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Abstract

Data are presented on the reaction e+e� !  + no other detected particle
at center-of-mass energies,

p
s = 89.48 GeV, 91.26 GeV and 93.08 GeV. The

cross section for this reaction is related directly to the number of light neutrino
generations which couple to the Z0 boson, and to several other phenomena
such as excited neutrinos, the production of an invisible `X' particle, a possible
magnetic moment of the tau neutrino, and neutral monojets. Based on the
observed number of single photon events, the number of light neutrinos which
couple to the Z0 is measured to be N� = 3.15 � 0.34. No evidence is found for

anomalous production of energetic single photons, and upper limits at the 95%
con�dence level are determined for excited neutrino production (BR < 4� 9�
10�6), production of an invisible `X' particle (� < 0.1 pb), and the magnetic
moment of the tau neutrino (< 5:2 � 10�6�B). No event with the topology of
a neutral monojet is found, and this corresponds to the limit � < 0:044=� pb
at the 95% con�dence level, where � is the unknown overall monojet detection
e�ciency.

(To be submitted to Zeitschr. f�ur Phys. C)
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1 Introduction

Annihilation events in e+e�collisions which feature no charged particles in the �nal
state are used to estimate the number of light neutrino generations which couple to the
Z0 via the reaction e+e� ! ���. They may also provide a clear signal for new phenomena
such as the existence of excited neutrinos [1]. In addition, they allow limits to be set on a

possible magnetic moment for the tau neutrino [2] and on the production of an invisible
`X' particle in association with a photon. Also, the selection criteria used for the analysis
allow the search for events having the characteristics of neutral monojets, which would be
neutral jets which contain some electromagnetic energy and which are detected as several
distinct neutral showers.

The essence of this analysis is to measure the cross section for the reaction e+e� ! 
+ no other detected particle using the DELPHI detector [3] at the CERN LEP collider.

In section 2, aspects of the DELPHI detector pertinent to this analysis are presented.
In section 3, the data sample and event selection criteria are presented. A discussion of

the uncertainties and backgrounds is given in section 4, and in section 5 results on the
number of light neutrino generations are presented. Results on searches for new physics,
including excited neutrinos, the tau neutrino magnetic moment, an invisible `X' particle,
and neutral monojets are presented in section 6. Lastly, the conclusions are given.

2 The DELPHI Detector

The search for single photon events in the DELPHI detector [3,4] depends largely
on the features of the barrel electromagnetic calorimeter, the High-density Projection
Chamber (HPC) [5]. The rest of the DELPHI detector is used speci�cally to veto on the
presence of any other particles in the �nal state and to measure the integrated luminosity.

The HPC is a gas sampling calorimeter which uses a long drift time to provide com-
plete three-dimensional charge information in the manner of a time-projection chamber.
It subtends the angular range 41� < # < 139�, where # is the polar angle to the beam

direction, and it is mounted directly inside the 5.2-meter (inner diameter) superconduct-
ing solenoid of DELPHI, which provides a 1.23 Tesla axial magnetic �eld. The HPC
consists of 144 modules arranged in 24 azimuthal sectors, where each sector consists of
six modules along the beam axis.

Each module consists of 41 layers of lead radiator totalling about 18 radiation lengths
(X0) at normal incidence, interspersed with 40 gas sampling slots containing a mixture
of argon and methane gases. Charge due to ionization produced in the electromagnetic
showers drifts along the beam (z) axis in parallel electric and magnetic �elds, and is read
out via a grid of 128 cathode pads per module, which provides nine samplings along the

shower axis. The 15 MHz sampling frequency corresponds to a cell size of 3.5 mm along
the beam axis, with a spatial resolution varying between 1.3 and 3.1 mm according to
the polar angle. The granularity in the azimuthal angle (�) is about 20 mrad.

The HPC electromagnetic calorimeter is described in the literature [5] as is the readout
electronics [6]. The energy resolution of the HPC is determined from a study of the
Bhabha events (45 GeV electromagnetic showers) plus a study of �0 reconstructed in the

calorimeter. The energy resolution of the HPC is �=E = 0:043 � 0:32=
p
E, where the

symbol � means addition in quadrature, and E is in GeV [4]. The quoted resolution
includes the e�ects of about 0.7 X0 of material in front of the HPC.

The DELPHI single photon trigger uses a positive correlation between a signal from
the HPC �rst-level trigger which comes from a layer of plastic scintillator inserted in each
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module near shower maximum, and a signal from the HPC second-level trigger which uses
a pattern of charge in the module itself. The scintillator provides a fast (< 2 �sec) �rst-

level trigger from each module. To provide a second-level trigger, signals from the cathode
pads which represent electric charge accumulated in the module from a shower are split.
They are sent to the FADC's for digitization, and they also provide input to the second
level trigger. For the second level trigger, the signals from the 18432 HPC cathode pads
are added in groups of 16 to provide 8 signals per module (1152 for the entire HPC).

To keep the background levels low, the correlation between the �rst and second level
triggers is performed on groups of three adjacent HPC modules at the same azimuth. For
details see reference [7].

The trigger e�ciency is determined in an analysis using about 8000 Compton scatter

events in which the scattered electron (or positron) enters an HPC module, and the
photon is detected in a forward electromagnetic calorimeter (see below). The positron
(or electron) escapes undetected down the beam pipe. These events are particularly clean,
and they provide a sample of known electromagnetic showers in the HPC in which the
incident energy is known both from the kinematics of Compton scattering and also from
measurement of the electron curvature. The trigger e�ciency is shown in Figure 1. This
measurement is an update of an earlier measurement by the same method which used
the 1993 data [7]. The systematic uncertainty in the measured cross sections due to the

trigger e�ciency, determined from the �t shown in Figure 1, averages to 13% over the
observed single photon energy spectrum. It is included in all cross section uncertainties
quoted below.

Measurement of cross sections requires knowledge of the integrated luminosity. The
Small Angle Tagger (SAT) [3] was the main luminosity monitor in DELPHI before the
1994 run. It consisted of two cylindrical calorimeters placed �232.5 cm from the beam
interaction point and covering the polar angular region from 43 mrad to 135 mrad. Each
cylinder was composed of a set of circular sheets of lead and scintillating �bres arranged
inside an aluminum support. The total depth was equivalent to 20 X0. On one side a

tungsten mask de�ned with high precision the inner radius of the detector and prevented
o�-momentum particles from entering the calorimeter through the internal surface.

The read-out segmentation was de�ned by 3 cm rings in the r coordinate and 7:5�

in � for the four outermost rings and 15� for the others. The energy resolution was
�=E = 0:012 � 0:114=

p
E + 0:023, where E is in GeV [3].

The principal source of background to the reaction e+e� ! ��� is the radiative
Bhabha reaction e+e� ! e+e� in which the �nal state electron and positron escape
detection. This may occur in the 1993 data if the electron and positron emerge at angles
below the SAT acceptance (# < 43 mrad) or in the region between the SAT and the

forward electromagnetic calorimeter (FEMC), i.e. 135 mrad < # < 173 mrad. In the
1994 data, the SAT was replaced with a new luminosity monitor, and this is discussed in
detail below.

The DELPHI Forward Electromagnetic Calorimeter (FEMC) [4] subtends a polar
angle 10�< # < 37�and 143�< # < 170�. It consists of two 5 m diameter disks with
a total of 9064 lead glass blocks in the form of truncated pyramids arranged to point
just 3�from the interaction point. The lead glass counters (20 X0 deep, 5 x 5 cm2,
�1� x 1�) are read out with vacuum photodiodes. The energy resolution is �=E =

0:03� 0:12=
p
E� 0:11=E, with E in GeV, the last term being due to ampli�cation noise.

At LEP the energy resolution is degraded by about two radiation lengths of material in
front of the calorimeter. Electron showers at 45 GeV from Bhabha scatter events are
measured with �/E = 4.8%.
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For the 1994 run, a new luminosity monitor, the Small Angle TIle Calorimeter (STIC)
was installed in the DELPHI detector [4]. It consists of two identical calorimeters with

radial and azimuthal segmentation located at �220 cm from the interaction point, with
an angular coverage between 29 and 185 mrad. Each STIC detector is a lead-scintillator
sampling calorimeter (49 layers of 3.4 mm steel laminated lead plates and 3 mm thick
scintillator for a total of � 27 X0) with wavelength shifter �ber readout, and is equipped
with two planes of silicon strip detectors placed after 4 and 7.4 radiation lengths. The
geometry of each calorimeter is projective with respect to the interaction point, and
the lower radial acceptance is de�ned with high precision (20 �m) by a tungsten mask
placed in front of one of the calorimeters. The uncertainty in the measured luminosity
is less than one per mill. Test beam measurements give an energy resolution of �=E =

0:0152 � 0:135=
p
E, with E in GeV. At 45.6 GeV the measured energy resolution is

�=E =2.7% [4].
The DELPHI tracking system is divided into a number of independent devices which

include the vertex detector (VD), inner detector (ID), time projection chamber (TPC),
and outer detector (OD) in the barrel region, plus forward chambers A and B which

enhance tracking close to the beam direction. The e�ective range of charged particle
tracking is 11�< # < 169�. Detailed descriptions of these detectors are found in refer-
ence [4]

3 Data Sample and Event Selection

This analysis is based on data collected with the DELPHI detector [3,4] at the CERN
LEP collider during the second half of the 1993 run and throughout 1994. The start date
is necessitated by the absence of a true single photon trigger in DELPHI before then.

In a scan of the Z0 peak during the 1993 run, data were recorded at three center-of-
mass energies,

p
s = 89.48 GeV, 91.26 GeV, and 93.08 GeV. The 1994 run was entirely

at
p
s = 91.2 GeV. The integrated luminosities during the period in which the DELPHI

single photon trigger was operational in 1993 and 1994 were determined by measuring
Bhabha scattering at very small angles using the small angle tagger (SAT) calorimeter

for the 1993 run, and the scintillating tile calorimeter (STIC) luminosity monitor for the
1994 run. The integrated luminosities for those runs in which both the TPC and HPC
were fully operational are shown in Table 1.

For this analysis, single photon events are used where the photon has been detected
in the HPC electromagnetic calorimeter.

The data sample is de�ned by the following requirements:

(a) The most energetic neutral particle in the barrel be measured in the HPC;
(b) E > 2 GeV, where E is the measured energy of the shower in the HPC; and
(c) j cos# j< 0.7, where # is the polar angle of the photon with respect to the beam

axis.

Cuts (a), (b) and (c) de�ne the kinematic region of interest. For photon energies below
2 GeV or photon polar angles to the beam axis below 45�, radiative Bhabha background
(see section 4) dominates the ��� signal.

(d) The shower must contain energy clusters in at least three of the nine pad layers of
the HPC module;

(e) the �rst energy cluster of the shower must be in one of the �rst three pad layers of
the HPC module; and
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(f) no one pad layer of the HPC may contain more than 90% of the total shower energy.

Cuts (d), (e) and (f) are used to ensure a clean electromagnetic shower in the HPC and to
discriminate against alpha decays from radioactive inclusions in the HPC lead converter.

(g) There should be no signi�cant evidence of any other neutral particle in the event,
i.e. a second neutral would veto the event if (i) it were an HPC shower with E > 0.5
GeV, it passed cuts (d) and (f) above, and it were more than 20� from the candidate
photon, or (ii) it were not an HPC shower with E > 2 GeV, and it were more than

20� from the candidate photon. Such non-HPC neutrals are detected in the hadron
calorimeter, forward electromagnetic calorimeter, or luminosity monitors (SAT or
STIC).

Cut (g) reduces two-gamma and three-gamma events to a negligible level. The 20�

algorithm is used, rather than a blanket veto by any second neutral because the HPC
pattern recognition occasionally produces small satellite showers close to an energetic
primary neutral shower. Also, it allows the possibility of the search for neutral monojets.

A total of 2215 events survive the above cuts. All these events were scanned by physi-
cists to verify the presence of a single electromagnetic shower in the HPC electromagnetic
calorimeter and the absence of evidence for any other particles in the event. Most of the
rejected events were showers caused by cosmic rays or residual alpha decays. Although
the pattern of individual hits in several detectors made cosmic ray events relatively easy to
detect visually, the occasional failure of any of these hits to produce an accepted charged
track segment made it di�cult to eliminate all cosmic ray events by computer before the
scan. A similar situation was true for the events caused by alpha decays. Results of the
scan are shown in Table 2. After the scan two additional cuts are imposed:

(h) The azimuthal and polar angles of the shower axis, as determined in a �t to the
spatial distribution of the individual charge clusters in the HPC, must each be within
15� of the azimuthal and polar angles of the line from the vertex to the shower charge
barycenter. Figure 2 shows the di�erences in polar and azimuthal angles between
the shower axis and the line to the shower barycenter, separately for events identi�ed
in the scan as single photons and those labelled cosmic ray events.

(i) To be accepted the event had to be triggered by the single photon trigger described
earlier. (Some events also satis�ed other DELPHI triggers, some of which use the
HPC and which have some single photon capability.) The trigger cut was imposed
late in the analysis to allow an investigation of this trigger's e�ciency for di�erent
types of events.

The �nal sample of single photon events passing all the cuts described above is 219
events.

Figure 3 shows the distributions in the photon energy, E, for the single photon
events. The histograms show the predictions of the theoretical calculations for ��� and
e+e� events as described below. The calculated distributions include all cuts and e�-
ciencies. The double peak structure in the background distribution (e+e� ) corresponds
to �nal state electrons and positrons which escape detection either by going down the
beam pipe or into the region between the SAT and the FEMC for the 1993 data only. As
mentioned above, for the 1994 data there is no gap between the STIC and the FEMC.
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4 Uncertainties and Backgrounds

Apart from the integrated luminosity discussed earlier and the statistical uncertainty
in the number of events observed, measurement of a cross section requires knowledge of
the trigger and reconstruction e�ciencies. The trigger e�ciency has been discussed in
section 2.

The e�ciency for detecting photons in the accepted region of the HPC, i.e. E > 2
GeV and j cos # j< 0.7, is less than unity because (i) even within this region there are
dead spaces between HPC modules, and thus there is some probability that a photon
may enter a dead region and fail to be detected, and (ii) the criteria for labelling a
signal in the HPC as a legitimate electromagnetic shower are less than 100% e�cient
even for photons of energy greater than 2 GeV. Speci�cally, this arises because statistical
uctuations in the deposited charge in a single pad row are occasionally large enough to
cause no recorded signal above threshold in that row. For low energy showers, the loss
of signal in a single row may sometimes cause the entire shower to fail the criteria for a

legitimate electromagnetic shower. In addition, a signi�cant fraction of photons convert
in the material of the detector before the HPC. Those photons that convert in front of
the TPC produce charged tracks. Those that convert closer to the HPC, e.g. in the outer
detector [4], are often still reconstructed as single neutral showers in the HPC.

The photon detection and reconstruction e�ciency is calculated by generating large
numbers of single photon events according to phase space, i.e. uniform in cos # and
in azimuthal angle. These events are passed through the standard DELPHI detector
simulation and event reconstruction codes. The e�ciency is estimated as the fraction
which pass the single photon selection criteria. Systematic errors arise because of edge

e�ects near the boundaries of the HPC modules and to the �nite energy resolution of the
calorimeter. For E > 2 GeV, the single photon detection and reconstruction e�ciency
is computed to be 0.67 � 0.01, and it is approximately independent of photon energy [8].
This includes all e�ects described above, except for the single photon trigger e�ciency.

It is also necessary to consider the possibility of a charged particle, e.g. an electron,
arriving at the HPC undetected by all the inner detectors and producing an electromag-
netic shower, which would then be mislabelled as a photon. Monte Carlo calculations
indicate that this contribution would be less than 0.1 events, which may be neglected.

There are three possibly signi�cant backgrounds to true single photon events. They
are (i) radiative Bhabha scatters in which the �nal state electron and positron escape
detection, typically by going down the beam pipe or into a crack in the detector, (ii)
e+e� !  events in which the second photon escapes detection, and (iii) e+e� ! 
events in which two of the photons escape detection.

The cross section for radiative Bhabha scattering, i.e. the reaction e+e� ! e+e�, in
which the photon satis�es the cuts and both the outgoing electron and positron escape
detection, is di�cult to calculate in general. It involves detailedMonte Carlo generation of
radiative Bhabha scatters including radiative corrections [9], and it also involves detailed

simulation of the apparatus to include properly all the e�ects related to whether or not
the outgoing electron or positron is detected and thus can veto the event. For neutrino
counting, these problems are compounded by the fact that the cross section for radiative
Bhabha scattering is a priori much greater than that for ���. However, radiative Bhabha
scattering results in a photon angular distribution more strongly peaked in the forward-
backward direction than that for ���. The fraction of radiative Bhabha scatters with a
photon produced at an angle to the beam direction, # > #min, is
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f(#min) � m2
e

#2min � E2
beam

(1)

The strict energy and angle cuts on the photon (E > 2 GeV and j cos# j< 0.7),
together with the rejection of events with reconstructed charged tracks or high energy
deposition in the forward calorimeters, reduces the background from radiative Bhabha
scatters to a low level (see next section and Table 3).

Results of two calculations of the radiative Bhabha background (Mana & Martinez

and TEEGG. See ref. [9]), with the photon satisfying all appropriate cuts and the �nal
state electron and positron both escaping detection, are in good agreement to within less
than 1%.

The cross sections for the reactions e+e� ! () are large. Speci�cally, the cross
section for electron-positron annihilation into two photons is given by:

d�

dy
(e+e� ! ) =

2��2

s
� 1 + y2

1 � y2
(2)

where y = cos#. For this reaction, the two photons must both be energetic (E =
p
s=2),

and they must be emitted in opposite directions. The probability of exactly one of them
escaping detection is very small, and thus this background to true single photon events
is relatively small (see next section and Table 3).

Since the process e+e� !  is the same as the two-photon reaction with the third
photon the product of initial state radiation, one of the three photons is generally forward
and of relatively low energy so it may easily escape detection. The other two photons
need not be back-to-back in this case, and therefore the probability of losing one of them
in a crack and detecting the other is larger than in the two- case. Cut (g) described in
section 3 removes most of the two- and three- events. Monte Carlo calculations [9],
including the same cuts and e�ciencies as for the data, compute the sum of the two-
and three- cross sections. The result is a prediction of 4.1 events expected, with nine
events observed in the scan. The contamination from e+e� ! () events in the sample

labelled single  events is negligible.
Other possible backgrounds include e+e� ! �+�� and e+e� ! �+��, which have

been measured (see reference [10]), and e+e� ! �0, e+e� ! n�n, and e+e� ! �0�0,
for which there are theoretical expectations [10]. These have all been calculated and
found to be negligible in the accepted kinematic region. In addition, a calculation of
potential backgrounds from resonances which are produced in two-photon interactions
and decay into several �0's, only one photon from which is detected, shows that this
e�ect is negligible with the severe cuts imposed.

5 Results on the Number of Light Neutrino Gener-

ations

In the reaction e+e� ! ���, the photon is the result of initial state radiation by
either the electron or the positron, and the ��� pair is produced either by the decay of
a Z0 boson produced in the s-channel or by W-exchange in the t-channel. In addition,
the s-channel and t-channel amplitudes interfere. The suggestion to use this reaction to
determine the number of light neutrino generations which couple to the Z0 has been made
many times [11{16].
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The number of light neutrino generations, N� , may be calculated from the cross section
for the reaction e+e� ! ��� in a speci�c kinematic region since the dependence of the

doubly di�erential cross section on N� is known. It is given in reference [13] as

d2�

dxdy
=
G2
F�s(1 � x)[(1� x=2)2 + x2y2=4]

6�2x(1� y2)
�

 
2 +

N�(g
2
V + g2A) + 2(gV + gA)[1� s(1� x)=M2

Z ]

[1� s(1� x)=M2
Z ]

2 + �2Z=M
2
Z

!
(3)

neglecting radiative corrections (discussed below).

In equation (3) GF is the Fermi coupling constant, � is the �ne structure constant, s
is the square of the center-of-mass energy, x is the photon energy in units of the incident
beam energy, y is the cosine of the photon's momentum angle with respect to the incident
beam direction, i.e. y = cos #, N� is the number of low-mass neutrino generations, MZ

is the mass of the Z0 , and �Z is the total width of the Z0. For MZ and �Z the averages
of measurements by the four LEP experiments, as quoted in reference [17], are used, i.e.,
MZ = 91:1888 � 0:0044 GeV and �Z = 2:4974 � 0:0038 GeV. In the standard model of
Glashow, Weinberg, and Salam [18], gV = �1

2
+2 sin2 #W and gA = �1

2
, where #W is the

weak mixing angle. It is worth noting that in equation (3) the (g2V + g2A) term is from the
square of the s-channel Z0 amplitude, the \2" term is from the square of the t-channel
W-exchange amplitude, and the (gV + gA) term is from Z0 �W interference.

Thus, the cross section for e+e� ! ��� may be calculated if the analytic formula
is integrated over the appropriate kinematic region. The integration may be performed
either numerically or by generating ��� events by Monte Carlo techniques and recording
the fraction which survive the kinematic cuts. In this work, numerical integration over
the allowed �ducial region is used to calculate the cross sections, and the generation of
events by Monte Carlo techniques is used to determine the e�ciencies.

Radiative corrections must also be included. Since in the reaction e+e� ! ���, there
is no �nal state radiation (and therefore no interference between initial and �nal state
radiation), the uncertainties about radiative corrections which plague the background
reactions, e.g. radiative Bhabha scatters, are much less severe for ����. The radiative
corrections modify equation (3) both in line shape and in cross section [19].

The results of the calculations of e+e� ! ��� [19] and e+e� ! e+e� [9], and the
calculation of the cross section for e+e� ! ���, based on the number of observed events,
are shown in Table 3.

Figure 4 shows the measured values of the cross section for e+e� ! ��� in the

accepted region, i.e. E > 2 GeV and j cos #j < 0.7, at the three center-of-mass energies.
In addition, curves which represent the integral of equation (3) over the region of the
cuts are plotted. To generate these curves, N� is set equal to 2, 3 and 4 generations
respectively in the theoretical calculations [19]. A �t of the three data points to the
integral of equation (3) with N� left as a free parameter yields N� = 3:15 � 0:34 as the
number of light neutrino generations with a �2 of 1.5 for two degrees of freedom. This
result is consistent with the number of light neutrino generations found by other methods
and also by this method in the other LEP collaborations [20].
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6 Searches for New Physics

Events featuring a single highly energetic photon can provide evidence for the presence
of new physics. In the selected sample, presented in section 3, a total of �fteen true single
photon events have E > 10 GeV, while six of these events have E > 15 GeV. A total
of 8.4 such events are expected with E > 10 GeV and 2.9 events with E > 15 GeV

from the neutrino counting reaction e+e� ! ��� [19], while, the contribution from the
radiative Bhabha reaction, in which the �nal state electron and positron are undetected,
is negligible in this region. No event is observed with E > 22 GeV. Standard Model
processes populate the low end of the single photon energy spectrum, and these data
show no evidence for an anomalous source of high energy single photons. This result is
consistent with the results of the other LEP collaborations [21]. In the following, limits
on possible sources of new physics will be determined on the basis of these observations.

6.1 Results on Excited Neutrinos

Excited neutrinos can be produced at LEP either in pairs through the reaction
e+e� ! �� ��� or singly through the reaction e+e� ! ���� [1]. The cross section for
pair production is independent of the compositeness scale �. Present LEP limits already
exclude this channel for excited neutrino masses below

p
s /2 [22]. The single production

of excited neutrinos, which depends on the Z���� couplings, allows the lower limit on the

branching fraction of the Z0 into ���� to be extended to values of M�� up to MZ. With
the assumption of a pure left-handed or right-handed ��, the cross section for Z0 ! ����
is just the Z0 ! ��� cross section [23], apart from kinematical factors,

�����

����
=

s

�2
(1� M2

��

s
)2(1 + 2

M2
��

s
) (4)

Events with single �� production are generated according to equation (4) for a number
of M�� values. The branching fraction of �� into � is assumed equal to unity, and a (1
+ cos �) angular distribution is assumed for the radiative decay of the ��, where � is the
polar angle of the neutrino momentum in the �� rest frame de�ned with respect to the ��

momentum direction in the center-of-mass frame. The e�ciency depends slightly on the
value ofM�� for the mass region considered, and it varies between 20% and 30%, including
the trigger e�ciency. The upper limit at the 95% con�dence level for BR(Z0 ! ����) as

a function of M�� is shown in Figure 5. This limit, expressed in terms of the e�ective
coupling constant �=M�� , is shown in Figure 5, and with the e�ective coupling de�ned
as [24]

�

M��
=

1p
2�

(5)

The \kink" at about 60 GeV is kinematical in origin. Speci�cally, for M�� > 60 GeV, E

may be in the full range from 2 to 45 GeV.

6.2 Results on the Tau Neutrino Magnetic Moment

The magnetic moment coupling of the tau neutrino gives a contribution to the di�er-
ential cross section for the process e+e� ! ��� of the form [2]

d�

xdxdy
=
�2�2

96�
�2BC[�w]F [s; x; y] (6)
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where x is the photon energy in units of the incident beam energy, y is the cosine of
the photon polar angle with respect to the beam axis, and � is the anomalous magnetic

moment of the tau neutrino in units of the Bohr magneton, �B. The kinematics are
contained in the function

F [s; x; y]� (
s2

4
) � 1 � x+ x2(1� y2)=8

(s�M2
Z)

2 +M2
Z�

2
Z

(7)

and the coe�cient C is given by

C[�w] � 8�2w � 4�w + 1

�2w(1 � �w)2
(8)

with �w � sin2 #w and using the Standard Model Ze+e�and Z��� couplings. Initial
state radiation is neglected in the above formulation. Photon and W exchange graphs
contribute about 1% in the kinematic region of interest, and these also have been neglected
in equation (6).

If the tau neutrino magnetic moment were �� = 5� 10�6�B, then 90% of the increase
over the Standard Model prediction would be in the energy region above 22 GeV.

After integrating equation (6) over the kinematically allowed region, with E > 22
GeV and j cos #j < 0.7, the estimated cross section expected due to a neutrino magnetic
moment at

p
s = MZ is

� = 6:6 mb� �2 (9)

Taking into account the other two center-of-mass energy points and correcting for
initial state radiation, the null observation of events with E > 22 GeV yields a limit on
an anomalous magnetic moment for �� of

� < 5:2 � 10�6 (10)

at the 95% con�dence level. A similar measurement has been reported by the L3 collab-
oration [25]. It is worth noting that since the photons are real this limit is at Q2 = 0: A
more stringent limit has been obtained by a di�erent technique using the BEBC bubble
chamber [26].

6.3 Search for `X' Production

A new particle `X' may be produced in association with a photon in the reaction
e+e� ! `X'. If particle `X' is invisible or can decay invisibly, then it could be seen in
the single photon topology. Figure 6(a) shows the distribution in recoil mass against the
photon for the 219 single photon events. The distribution is consistent with that expected

from known sources. Figure 6(b) shows the upper limit at the 95% con�dence level of the
cross section for Z0 ! `X' as a function of the mass of `X' with the photon produced
in the angular region j cos #j < 0.7. The limit is calculated assuming that the width of
the `X' particle (including resolution) is less than the bin width. This limit is similar to
that found by the OPAL collaboration [27].

6.4 Search for Neutral Monojets

The selection criteria described in section 3 allow a search for events having a topology
of neutral monojets. In fact, events with several neutral showers are not rejected, provided
the neutrals are within a cone of 200 half angle. Notice also that neutrals reconstructed
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in the hadronic calorimeters would not veto such events. No neutral monojet event is
observed in the scan. In order to extract a limit on the production cross section, no

speci�c hypothesis is made on the possible origin of such neutral monojets. Therefore,
in the absence of a model specifying monojet mass and decay multiplicity, the limit
quoted below is given as a function of the unknown overall detection e�ciency for neutral
monojets. The null observation of such neutral monojets yields a limit on the production
cross section in the Z0 energy range of

� < 0:044=� pb (11)

at the 95% con�dence level, where � is the overall e�ciency for their observation. If it is
assumed that the energy dependence of the production of neutral monojets follows the

Z0 line shape, and if it is further assumed that the overall e�ciency for their observation
is for example 10%, then the limit on the Z0 branching ratio into neutral monojets would
be

BR(Z0 ! neutral monojets) < 1:2� 10�5 (12)

at the 95% con�dence level.

7 Conclusions

Data are presented on the reaction e+e� !  + no other detected particle at center-of-
mass energies,

p
s = 89.48 GeV, 91.26 GeV and 93.08 GeV. The measured cross section

for this reaction is used to determine the number of light neutrino generations which
couple to the Z0 boson. The result is N� = 3:15� 0:34. No evidence is found for sources
of highly energetic single photons other than the known Standard Model processes, and
new upper limits at the 95% con�dence level are set on the production of excited neutrinos
(see Fig. 5), on the production of an invisible particle `X' via the reaction e+e� ! `X'

(see Fig. 6), and on a possible tau neutrino magnetic moment (� < 5:2 � 10�6 at the
95% con�dence level). No event with the topology of a neutral monojet has been found,
and this corresponds to a cross section limit of � < 0:044=� pb at the 95% con�dence
level, where � is the overall e�ciency for observation of neutral monojets.
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p
s (GeV)

R Ldt (pb�1)
89.48 7.532 � 0.006

91.26 52.462 � 0.032
93.08 7.645 � 0.008

Total 67.639 � 0.034

Table 1: Integrated luminosity at the three center-of-mass energies.

Scan Result Number of Events
All Scanned All Cuts

Single  319 219
Alpha 1222 244
Cosmic 433 45
Noise 216 47
e+e� ! () 13 6
e+e� ! e+e� 12 1

Total 2215 562

Table 2: Results of the visual scan.

p
s = 89.48 GeV 91.26 GeV 93.08 GeV

Predicted � (pb) (N� = 3) 4.3 9.9 33.0
Calculated Nevents

e+e� ! ��� 11.0 � 0.6 126.6 � 9.5 50.0 � 3.9

e+e� ! e+e� 8.1 � 0.9 19.3 � 1.9 7.4 � 0.8
Nexpected 19.1 � 1.1 145.9 � 9.7 57.4 � 4.0

Nobserved 21 148 50

Ncorrected 60 � 15 519 � 79 251 � 48
�(���) (pb) 7.9 � 2.0 9.9 � 1.5 32.8 � 6.3

Table 3: Numbers of events and cross sections for the reaction e+e� ! ��� in the
kinematic region E > 2 GeV and j cos # j< 0.7. The row Ncorrected contains the
corrected number of events after the calculated background ( e+e� ) is subtracted and
the corrections for trigger and reconstruction e�ciencies are applied.
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Figure 1: Single photon trigger e�ciency in the HPC as determined fromCompton scatter
events. The curve shows the result of a �t to the function �(E) = A=(Be�E�C + 1),
with A = 0.64 � 0.01, B = 68. � 30., and C = 1.41 � 0.15 GeV�1.
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Figure 2: Distributions in the di�erences in polar and azimuthal angles (in degrees)
between the shower axis and the line to the shower barycenter for single photon events
and for events produced by cosmic rays as identi�ed in the 2215-event scan.



16

Figure 3: Distribution in energy of the single photon events (points). The histogram
shows the expected distribution from the signal ��� events plus the background
e+e� events (shaded region) in which the �nal state positron and electron escape
detection.
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Figure 4: Measured cross sections for the reaction e+e� ! ��� with E > 2 GeV and
j cos# j< 0.7, including all corrections and background subtractions. The curves show
the expected distributions for two, three and four generations.
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Figure 5: Limits at the 95% con�dence level of BR(Z0 ! ����) and �=M�� as functions
of M��.
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Figure 6: (a) Recoil mass distribution for the 219 single photon events (points) compared
with the expectation for ��� with N� = 3 plus the known background processes (his-
togram). (b) Upper limit at the 95% con�dence level for the production cross section of
`X' with the photon in the range j cos# j< 0.7.


