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Abstract

A search for pair produced charged Higgs bosons has been performed in the high
energy data collected by DELPHI at LEP with

√
s = 161, 172 and 183 GeV.

The analysis uses the τντν, cs̄τν and cs̄c̄s final states and a combination of
event shape variables, di-jet masses and jet flavour tagging for the separation
of a possible signal from the dominant W+W− and QCD backgrounds. The
number of selected events has been found to be compatible with the expected
background. The lower excluded value of the H± mass obtained by varying the
H± → hadrons decay branching ratio has been found to be 56.3 GeV/c2.
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1 Introduction

The existence of a charged Higgs boson doublet is predicted by several extensions of the
Standard Model and in particular by Supersymmetry. At LEP 2, charged Higgs bosons
can be produced in pairs and decay predominantly in either τ ν̄ or cs̄ final states 1. A
search for pair-produced charged Higgs bosons has been performed based on the data
collected by DELPHI during the LEP runs at centre-of-mass energies

√
s of 161 GeV,

172 GeV and 183 GeV. The results reported in this paper supersede those obtained in
an earlier analysis of the DELPHI data limited to the 161 GeV and 172 GeV runs [1].
Similar searches have been performed by the other LEP experiments [2]. As the higher
centre-of-mass energy gives sensitivity to Higgs masses closer to that of the W boson,
the background from e+e− → W+W− becomes more important. The cross-section for
W± production is two orders of magnitude higher than that predicted for H± of equal
mass, therefore searches are significantly less sensitive to Higgs mass values close to the
W± mass peak. In order to retain sensitivity to the possible signal from charged Higgs
boson decays, effective rejection of this background is very important. A new technique
has been developed to improve the discrimination against the hadronic W decays in the
search for H± candidates. In section 2 the event reconstruction and the definition of the
discriminating variables are discussed separately for the hadronic, semileptonic and fully
leptonic final states with particular emphasis on the

√
s = 183 GeV data. Section 3

describes the results from the combined DELPHI data at LEP 2.

2 Data Analysis

The analysis has been performed on the data collected by the DELPHI detector at
LEP 2 at centre-of-mass energies of 161 GeV, 172 GeV and 183 GeV. The DELPHI de-
tector and its performance have already been described in detail elsewhere [3,4]. The
corresponding integrated luminosities are 9.95 pb−1, 10.16 pb−1 and 53.5 pb−1 respec-
tively.

Charged particle tracks have been required to satisfy the following quality crite-
ria. Only particles with momentum larger than 100 MeV/c, relative momentum error
∆ p/p < 1 and track length larger than 30 cm have been used. In addition, the impact
parameter to the event primary vertex had to be smaller than 4.0 cm in the projection on
the plane normal to the beam axis and smaller than 10.0 cm along the beam axis. Kaons
have been identified by the combined response of the RICH detectors and the specific ion-
isation measured in the TPC [4,5]. Neutral particles have been required to have energy
deposit larger than 200 MeV in the electromagnetic calorimeters or larger than 500 MeV
in the hadron calorimeter.

H+H− signal samples were produced with the PYTHIA generator [6] at four different
H± masses: 50 GeV/c2, 55 GeV/c2, 60 GeV/c2 and 65 GeV/c2. The qq̄γ QCD back-
ground sample was also produced using PYTHIA and the four fermion final states, in-
cluding W+W− and Z0Z0, were produced with the EXCALIBUR generator [7]. The main
background contribution from four fermion processes is due to W+W− pairs which are
referred to as W+W− in the rest of the paper. The VDM and QCD components of the two
photon interactions leading to hadronic final states were generated using TWOGAM [8].
The generators of Berends, Daverveldt and Kleiss [9] were used for the QPM component
and for leptonic final states. In addition, Z0Z0, Weν̄ and Ze+e− samples generated with

1Throughout the paper the charge-conjugate states are implicitly included
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PYTHIA, µ+µ−(γ) and τ+τ−(γ) events generated with the KORALZ [10] generator have
been used for the estimate of the background in the fully leptonic channel.

2.1 The hadronic channel

In the fully hadronic decay channel, each charged Higgs is expected to decay into a cs̄
pair, producing a four jet final state.

The hadronic four jet event selection followed in this analysis is the same as for the
DELPHI neutral Higgs analysis [11]. In addition, events with two or more jets tagged as
containing b quarks, by the jet flavour tagging algorithm described below, have also been
removed. In order to reduce the amount of QCD background and of wrongly reconstructed
W+W− decays, only events with four reconstructed jets, using the Luclus algorithm [6]
with djoin = 6.5 GeV/c2, have been accepted.

Energy-momentum conservation has been imposed by performing a 4-C fit on these
events and the difference between the two di-jet masses for each jet pairing has been
computed. A 5-C fit, assuming equal boson masses, has been applied in order to improve
the resolution on the di-jet mass Mjj. The di-jet combination giving the smallest χ2 has
been selected for the mass reconstruction. Events for which the χ2 per degree of freedom
of this combination exceeded 5 or the difference of the masses computed after the 4-C fit
exceeded 8 GeV/c2 have been rejected.

Only events with 40 GeV/c2 < Mjj < 70 GeV/c2 have been considered for this analysis.
The two main sources of background in this channel are the qq̄gg QCD background

and fully hadronic decays of W+W− pairs. The charged Higgs boson is expected to cou-
ple predominantly to cs̄ in its hadronic decay mode. Therefore the QCD and W+W−

backgrounds can be partially suppressed with regard to the signal by selecting final states
consistent with being cs̄c̄s. A flavour tagging algorithm has been developed for the study
of multiparton final states [12]. This tagging is based on the response of nine discrimi-
nating variables: three of them are related to the identified lepton and hadron content
of the jet, two depend on kinematical variables and four on the reconstructed secondary
decay structure. The finite c lifetime is exploited to distinguish between c and light quark
jets, while the c mass and decay multiplicity, smaller than for beauty quarks, was used
to discriminate against b jets. Further, s and c jets can be distinguished from u and d
jets by the presence of an identified energetic kaon. A likelihood variable was computed
from the response of the individual jet variables as discussed below for the anti-WW and
anti-QCD functions. The responses for the individual jets were further combined into a
global cs̄c̄s event probability.

QCD background events differ also kinematically from pair-produced bosons [13]. In
order to separate the signal from the QCD background the following variables have been
used together with the cs̄c̄s probability from the jet flavour tagging algorithm: the prod-
uct of the minimum jet energy and the minimum di-jet angle, min(Ejet) · min(αjets), the
di-jet pair mass difference after 4-C fit and the polar angle of the thrust axis. These
variables have been combined to form an event anti-QCD likelihood function separating
QCD events from pair-produced bosons. The likelihood function has been defined as fol-
lows. For each of the N discriminating variables, the fractions F HH

i (xi) and F QCD
i (xi) of

respectively H+H− and QCD events corresponding to a given value xi of the ith variable,
have been extracted from a sample of simulated QCD and H+H− events with equal popu-
lations. The anti-QCD likelihood has been computed as the normalised product of these
individual fractions,

∏
i=1,N F HH

i (xi)/(
∏

i=1,N F HH
i (xi) +

∏
i=1,N F QCD

i (xi)). The response
of this likelihood discriminates H+H− events from the QCD background but not from
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W+W− events, due to the similarity in the kinematics for these two processes. Therefore
other signatures have been used to distinguish possible signal events from W+W− pairs
and other four fermion background.

Correctly reconstructed events from on-shell W± → qq̄ decays result in di-jet masses
consistent with the W mass and are therefore above the mass region of interest for the
present H± search. However, wrong di-jet pairing, decays of off-shell W bosons and events
with incorrect jet reconstruction may result in an apparent boson mass below 70 GeV/c2.
A simulation study has shown that the wrong di-jet pairing is the dominant source of these
backgrounds. Therefore all three possible jet pairings for a given event have been tested
for the hypothesis to be either a correctly paired W+W− or H+H− event. Likelihoods have
been computed for each pairing, using the χ2 from the 5-C fit, the difference between the
reconstructed di-jet mass and the nominal W mass and the boson production polar angle,
i.e. the polar angle of the di-jet momentum vector. A jet-pairing W tag variable has been
defined as LW

max/(LH
max +LW

max) where LH,W
max represents the largest of the three likelihoods

for the H and W hypotheses respectively. This tag variable is peaked at zero in both H+H−

and QCD events while for the majority of the W+W− events it is uniformly distributed
between 0 and 1.

Table 1: Number of selected events and signal efficiency in the hadronic final state at
different stages of the event selection procedure for

√
s = 183 GeV.

Selection Data Total W+W− QCD Efficiency H+H−

Bkg Bkg Bkg (MH=60 GeV/c2)

Event preselection 544 548.0 ± 3.6 353.7 194.3 0.80 ± 0.01
4 Jets 319 302.6 ± 2.0 218.2 84.4 0.52 ± 0.01
χ2 Cut 265 242.9 ± 1.8 183.1 59.8 0.45 ± 0.01
∆M Cut 138 122.3 ± 1.6 98.9 23.4 0.32 ± 0.01
40 < MJJ < 70 34 32.3 ± 0.9 19.2 13.1 0.28 ± 0.01
Probability Cuts 11 11.8 ± 0.6 6.9 4.9 0.22 ± 0.01

Finally, normalised fractions of H+H− signal events as a function of the polar angle
of the event thrust axis, the di-jet mass difference and the jet pairing W tag variable
have been combined with the probability from the jet flavour tagging algorithm into an
event anti-WW likelihood using the same procedure as for the anti-QCD likelihood. The
Z0Z0 production cross-section is small and the Z0 mass is high enough to make the Z0Z0

background insignificant compared to QCD and W+W− backgrounds at masses below
70 GeV/c2.

Using the simulation, the cuts on the two likelihood variables have been optimised
separately for each centre-of-mass energy following a procedure discussed in section 3 (see
Figure 1). The number of real data events, expected backgrounds and the signal efficiency
after each of the set of cuts adopted in the analysis are given in Table 1 for the highest
energy sample.

2.2 The semileptonic channel

In this channel one of the charged Higgs bosons decays into a cs̄ quark pair, while the
other decays into τ ν̄. Such an event is characterised by two hadronic jets, a τ candidate
and missing energy carried by the neutrinos. The dominating background processes are
qq̄γ and qq̄g events and semileptonic decays of W+W−.
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Charged particles with momentum greater than 400 MeV/c were used in this channel
and at least eight were required for the preselected sample of events. Further, the energy
in charged particles had to exceed 0.15

√
s, and the total detected energy had to be

greater than 0.30
√

s. After a clustering into two jets using the Durham algorithm [14],
the acollinearity had to be greater than 10◦. Events were also required to have no neutral
particles with energy above 30 GeV and the energy detected in a cone of 20◦ (30◦) half
aperture around the beam axis had to be less than 0.20

√
s (0.30

√
s). Further, the angle

between the total momentum of the detected particles in the event and the beam axis had
to be greater than 20◦. After clustering into three jets, the jet with the smallest charged
particle multiplicity was treated as the τ candidate. In case more than one jet had the
same number of charged particles, the least energetic jet was chosen.

τ jet candidates were required to have less than eight particles, of which less than four
were charged. At least one of the tracks in this jet was required to have track elements
in the Vertex Detector and the TPC and either energy deposit in the e.m. calorimeter or
hits in the Outer Detector, the Forward Chambers or the Muon Chambers. In addition,
the visible energy of the τ candidate had to be greater than 0.02

√
s.

The mass of the decaying bosons, Mjj, was reconstructed using a constrained fit re-
quiring energy and momentum conservation and equal mass of the decaying bosons. The
three components of the momentum vector of the neutrino and the magnitude of the
τ momentum have been treated as free parameters, reducing the number of degrees of
freedom in the fit from 5 to 1. The τ lepton direction was approximated by that of the
reconstructed jet. Only events with mass in the range 40 GeV/c2 < Mjj < 70 GeV/c2

have been further considered in the analysis.
Likelihood functions for a given event to be a QCD or a W+W− background event have

then been defined similarly to the case of the hadronic channel described above. The polar
angle of the total momentum, the logarithm of the clustering distance, defined as the ycut

value in the Durham algorithm for which the number of jets changes from two to three,
and the maximum angle between two particles from the τ candidate have been used as
discriminating variables to define the event anti-QCD likelihood. For the event anti-WW
likelihood the variables used were the reconstructed polar angle of the negatively charged
boson (where the charge has been taken to be that of the leading charged particle from
the τ decay), the visible τ energy, the angle between the two hadronic jets and the cs̄
probability of the hadronic di-jet.

The cuts on the two likelihood variables have been optimised separately for the three√
s energies as discussed in section 3 (see Figure 2). The number of real data events,

expected backgrounds and the signal efficiency after each of the set of cuts adopted in the
analysis are given in Table 2 for the highest energy sample.

Table 2: Number of selected events and signal efficiency in the semi-leptonic final state
at different stages of the event selection procedure for

√
s = 183 GeV.

Selection Data Total W+W− QCD Efficiency H+H−

Bkg Bkg Bkg (MH=60 GeV/c2)

Event Preselection 354 332.3 ± 2.7 216.0 98.3 0.55 ± 0.02
τ selection 303 295.6 ± 2.6 205.0 74.8 0.52 ± 0.02
40 < Mjj < 70 41 42.6 ± 1.1 21.8 15.7 0.39 ± 0.02
Probability Cuts 4 3.3 ± 0.3 2.5 0.5 0.31 ± 0.02
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2.3 The leptonic channel

In this channel both charged Higgs bosons decay into a τ ν̄ pair. These events are
characterised by two acollinear slim jets and missing energy carried away by the unde-
tected neutrinos. The backgrounds are due to leptonic decays of W+W− pairs and other
four fermion processes such as e+e− → W+e−ν̄, two fermion processes (f f̄), such as
e+e− → qq̄(γ) and e+e− → τ+τ−(γ), and two photon interactions (γγ).

Events containing 2 to 6 charged particles of more than 400 MeV/c, with a total
detected energy in the event not exceeding 0.45

√
s and a measured energy in charged

particles greater than 0.04
√

s have been selected in the fully leptonic channel. In order
to reject cosmic ray events, at least one of the charged particles has been required to have
a distance in space within 0.2 cm from the position of the LEP colliding beam envelope.
The energy detected within a cone of 30◦ half aperture around the beam axis had to
be lower than 0.10

√
s. The component of the total energy transverse to the beam axis

had to be larger than 0.05
√

s. After clustering the event into two jets by the Durham
algorithm, the maximum angle between two particles within a jet had to be smaller than
30◦, the angle between the beam axis and either jet and the angle between the two jets
had to be larger than 20◦.

In order to reject events fulfilling the above preselection cuts where the jets are back-
to-back and radiative production of Z0 events with a photon along the beam pipe, the
following angular cuts have been applied. The angle between the projections of the jets
on the plane perpendicular to the beam axis as well as the angle between the two jets
must not exceed 167◦.

The total energy of each of the two jets, E1 and E2, had to be greater than 0.02
√

s.
In addition the energy of the least energetic jet, E2, was also required to be smaller than
0.13

√
s (see Figure 3).

Table 3: Number of selected events and signal efficiency in the leptonic channel at different
stages of the event selection for

√
s = 183 GeV.

Selection Data Total W+W− f f̄ γγ Efficiency H+H−

Bkg Bkg Bkg Bkg (MH=60 GeV/c2)

Event Preselection 211 208.8 ± 3.6 26.0 160.0 22.8 0.45 ± 0.02
Angular Cuts 23 28.1 ± 1.0 24.9 0.8 2.4 0.44 ± 0.02
Energy Cuts 13 14.3 ± 0.6 13.1 0.1 1.1 0.32 ± 0.02

Due to the presence of the missing neutrinos in the decay of each of the two bosons, it
is not possible to reconstruct the boson mass in the leptonic channel on an event-by-event
basis and the signal corresponds to an inclusive excess of events compared to the expected
backgrounds. The numbers of real data events, those from expected backgrounds and the
signal efficiencies after each set of cuts adopted in the analysis are given in Table 3.

3 Results

3.1 Optimisation of the selection

The analysis applied at
√

s = 183 GeV has been repeated for the data collected at√
s = 161 GeV and 172 GeV. After the event preselection procedure described above, the
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separation of the candidate signal events from the backgrounds in the semi-leptonic and
fully hadronic final states has been obtained by cuts on the two likelihoods characterising
the probability for a given event to be due to either a W+W− decay or a QCD process. The
values of these cuts have been optimized by minimizing, on a sample of simulated events,
the value of the H+H− production cross-section that could be excluded with statistics
equivalent to those of the real data. This minimization has been carried out simultaneously
for the two probabilities. The correlations of the two probabilities for the background
W+W− and QCD samples, the H+H− signal events and the real data are shown in Figure 1
and Figure 2 for the hadronic and semileptonic channels respectively.

Due to the differences in the integrated luminosity, H+H− production cross-section and
backgrounds, the final cuts on the likelihood variables for the hadronic and semileptonic
channels were optimised independently at the different

√
s energies.

These criteria have been applied to simulated signal H+H− decays. The mass reso-
lutions have been estimated to be 1.7 GeV/c2 for the hadronic and 3.5 GeV/c2 for the
semileptonic channel. The number of real data and background events and the estimated
efficiencies for these selections for different H± masses are summarised in Table 4 for the
three final states.

Table 4: Number of events, expected background and signal efficiencies for different
charged Higgs masses in the hadronic, semileptonic and leptonic channels.

√
s Channel Data Expected Eff. MH = Eff. MH = Eff. MH = Eff. MH =

Bkg. 50 GeV/c2 55 GeV/c2 60 GeV/c2 65 GeV/c2

161 cs̄c̄s 8 5.3 ± 0.3 0.35 0.33 0.29 0.25
172 cs̄c̄s 3 4.5 ± 0.3 0.31 0.30 0.29 0.29
183 cs̄c̄s 11 11.8 ± 0.6 0.20 0.21 0.22 0.18
161 cs̄τ ν̄ 1 1.4 ± 0.2 0.40 0.39 0.37 0.35
172 cs̄τ ν̄ 2 2.0 ± 0.2 0.40 0.39 0.36 0.30
183 cs̄τ ν̄ 4 3.3 ± 0.3 0.37 0.35 0.31 0.26
161 τ ν̄τν 0 0.7 ± 0.1 0.31 0.32 0.33 0.34
172 τ ν̄τν 0 2.1 ± 0.1 0.29 0.32 0.35 0.40
183 τ ν̄τν 13 14.3 ± 0.6 0.29 0.30 0.32 0.34

3.2 Determination of the mass limit

No excess of events compared to the expected backgrounds has been observed in any
of the three different final states investigated. A lower limit for a charged Higgs boson
mass has been derived at the 95% confidence level as a function of the hadronic Higgs
decay branching ratio BR(H → hadrons). The confidence in the signal hypothesis, CLs,
has been calculated using the likelihood ratio technique [15]. That is, first we find the
ratio of the likelihood of the observed candidates, assuming signal plus background to
that found using the background only hypothesis. The confidence levels CLsb and CLb

are computed as the fractions of Gedanken experiments, with respectively signal plus
background or background only, which gave likelihood ratio values smaller than those
observed for the data. Finally we make the conservative step of defining CLs as the ratio
of these probabilities: CLs = CLsb

CLb
.

The required Gedanken experiments have been made by Monte Carlo simulation, using
the expected background and signal rates, as well as the background and signal probabil-
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ity density functions of one discriminating variable in each channel. In the hadronic and
semi-leptonic channels, the discriminating variable is the reconstructed mass while in the
leptonic channel the energy of the most energetic jet has been used. The distributions for
the discriminating variable of signal events, obtained by the simulation at different H±

mass values for each
√

s, have been interpolated for intermediate mass values. The sig-
nal efficiencies have been fitted with polynomial functions, to obtain the expected signal
rate at any given mass. Uncertainties in the expected background and in the signal effi-
ciency have been accounted for. These uncertainties are due both to the finite simulation
statistics available and to possible differences in the response of the selection variables
in data and simulation. The background events in simulation have been reweighted such
that each variable agreed in shape with that of the real data and the background has
been recomputed. The overall background uncertainty has been obtained by summing in
quadrature the differences in the background estimates, after changing each of the vari-
ables, and the statistical error. A Gaussian smearing of the central values of the number
of expected background events by their estimated uncertainties has been introduced in
the limit derivation program. The uncertainties on the signal efficiencies are dominated
by their statistical errors and have also been accounted for. The results are summarised
in Figure 4. Independent of the hadronic decay branching ratio, a lower H± mass limit of
MH± > 56.3 GeV/c2 can be set at the 95% confidence level. For fully leptonic decays of
the charged Higgs boson the limit becomes MH± > 65.1 GeV/c2.

4 Conclusion

A search for pair-produced charged Higgs bosons has been performed using the full
statistics collected by DELPHI at LEP at

√
s of 161 GeV, 172 GeV and 183 GeV. Candi-

date events have been searched for in the τ ν̄τν, cs̄τ ν̄ and cs̄c̄s final states. No significant
excess of candidates has been observed and a lower limit on the charged Higgs mass of
56.3 GeV/c2 has been set at the 95% confidence level.
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Figure 1: Correlation plots of the event anti-QCD and anti-WW likelihoods used to
discriminate between signal H+H− events and backgrounds for simulated QCD events
(upper left), W+W− events (upper right), signal H+H− for MH = 60 GeV/c2 (lower left)
and the

√
s = 183 GeV real data (lower right) in the hadronic channel. The box indicates

the signal region used in the analysis.
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Figure 2: Correlation plots of the event anti-QCD and anti-WW likelihoods used to
discriminate between signal H+H− events and backgrounds for simulated QCD events
(upper left), W+W− events (upper right), signal H+H− for MH = 60 GeV/c2 (lower left)
and the

√
s = 183 GeV real data (lower right) in the semileptonic channel. The box

indicates the signal region used in the analysis.
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Figure 3: Correlation plots of the total energy fraction of the less energetic jet E2/
√

s vs.
that for the more energetic jet E1/

√
s used to discriminate between the signal and the

backgrounds in the fully leptonic channel for simulated W+W− decays (upper left), γγ
events (upper right), signal H+H− for MH = 60 GeV/c2 (lower left) and the

√
s = 183 GeV

real data (lower right). The lines show the cuts defining the signal region used in the
analysis. The distribution of E1/

√
s for the selected events has been used as discriminating

variable in the limit derivation program.
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Figure 4: The 95% confidence level observed and expected exclusion regions for H± in the
plane BR(H → hadrons) vs. MH± obtained from a combination of the search results in the
hadronic, semileptonic and fully leptonic decay channels at

√
s = 161 GeV, 172 GeV and

183 GeV. The sharp decrease at 65 GeV/c2 in the leptonic channel reflects the maximum
signal mass considered in the lower energy samples.


