XXIII.
∫ .8
.03 g1(x)dx at different Q2 by different methods. The first error is statistical and

the second is systematic. There are additional normalization uncertainties shown in Table XV.

method Q2 = 2 (GeV/c)2 Q2 = 3 (GeV/c)2 Q2 = 5 (GeV/c)2

Deuteron g1/F1 0.050± 0.004± 0.003 0.046± 0.003± 0.003 0.043± 0.003± 0.002
Deuteron A1 0.047± 0.005± 0.003 0.044± 0.004± 0.003 0.043± 0.003± 0.002

Proton g1/F1 0.129± 0.004± 0.006 0.121± 0.003± 0.006 0.117± 0.003± 0.006
Proton A1 0.120± 0.004± 0.006 0.116± 0.003± 0.006 0.116± 0.003± 0.006

Neutron g1/F1 −0.022± 0.011± 0.006 −0.023± 0.008± 0.006 −0.025± 0.007± 0.006
Neutron A1 −0.019± 0.013± 0.005 −0.021± 0.009± 0.005 −0.023± 0.007± 0.005

TABLE XXIV. Systematic errors on the measured integral at Q2 = 3 (GeV/c)2.

SOURCE Deuteron Proton Neutron p-n
F2 0.001 0.003 0.001 0.003
R 0.000 0.001 0.000 0.001

Arc 0.001 0.002 0.003 0.005
f 0.001 0.002 0.001 0.003

PB 0.001 0.003 0.001 0.003
PT 0.002 0.003 0.005 0.007

TOTAL 0.003 0.006 0.006 0.010

TABLE XXV. Estimates of
∫ 0.03
0 g1(x, Q2)dx at Q2 = 3 (GeV/c)2 using various hypotheses.

Columns 3-5 have the Regge form g1 = βxα fitted to g1(x, Q2) at the Q2 shown in the second row,
with α shown in the first row, in the range 0.03 ≤ x ≤ xcut shown in column 2. Column 6 has a
fit of the form ln(1/x). Column 7 has results of global fit II of Table XI. The last column is the
integral of the SMC data with flat Regge extrapolation (α = 0) below x = 0.003.

xcut α = 0 α = 0 α = 0.5 ln(1/x) global II SMC
Q2=3 Q2=1 Q2=3 Q2=3 Q2=3 Q2=3

Deuteron 0.10 0.002 0.002 0.001 0.003 0.001 −0.005±0.003
Proton 0.10 0.009 0.010 0.004 0.015 0.018 0.014±0.003

Neutron 0.10 −0.005 −0.006 −0.002 −0.009 −0.016 −0.025±0.007
p-n 0.10 0.014 0.016 0.006 0.024 0.034 0.039±0.009

Deuteron 0.06 0.001 0.001 0.000 0.002
Proton .06 0.010 0.011 0.005 0.015

Neutron .06 −0.008 −0.009 −0.004 −0.012
p-n .06 0.018 0.020 0.010 0.026
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TABLE XXVI. Integral of g1 in the measured region as well as extrapolations to high and low
x as described in the text. Slight differences between the measured targets and derived targets, n
and p-n, are due to correlations among systematic errors. The structure function g1 was calculated
at fixed Q2 assuming g1/F1 independent of Q2.

< Q2 > Measured high x low x Total
(GeV/c)2

∫ .8
.03 g1

∫ 1
.8 g1

∫ .03
0 g1

∫ 1
0 g1

Deuteron 2 0.050± 0.004± 0.003 0.000± 0.001 0.001± 0.006 0.051± 0.004± 0.006
Proton 2 0.129± 0.004± 0.006 0.001± 0.001 0.011± 0.007 0.140± 0.004± 0.010

Neutron 2 −0.022± 0.011± 0.006 0.001± 0.001 −0.009± 0.016 −0.030± 0.011± 0.017
p-n 2 0.149± 0.012± 0.011 0.001± 0.001 0.020± 0.019 0.169± 0.012± 0.022

Deuteron 3 0.046± 0.003± 0.003 0.000± 0.001 0.001± 0.006 0.047± 0.003± 0.006
Proton 3 0.121± 0.003± 0.006 0.001± 0.001 0.011± 0.007 0.133± 0.003± 0.009

Neutron 3 −0.023± 0.008± 0.006 0.001± 0.001 −0.010± 0.015 −0.032± 0.008± 0.016
p-n 3 0.143± 0.009± 0.010 0.001± 0.001 0.021± 0.018 0.164± 0.009± 0.021

Deuteron 5 0.043± 0.003± 0.002 0.000± 0.001 0.001± 0.006 0.044± 0.003± 0.006
Proton 5 0.117± 0.003± 0.006 0.001± 0.001 0.012± 0.008 0.129± 0.003± 0.010

Neutron 5 −0.025± 0.007± 0.006 0.001± 0.001 −0.010± 0.015 −0.034± 0.007± 0.016
p-n 5 0.141± 0.008± 0.010 0.001± 0.001 0.022± 0.017 0.164± 0.008± 0.020

TABLE XXVII. Comparison of integrals from this experiment and E142 [10] and SMC [7,9].
Note that the SMC and E143 results used g1/F1 independent of Q2 and E142 used A1 independent
of Q2 to evaluate g1 at fixed Q2 from measurements at different Q2, and that the different
experiments had different mean Q2.

Q2 method x range this experiment ← other experiments →
Proton 5 g1/F1 0.03 ≤ x ≤ 0.7 0.115± 0.006 SMC 0.128± 0.006

0 ≤ x ≤ 1 0.129± 0.010 0.140± 0.011
Deuteron 5 g1/F1 0.03 ≤ x ≤ 0.7 0.041± 0.004 SMC 0.043± 0.007

0 ≤ x ≤ 1 0.044± 0.007 0.039± 0.008
Neutron 2 A1 0.03 ≤ x ≤ 0.6 −0.021± 0.009 E142 −0.028± 0.008

0 ≤ x ≤ 1 −0.030± 0.020 −0.031± 0.011
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TABLE XXVIII. Experimental value of Γ1 compared to the Ellis-Jaffe sum rule and Bjorken
sum rule (p−n). For the theoretical input we take αs(MZ) = 0.118±0.003 and 3F −D =0.58 with
uncertainties of either 0.032 (small) or 0.120 (large). The Ellis-Jaffe sum is evaluated with both
the invariant and Q2-dependent pQCD singlet corrections. The Bjorken sum rule depends only on
the non-singlet correction.

< Q2 > Γexp1 Γtheory1 Γtheory1 error error
(GeV/c)2 invariant Q2-dependent (small) (large)

Deuteron 2 0.051± 0.008 0.070 0.065 ±0.004 ±0.014
Proton 2 0.140± 0.010 0.161 0.156 ±0.005 ±0.016

Neutron 2 −0.030± 0.020 −0.010 −0.015 ±0.005 ±0.016
p-n 2 0.169± 0.025 0.171 0.171 ±0.006 ±0.006

Deuteron 3 0.047± 0.007 0.071 0.066 ±0.004 ±0.014
Proton 3 0.133± 0.010 0.165 0.160 ±0.005 ±0.016

Neutron 3 −0.032± 0.018 −0.012 −0.017 ±0.004 ±0.016
p-n 3 0.164± 0.023 0.177 0.177 ±0.004 ±0.004

Deuteron 5 0.044± 0.007 0.072 0.068 ±0.004 ±0.015
Proton 5 0.129± 0.010 0.169 0.164 ±0.005 ±0.016

Neutron 5 −0.034± 0.017 −0.014 −0.018 ±0.004 ±0.016
p-n 5 0.164± 0.021 0.182 0.182 ±0.003 ±0.003

TABLE XXIX. The evaluated quark spins using both the “invariant” and Q2-dependent pQCD
singlet coefficients, with an assumed error on F/D of 0.016. If the more conservative estimate of
δ(3F −D) = 0.12 is used, the only change is to the error on ∆s which is shown in the last column.

method Σ = ao ∆u ∆d ∆s Conservative δ∆s
Deuterium invariant 0.35±0.07 0.84±0.02 −0.42±0.02 −0.08±0.03 ±0.05

Proton invariant 0.29±0.09 0.83±0.03 −0.43±0.03 −0.10±0.03 ±0.06
Deuterium Q2 =3 (GeV/c)2 0.37±0.08 0.85±0.03 −0.41±0.03 −0.07±0.03 ±0.06

Proton Q2 =3 (GeV/c)2 0.32±0.10 0.83±0.03 −0.43±0.03 −0.09±0.04 ±0.06
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TABLE XXX. Results for A2, g2 and g2 for the proton measured in the 4.5◦ and 7.0◦

spectrometers at the indicated average values of x and Q2 and beam energy of 29.1 GeV. The
highest x bin shown is in the resonance region defined by missing mass W 2 < 4 GeV2.

x interval < x > < Q2 > Ap2 gp2 gp2
(GeV/c)2 ±stat ±syst ±stat ±syst ±stat ±syst

0.029− 0.047 0.038 1.49 0.016± 0.018± 0.006 0.489± 0.980± 0.332 0.223± 0.983± 0.332
0.047− 0.075 0.060 2.01 0.025± 0.014± 0.005 0.397± 0.374± 0.138 0.223± 0.375± 0.138
0.075− 0.120 0.095 2.60 0.004± 0.015± 0.006 −0.236± 0.203± 0.074 −0.295± 0.204± 0.074
0.120− 0.193 0.152 3.21 0.021± 0.021± 0.008 −0.136± 0.125± 0.049 −0.127± 0.127± 0.049
0.193− 0.310 0.241 3.77 0.091± 0.032± 0.011 −0.046± 0.079± 0.026 0.027± 0.080± 0.026
0.310− 0.498 0.379 4.22 0.135± 0.060± 0.014 −0.050± 0.048± 0.009 0.051± 0.050± 0.009
0.498− 0.799 0.595 4.55 0.061± 0.154± 0.028 −0.037± 0.020± 0.004 −0.005± 0.022± 0.004
0.075− 0.120 0.101 3.76 0.025± 0.025± 0.007 0.060± 0.366± 0.116 0.000± 0.368± 0.116
0.120− 0.193 0.155 4.97 0.048± 0.019± 0.007 0.171± 0.141± 0.049 0.198± 0.142± 0.049
0.193− 0.310 0.243 6.37 0.053± 0.022± 0.007 −0.068± 0.070± 0.021 0.023± 0.071± 0.021
0.310− 0.498 0.382 7.76 0.077± 0.035± 0.008 −0.039± 0.034± 0.007 0.043± 0.035± 0.007
0.498− 0.799 0.584 8.85 0.106± 0.083± 0.016 −0.022± 0.011± 0.002 0.001± 0.012± 0.002

TABLE XXXI. Results for A2, g2 and g2 for the deuteron measured in the 4.5◦ and 7◦

spectrometers at the indicated average values of x and Q2 and beam energy of 29.1 GeV. The
highest x bin shown is in the resonance region defined by missing mass W 2 < 4 GeV2.

x interval < x > < Q2 > Ad2 gd2 gd2
(GeV/c)2 ±stat ±syst ±stat ±syst ±stat ±syst

0.029− 0.047 0.038 1.49 0.070± 0.045± 0.010 3.426± 2.157± 0.575 3.275± 2.161± 0.575
0.047− 0.075 0.060 2.01 −0.025± 0.028± 0.006 −0.655± 0.707± 0.157 −0.799± 0.709± 0.157
0.075− 0.120 0.095 2.60 0.008± 0.032± 0.010 0.008± 0.390± 0.118 −0.048± 0.392± 0.118
0.120− 0.193 0.152 3.21 0.005± 0.045± 0.016 −0.118± 0.243± 0.080 −0.095± 0.245± 0.080
0.193− 0.310 0.241 3.77 0.078± 0.072± 0.020 0.127± 0.154± 0.041 0.134± 0.156± 0.041
0.310− 0.498 0.378 4.22 −0.079± 0.144± 0.017 −0.127± 0.094± 0.010 −0.095± 0.096± 0.010
0.498− 0.799 0.595 4.56 0.327± 0.390± 0.044 0.037± 0.039± 0.004 0.027± 0.041± 0.004
0.075− 0.120 0.101 3.77 0.024± 0.046± 0.009 0.172± 0.621± 0.133 0.084± 0.624± 0.133
0.120− 0.193 0.154 4.97 −0.007± 0.036± 0.011 −0.109± 0.235± 0.076 −0.086± 0.237± 0.076
0.193− 0.310 0.242 6.37 −0.043± 0.043± 0.015 −0.133± 0.116± 0.041 −0.117± 0.118± 0.041
0.310− 0.498 0.381 7.76 0.000± 0.073± 0.014 −0.042± 0.056± 0.011 −0.006± 0.057± 0.011
0.498− 0.799 0.584 8.86 0.235± 0.183± 0.030 0.000± 0.018± 0.003 0.011± 0.019± 0.003
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TABLE XXXII. Results for A2, g2 and g2 for the neutron measured in the 4.5◦ and 7◦

spectrometers at the indicated average values of x and Q2 and beam energy of 29.1 GeV. The
highest x bin shown is in the resonance region defined by missing mass W 2 < 4 GeV2.

x interval < x > < Q2 > An2 gn2 gn2
(GeV/c)2 ±stat ±syst ±stat ±syst ±stat ±syst

0.029− 0.047 0.038 1.49 0.143± 0.105± 0.023 7.024± 4.777± 1.288 6.963± 4.787± 1.288
0.047− 0.075 0.060 2.01 −0.085± 0.065± 0.015 −1.811± 1.574± 0.367 −1.948± 1.579± 0.367
0.075− 0.120 0.095 2.60 0.013± 0.076± 0.025 0.254± 0.868± 0.266 0.192± 0.872± 0.266
0.120− 0.193 0.152 3.21 −0.013± 0.114± 0.040 −0.118± 0.541± 0.180 −0.079± 0.545± 0.180
0.193− 0.310 0.241 3.77 0.067± 0.192± 0.056 0.320± 0.342± 0.093 0.263± 0.347± 0.093
0.310− 0.498 0.378 4.22 −0.433± 0.419± 0.058 −0.225± 0.209± 0.024 −0.256± 0.214± 0.024
0.498− 0.799 0.595 4.56 0.926± 1.302± 0.200 0.116± 0.086± 0.010 0.064± 0.091± 0.010
0.075− 0.120 0.101 3.77 0.028± 0.113± 0.024 0.315± 1.392± 0.312 0.184± 1.399± 0.312
0.120− 0.193 0.154 4.97 −0.078± 0.091± 0.029 −0.407± 0.528± 0.172 −0.384± 0.533± 0.172
0.193− 0.310 0.242 6.37 −0.195± 0.118± 0.041 −0.219± 0.261± 0.091 −0.276± 0.265± 0.091
0.310− 0.498 0.381 7.76 −0.131± 0.218± 0.045 −0.052± 0.125± 0.025 −0.057± 0.128± 0.025
0.498− 0.799 0.584 8.86 0.544± 0.627± 0.120 0.021± 0.041± 0.006 0.023± 0.042± 0.006

TABLE XXXIII. Results for the moments Γ(2)
1 and Γ(2)

2 evaluated at Q2 = 5 (GeV/c)2, and
the extracted twist-3 matrix elements d2 for proton (p), deuteron (d), and neutron(n). The errors
include statistical (which dominate) and systematic contributions.

a2/2 = Γ(2)
1 × 103 Γ(2)

2 × 103 d2 × 103

p 12.4± 1.0 −6.3± 1.8 5.8± 5.0
d 4.6± 0.8 −1.4± 3.0 5.1± 9.2
n −2.4± 1.6 3.3± 6.5 5.0± 21.0

TABLE XXXIV. Theoretical predictions for the twist-3 matrix elements dp2 and fp2 for proton
and dd2 and fd2 for deuteron. Also shown is µ, the higher twist correction to Γ1 described in the text.

Bag models QCD sum rules
Ref. [57] Ref. [56] Ref. [53] Ref. [137] Ref. [138] Ref. [52] Ref. [139]

Q2 (GeV/c)2 5 5 1 1 1 1 -
dp2 × 103 17.6 6.0 21 10 −6± 3 −3 ± 3 -
fp2 × 103 - - 35 28 −37± 6 −50± 34 −69± 5
µ
p
2 × 103 - - 27 15 −15± 7 −20± 13 −27± 2
dd2 × 103 6.6 2.9 11 5 −17± 5 −13± 5 -
fd2 × 103 - - 17 14 −25± 4 −34± 20 −38± 5
µd2 × 103 - - 13 7 −10± 3 −13± 8 −15± 2
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TABLE XXXV. Pion asymmetries versus momentum E ′ for proton and deuteron targets at
E=29.1 GeV.

E ′(GeV) Ap‖(π
−) Ap‖(π

+) Ad‖(π
−) Ad‖(π

+)
θ = 4.5◦

8.04 0.028± 0.010 0.016± 0.019 0.001± 0.011 0.013± 0.021
10.65 0.019± 0.012 0.043± 0.022 −0.017 ± 0.013 0.005± 0.025
13.57 0.019± 0.016 0.019± 0.031 −0.015 ± 0.018 0.016± 0.036
16.58 0.001± 0.023 0.065± 0.043 −0.017± 0.025 0.020± 0.052
19.41 0.002± 0.036 0.041± 0.069 0.108± 0.041 0.031± 0.087
21.88 −0.044 ± 0.056 0.028± 0.111 −0.108± 0.068 0.031± 0.146
23.90 0.018± 0.063 0.273± 0.127 −0.084± 0.079 −0.172 ± 0.171
25.44 0.058± 0.082 0.057± 0.168 0.057± 0.111 0.094± 0.242

θ = 7.0◦

5.61 0.123± 0.069 −0.010 ± 0.135 0.022± 0.072 −0.272 ± 0.195
7.72 0.018± 0.010 0.027± 0.019 −0.021 ± 0.010 −0.038 ± 0.031
10.29 0.001± 0.012 0.081± 0.023 −0.019 ± 0.013 0.000± 0.037
13.19 0.016± 0.022 0.057± 0.043 0.063± 0.024 0.034± 0.071
16.19 0.085± 0.036 0.071± 0.075 −0.021 ± 0.042 0.142± 0.129
19.06 0.096± 0.052 −0.035 ± 0.107 0.070± 0.063 0.231± 0.196
21.59 −0.034 ± 0.064 0.106± 0.136 0.023± 0.085 0.060± 0.263
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TABLE XXXVI. The measured virtual photon-nucleon asymmetry A1 + ηA2 and the spin
structure function g1 for the resonance region. The values of W 2 and Q2 are given at bin centers.
The dilution factor f and applied correction termArc, which for these data also includes a resolution
correction, are from Eqs. 49 and 55. The value of g1 in the last column is calculated from A‖ under
the assumption that A2 = 0.

W 2 Q2 f Arc A1 + ηA2 g1

GeV2 (GeV/c)2 ± stat.± syst. ± stat.± syst.
Proton θ = 4.5◦

1.31 0.55 0.180 −0.0444 −0.086±0.126±0.225 −0.011±0.017±0.030
1.69 0.54 0.164 −0.0284 −0.453±0.125±0.127 −0.112±0.031±0.032
2.06 0.53 0.155 0.0101 0.461±0.106±0.104 0.139±0.032±0.031
2.44 0.52 0.153 0.0204 0.694±0.091±0.086 0.344±0.045±0.035
2.81 0.50 0.154 −0.0051 0.222±0.078±0.046 0.142±0.050±0.027
3.19 0.49 0.144 −0.0049 0.242±0.079±0.092 0.142±0.046±0.050
3.56 0.48 0.144 −0.0047 0.090±0.072±0.030 0.061±0.049±0.018
3.94 0.47 0.147 −0.0032 0.002±0.064±0.011 0.002±0.054±0.010
4.31 0.46 0.144 −0.0013 0.134±0.059±0.017 0.129±0.057±0.008
4.69 0.45 0.143 −0.0013 0.105±0.056±0.014 0.110±0.058±0.009

Deuteron θ = 4.5◦

1.31 0.55 0.247 −0.0242 −0.173±0.278±0.236 −0.015±0.024±0.021
1.69 0.54 0.235 −0.0221 −0.305±0.231±0.078 −0.061±0.047±0.015
2.06 0.53 0.232 −0.0009 0.290±0.157±0.095 0.107±0.058±0.034
2.44 0.52 0.227 0.0115 0.184±0.152±0.072 0.078±0.064±0.030
2.81 0.50 0.232 0.0030 0.021±0.128±0.055 0.011±0.068±0.029
3.19 0.49 0.230 −0.0033 0.147±0.113±0.021 0.093±0.072±0.011
3.56 0.48 0.230 −0.0040 0.023±0.102±0.011 0.017±0.074±0.008
3.94 0.47 0.230 −0.0037 −0.017±0.096±0.010 −0.014±0.078±0.008
4.31 0.46 0.233 −0.0031 −0.034±0.091±0.009 −0.030±0.080±0.008
4.69 0.45 0.229 −0.0028 0.055±0.086±0.010 0.053±0.084±0.008

Proton θ = 7.0◦

1.56 1.26 0.159 −0.0524 −0.143±0.128±0.113 −0.015±0.013±0.012
1.94 1.23 0.154 −0.0012 0.349±0.110±0.105 0.038±0.012±0.012
2.31 1.20 0.156 0.0251 0.795±0.087±0.088 0.177±0.019±0.020
2.69 1.18 0.158 0.0036 0.593±0.077±0.058 0.163±0.021±0.014
3.06 1.15 0.154 0.0046 0.507±0.069±0.078 0.177±0.024±0.025
3.44 1.12 0.150 0.0029 0.262±0.066±0.035 0.101±0.025±0.010
3.81 1.10 0.148 0.0027 0.299±0.063±0.039 0.136±0.028±0.008
4.19 1.07 0.148 0.0038 0.433±0.059±0.062 0.221±0.030±0.012
4.56 1.04 0.148 0.0035 0.324±0.056±0.054 0.185±0.032±0.017
4.94 1.02 0.147 0.0033 0.237±0.053±0.037 0.150±0.034±0.010

Deuteron θ = 7.0◦

1.56 1.26 0.232 −0.0312 0.043±0.243±0.103 0.003±0.017±0.007
1.94 1.23 0.232 −0.0131 0.163±0.179±0.128 0.018±0.019±0.014
2.31 1.20 0.230 0.0108 0.183±0.154±0.033 0.030±0.025±0.005
2.69 1.18 0.231 0.0110 0.237±0.134±0.072 0.054±0.030±0.016
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3.06 1.15 0.234 0.0019 0.389±0.114±0.046 0.112±0.033±0.012
3.44 1.12 0.228 0.0000 0.081±0.105±0.017 0.028±0.037±0.006
3.81 1.10 0.228 −0.0005 0.121±0.099±0.019 0.049±0.040±0.006
4.19 1.07 0.230 −0.0002 0.178±0.094±0.030 0.080±0.042±0.009
4.56 1.04 0.230 −0.0006 0.145±0.091±0.026 0.073±0.046±0.008
4.94 1.02 0.230 −0.0006 0.201±0.085±0.036 0.113±0.048±0.012
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TABLE XXXVII. Systematic errors (absolute) on A1 +ηA2 by category for the resonance region
(See text for details).

W 2 Arc model θ E ′ Resol PbPt f R g2

Proton θ = 4.5◦

1.31 0.0083 0.1842 0.0033 0.1156 0.0328 0.0354 0.0260 0.0188 0.0057
1.69 0.0006 0.1245 0.0051 0.0163 0.0052 0.0019 0.0014 0.0169 0.0046
2.06 0.0837 0.0082 0.0077 0.0541 0.0019 0.0145 0.0106 0.0224 0.0040
2.44 0.0548 0.0614 0.0070 0.0114 0.0098 0.0211 0.0155 0.0520 0.0088
2.81 0.0339 0.0019 0.0014 0.0201 0.0040 0.0106 0.0078 0.0191 0.0042
3.19 0.0544 0.0832 0.0008 0.0118 0.0027 0.0106 0.0078 0.0349 0.0040
3.56 0.0146 0.0256 0.0004 0.0003 0.0008 0.0045 0.0033 0.0150 0.0036
3.94 0.0102 0.0015 0.0000 0.0022 0.0020 0.0009 0.0006 0.0003 0.0032
4.31 0.0011 0.0028 0.0006 0.0012 0.0010 0.0055 0.0040 0.0156 0.0031
4.69 0.0062 0.0017 0.0004 0.0008 0.0001 0.0043 0.0032 0.0115 0.0029

Deuteron θ = 4.5◦

1.31 0.1965 0.1531 0.0242 0.1203 0.0375 0.0236 0.0132 0.0027 0.0033
1.69 0.0638 0.0613 0.0129 0.0331 0.0048 0.0015 0.0008 0.0259 0.0049
2.06 0.0220 0.0861 0.0180 0.0197 0.0044 0.0161 0.0090 0.0234 0.0058
2.44 0.0107 0.0702 0.0059 0.0073 0.0010 0.0046 0.0026 0.0126 0.0040
2.81 0.0074 0.0542 0.0017 0.0047 0.0013 0.0004 0.0002 0.0016 0.0022
3.19 0.0110 0.0047 0.0067 0.0046 0.0016 0.0099 0.0056 0.0108 0.0034
3.56 0.0037 0.0099 0.0014 0.0003 0.0002 0.0027 0.0015 0.0017 0.0022
3.94 0.0029 0.0094 0.0003 0.0001 0.0002 0.0003 0.0002 0.0016 0.0019
4.31 0.0021 0.0084 0.0011 0.0008 0.0002 0.0009 0.0005 0.0037 0.0016
4.69 0.0024 0.0056 0.0027 0.0007 0.0001 0.0039 0.0022 0.0060 0.0016

Proton θ = 7.0◦

1.56 0.0186 0.1033 0.0010 0.0126 0.0386 0.0163 0.0090 0.0030 0.0010
1.94 0.0165 0.0186 0.0086 0.1006 0.0010 0.0163 0.0089 0.0137 0.0019
2.31 0.0742 0.0028 0.0150 0.0171 0.0141 0.0258 0.0141 0.0251 0.0081
2.69 0.0103 0.0287 0.0088 0.0196 0.0012 0.0237 0.0130 0.0370 0.0064
3.06 0.0342 0.0630 0.0057 0.0105 0.0043 0.0200 0.0110 0.0385 0.0064
3.44 0.0106 0.0196 0.0029 0.0039 0.0024 0.0100 0.0055 0.0262 0.0033
3.81 0.0075 0.0030 0.0030 0.0021 0.0013 0.0115 0.0063 0.0353 0.0040
4.19 0.0054 0.0056 0.0040 0.0004 0.0004 0.0164 0.0090 0.0591 0.0061
4.56 0.0071 0.0235 0.0028 0.0005 0.0005 0.0127 0.0070 0.0463 0.0046
4.94 0.0009 0.0099 0.0018 0.0004 0.0003 0.0089 0.0049 0.0341 0.0039

Deuteron θ = 7.0◦

1.56 0.0887 0.0335 0.0008 0.0355 0.0288 0.0216 0.0091 0.0030 0.0018
1.94 0.0144 0.1146 0.0172 0.0523 0.0004 0.0158 0.0066 0.0016 0.0019
2.31 0.0206 0.0020 0.0111 0.0185 0.0051 0.0064 0.0027 0.0113 0.0028
2.69 0.0072 0.0686 0.0095 0.0040 0.0004 0.0098 0.0041 0.0163 0.0043
3.06 0.0085 0.0136 0.0209 0.0052 0.0110 0.0229 0.0096 0.0269 0.0083
3.44 0.0045 0.0129 0.0051 0.0033 0.0032 0.0049 0.0020 0.0056 0.0031
3.81 0.0045 0.0101 0.0068 0.0003 0.0030 0.0073 0.0030 0.0115 0.0031
4.19 0.0046 0.0095 0.0101 0.0062 0.0004 0.0113 0.0047 0.0232 0.0045
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4.56 0.0015 0.0075 0.0079 0.0032 0.0004 0.0091 0.0038 0.0208 0.0037
4.94 0.0063 0.0059 0.0109 0.0082 0.0011 0.0130 0.0054 0.0289 0.0054

TABLE XXXVIII. Integrals Γ1(Q2) of the structure functions g1 for the proton (p), deuteron
and neutron (n) at low Q2. Listed are the measured sums Γres

1 for the resonance region (W 2 < 4
GeV2) and ΓDIS

1 for the deep-inelastic region (W 2 > 4 GeV2 using data from 9.7 and 16 GeV beam
energies), the low-x extrapolation Γext

1 for x < 0.03, and the combined total Γtot
1 .

Q2 Γres
1 ΓDIS

1 Γext
1 Γtot

1

(GeV/c)2 ±stat.±syst. ±stat.±syst. ±stat.±syst.
0.5 Proton 0.022± 0.007± 0.008 0.017± 0.002± 0.003 0.009 0.047± 0.007± 0.015
0.5 Deuteron 0.004± 0.010± 0.008 0.004± 0.003± 0.002 0.000 0.008± 0.011± 0.009
0.5 Neutron −0.013± 0.023± 0.018 −0.030± 0.024± 0.025
0.5 p-n 0.077± 0.027± 0.036
1.2 Proton 0.039± 0.003± 0.003 0.051± 0.003± 0.003 0.014 0.104± 0.005± 0.016
1.2 Deuteron 0.018± 0.005± 0.003 0.019± 0.006± 0.002 0.001 0.037± 0.007± 0.006
1.2 Neutron −0.001± 0.010± 0.008 −0.023± 0.016± 0.020
1.2 p-n 0.127± 0.018± 0.034
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FIG. 1. The layout of the lasers and the polarized electron gun at the accelerator injector is
shown schematically. Two types of lasers are used, one for the SLC, which produces two 2 nsec
pulses separated by 61 nsec, and one for the fixed target experiments, which produces one pulse 2
µsec long.
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FIG. 2. The layout of the Møller polarimeter systems used in the E143 experiment (not to scale).
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FIG. 23. Extracted values for A1 + ηA2 (circles) in the resonance region for the proton at (a)
4.5◦ and (b) 7.0◦; and for the deuteron at (c) 4.5◦ and (d) 7.0◦. Also shown are the Monte Carlo
predictions (solid line) and the data of Baum et al. [132] (diamonds). Error bars correspond to
statistical errors only, whereas the bands below the data correspond to the systematic errors.
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FIG. 24. Measurements of g1(x, Q2) in the resonance region as a function of W 2 for the proton
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(solid line). The errors are indicated as in Fig. 23.
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