On a generalized Kepler-Coulomb system : interbasis expansions - IN2P3 - Institut national de physique nucléaire et de physique des particules Access content directly
Journal Articles International Journal of Quantum Chemistry Year : 1994

On a generalized Kepler-Coulomb system : interbasis expansions

L.G. Mardoyan
  • Function : Author
G.S. Pogosyan
  • Function : Author

Abstract

This paper deals with a dynamical system that generalizes the Kepler-Coulomb system and the Hartmann system. It is shown that the Schrödinger equation for this generalized Kepler-Coulomb system can be separated in prolate spheroidal coordinates. The coefficients of the interbasis expansions between three bases (spherical, parabolic and spheroidal) are studied in detail. It is found that the coefficients for the expansion of the parabolic basis in terms of the spherical basis, and vice-versa, can be expressed through the Clebsch-Gordan coefficients for the group SU(2) analytically continued to real values of their arguments. The coefficients for the expansions of the spheroidal basis in terms of the spherical and parabolic bases are proved to satisfy three-term recursion relations.

Dates and versions

in2p3-00003527 , version 1 (23-11-2006)

Identifiers

Cite

M. Kibler, L.G. Mardoyan, G.S. Pogosyan. On a generalized Kepler-Coulomb system : interbasis expansions. International Journal of Quantum Chemistry, 1994, 52, pp.1301-1316. ⟨in2p3-00003527⟩
4 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More