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Study of the four-fermion �nal state

at the Z resonance

The ALEPH Collaboration�)

CERN PPE/94-169

27 October 1994

Abstract

The process e+e� ! l�lf�f, where l is a charged or a neutral lepton and f any

charged fermion, is analyzed. The study uses the ALEPH data collected at LEP

from 1989 to 1993 at centre-of-mass energies between 88 and 95 GeV, corresponding

to almost two million hadronic Z decays and to a total integrated luminosity of

79 pb�1. For all channels, the data agree well with the standard model expectation

both in shape and normalization. The indication of an excess in the e+e� ! �
+
�
�f�f

channel, reported by ALEPH in 1991, is not con�rmed.

(Submitted to Zeitschrift f�ur Physik)
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1 Introduction

Using the ALEPH data recorded in 1989 and 1990, corresponding to almost 200,000

hadronic Z decays, the four-fermion �nal state arising from the process e+e� ! l+l�f�f

(where l is a charged lepton and f a charged fermion) was analyzed in the four- or six-

prong (also called llV) topology. An excess in the �+��f�f �nal state with respect to the

e+e�f�f and the �+��f�f �nal states was indicated with a probability at the percent level [1].

Since then the update of the ALEPH analysis with further statistics [2], and independent

analyses carried out by the other LEP collaborations [3] have not upheld this indication.

With an integrated luminosity corresponding to almost two million hadronic Z decays,

recorded by ALEPH until the end of 1993 (see Table 1), i.e. with a statistics ten times

larger than in 1990, a detailed study of this higher order electroweak process has become

possible. Although a special emphasis is given to the low multiplicity �nal states (Sec-

tion 3), the study presented here is not restricted to this llV topology: it is extended to

l+l�q�q �nal states with higher multiplicity (Section 4) and to ���l+l� and ���q�q �nal states

(Section 5).

p
s (GeV) Z! q�q L (pb�1)

88.361 6577 1.34

89.419 99853 10.15

90.218 26042 1.42

91.234 1608626 52.68

92.078 34223 1.45

93.020 146717 10.49

93.928 13878 1.52

Total 1935910 79.05

Table 1. E�ciency corrected numbers of hadronic Z decays and integrated luminosities

recorded by the ALEPH detector between 1989 and 1993, for centre-of-mass energies

around the Z peak. Here, the luminosities have been determined from the number of

multihadronic events, using in particular the total hadronic cross-section �0h = 41:61 nb

taken from a combination of LEP measurements in Ref. [4].

A detailed description of the ALEPH detector can be found in Ref. [5], and of its

performance in Ref. [6]. Charged particles are detected in the central part of the detector

consisting of a precision vertex detector, a cylindrical drift chamber and a large time

projection chamber, measuring altogether up to 31 coordinates along the charged particle

trajectories. In the geometrical acceptance of the time projection chamber, down to

typically 16� from the beam axis, the tracking e�ciency is measured to be in excess of
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99.9%. A 1.5 T axial magnetic �eld is provided by a superconducting solenoidal coil. A

relative resolution on the transverse momentum of 6:10�4pT (pT in GeV/c) is achieved.

In the following, good tracks are de�ned as charged particle tracks reconstructed with at

least four hits in the time projection chamber, originating from within a cylinder of length

20 cm and radius 2 cm coaxial with the beam and centred at the nominal collision point,

and with a polar angle with respect to the beam such that j cos �j < 0:95. Tracks that are

reconstructed with at least four hits in the time projection chamber, but do not originate

from the nominal collision point as described above, are called bad tracks.

In addition to its rôle as a tracking device, the time projection chamber also serves

to separate charged particle species with the measurement by up to 330 sense wires of

their speci�c energy loss by ionization, or dE=dx. This allows electrons to be separated

from other charged particle species (muons, pions, kaons) by more than three standard

deviations up to a momentum of 8 GeV/c.

Electrons (and photons) are also identi�ed in the electromagnetic calorimeter, a 22

radiation length thick sandwich of lead planes and proportional wire chambers with �ne

read-out segmentation, by the characteristic longitudinal and transverse developments of

their associated showers. The relative energy resolution achieved is 0:18=
p
E (E in GeV).

Muons are identi�ed in the hadron calorimeter, a 1.5 m thick yoke interleaved with 23

layers of streamer tubes, together with two surrounding layers of muon chambers, by their

characteristic penetration pattern. In association with the electromagnetic calorimeter,

the hadron calorimeter also provides a measurement of the hadronic energy with a relative

resolution of 0:80=
p
E (E in GeV).

Taus are identi�ed in particular by the missing energy carried away by their decay neu-

trinos. The total visible energy is measured with an energy-ow reconstruction algorithm

which combines all the above measurements, supplemented by the energy detected at low

polar angle (down to 24 mrad from the beam axis) by two additional electromagnetic

calorimeters, used for the luminosity determination. The relative resolution on the total

visible energy is 0:60=
p
E for high multiplicity �nal states (such as hadronic Z decays)

and 0:25=
p
E for �nal states of low multiplicity without neutral hadrons (such as radia-

tive dilepton events). In addition to the total visible energy measurement, the energy-ow

reconstruction algorithm also provides a list of charged and neutral reconstructed objects,

called energy-ow particles in the following.

In the data sample used for the analysis reported here, all major components of the

detector were required to be simultaneously operational, and all major trigger logic had

to be enabled.

2 The Monte Carlo samples

The analysis is based on large Monte Carlo event samples for the four-fermion process

and possible backgrounds, allowing both selective and e�cient selection criteria to be

designed. A particular care was taken over the four-fermion Monte Carlo program so that

2



reliable predictions of the total production cross-sections and of the event distributions

could be made.

2.1 The four-fermion process

The four-fermion process was simulated using the four-fermion generator FERMISV [7]

where all the lowest order diagrams involving neutral boson ( and Z) exchange are

included. These diagrams are separated in four gauge-invariant sub-groups called conver-

sion, annihilation, Bremsstrahlung and multiperipheral diagrams (see Fig. 1). The two

latter only contribute to �nal states containing electrons. The multiperipheral diagrams,

responsible for the so-called two-photon collisions, present a huge pole which is not regu-

larized in FERMISV when the two electrons escape in the beam pipe. For this reason, the

�nal state electrons were generated only above a �nite angle with respect to the beam

direction. This reduces the multiperipheral diagram contribution to the percent level.

Un-tagged two-photon collisions were therefore treated as an independent background.

Purely charged leptonic �nal states were generated with the initial state radiation

enabled, and allowing up to four �nal state photons to be radiated. In �nal states con-

taining electrons, all charged lepton directions were required to be more than 10� from

the beam axis, and all the e+e� invariant masses had to exceed 20 MeV/c2 in order to

avoid generating events that would be rejected later by selection criteria against photon

conversion (see Section 3.1.4).

For the �nal states involving a q�q pair, some modi�cations were implemented into

FERMISV in order to incorporate QCD corrections to the production rate. Since low mass

q�q pairs essentially arise from a virtual photon radiated by one of the initial or �nal lepton

legs, the contribution of the corresponding diagrams can simply be corrected by the value

of the ratio of the experimental e+e� ! hadrons cross-section to the prediction of the

quark-parton model, trivially related to the experimental ratio R. This includes:

� the resonant cross-section, with the � production parameterized as in Ref. [8], and

all the JPC = 1�� narrow resonances up to the �(11020). These are treated with

the Breit-Wigner formula

�BW =
3�

mqq

�tot�e+e�

(mqq �m0)
2
+
�2
tot

4

;

where mqq is the q�q pair invariant mass, and m0, �tot and �e+e� are the resonance

mass, total width and partial decay width into e+e�, as taken from Ref. [9]. The

!'s and the �'s are associated to the l+l�u�u and l+l�d�d production according to the

electric charge of the u and d quarks, the �'s to the l+l�s�s production, the  's to the

l+l�c�c production and the �'s to the l+l�b�b production. The 1S and 2S states are

then decayed according to their measured branching ratios [9]. The experimental

accuracy of the pion form-factor and of the resonance parameter measurements

turns into an uncertainty of �3% on the number of l+l�q�q events produced in this

resonant sector;

3



� the contribution of the continuum, parameterized as described in Ref. [10] up to a q�q

mass of 40 GeV/c2. To a �rst approximation, the attribution to each quark avour

is done proportionally to the �rst order QCD prediction of R, and the di�erence

between the experimental value and this prediction is attributed to b�b above the b�b

resonances, to c�c between the  's and the �'s and to s�s between the �'s and the  's.

The resulting correction on the e+e� ! l+l�q�q cross-section remains below 10%

for all the quark avours. A systematic uncertainty of �5% on this cross-section,

corresponding to a 50% uncertainty on the correction, is conservatively assumed;

� an overall correction factor of 1 + �s(m
2

qq
)=� for higher q�q masses.

(a)
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Figure 1: The four gauge-invariant groups of diagrams for the four-fermion production

e+e� ! l+l�f�f: conversion (a), annihilation (b), Bremsstrahlung (c) and multiperiph-

eral (d) diagrams. The wiggly lines represent  or Z exchanges. The total cross-section

is dominated by the diagrams of type (b). Similar graphs can be built by replacing the

charged leptons by a neutrino pair, in which case the diagrams of type (a) dominate over

diagrams of type (b).
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No attempt was made to include QCD corrections for diagrams where the l+l� pair

is radiated from a high mass pair of quarks. It has been shown for real photon emis-

sion [11] that gluon radiation (not simulated in FERMISV) competes with and tends to

reduce the photon radiation by 30 to 50%. A systematic correction of (�30 � 30)% is

therefore applied to the number of events predicted to predominantly arise from these

diagrams. The e�ect of this correction is negligible in the llV topology.

Using this modi�ed program, events were generated for all the possible l+l�q�q �nal

states, with initial state radiation enabled and allowing up to two �nal state photons to

be radiated. When l = e, the lepton directions were required to be more than 15� from

the beam axis, and the e+e� invariant mass had to exceed 200 MeV/c2.

For all the �nal states, the cross-sections were computed at seven centre-of-mass en-

ergies around the Z peak with a statistical accuracy of 1% (see Table 2).

f�f �! e+e� �+�� �+�� d�d u�u s�s c�c b�b

l�l# p
s

89.4 3.140 1.469 0.633 0.344 1.106 0.264 0.412 0.169

e+e� 91.2 4.053 2.883 1.601 0.729 2.085 0.615 1.044 0.374

(pb) 93.0 2.721 1.813 0.987 0.706 1.467 0.619 0.775 0.465

89.4 1.469 0.207 0.194 0.214 0.559 0.186 0.303 0.134

�+�� 91.2 2.883 0.562 0.539 0.604 1.606 0.535 0.941 0.382

(pb) 93.0 1.813 0.339 0.324 0.655 1.138 0.591 0.742 0.519

89.4 0.633 0.194 0.019 0.066 0.261 0.042 0.065 0.010

�+�� 91.2 1.601 0.539 0.053 0.181 0.707 0.114 0.191 0.028

(pb) 93.0 0.987 0.324 0.025 0.107 0.430 0.065 0.094 0.015

89.4 162 30.6 0.5 7.8 31.1 3.7 1.5 0.2

���� 91.2 591 95.7 0.8 22.1 87.4 9.6 2.5 0.7

(fb) 93.0 661 191 1.2 53.4 278 25.1 5.2 0.3

Table 2. Examples of production cross-sections for di�erent four-fermion �nal states atp
s = 89:4, 91.2 and 93.0 GeV, as predicted by the modi�ed FERMISV program.

For each of these �nal states, respectively 1000, 500 and 500 events were generated atp
s = 91.2, 89.4 and 93.0 GeV. Taus were decayed using KORALZ [12]. The q�q fragmen-

tation and hadronization, and the resonance decays were implemented using JETSET [13].

The events were then processed through the ALEPH simulation and reconstruction pro-

grams, and were used to determine the selection e�ciencies. The e�ciencies at di�erent

centre-of-mass energies were evaluated by linear extrapolation or interpolation.
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2.2 The background processes

Large Monte Carlo samples of fully simulated and reconstructed events were produced

for all the major background processes (e+e� ! f�f and  ! f�f, where f�f is any quark or

lepton pair):

� a sample of 1,500,000 hadronic Z decays, generated with DYMU3 [14] interfaced with

JETSET [13]; a sample of 350,000 Z! b�b events, equivalent to 1,600,000 hadronic Z

decays; a sample of 47,000 Z! b�b events with two subsequent semi-leptonic decays,

equivalent to 4,000,000 hadronic Z decays;

� a sample of 380,000 Z! �+�� decays corresponding to over four times the ALEPH

data sample, generated with KORALZ [12];

� a sample of 185,000 dimuon events, with twice as many events as in the ALEPH

data, generated with KORALZ;

� a sample of 100,000 Bhabha events generated with UNIBAB [15], and another sample

of 150,000 events generated with BABAMC [16] with the two electron directions more

than 15� from the beam axis, representing altogether approximately 1.5 times the

recorded luminosity;

� large samples of two-photon events into hadrons, �+��, �+�� and e+e�, all corres-

ponding to an integrated luminosity equivalent to or larger than the data, simulated

according to QED for leptonic �nal states [17] and to both QPM and a VDM

parameterization [18] for hadronic �nal states.

When necessary, and in order to have more Monte Carlo statistics, these samples were

supplemented by large samples of events generated with a fast, but reasonably detailed,

simulation of the ALEPH detector.

3 The llV topology selection

The llV topology corresponds to a four- or six-charged particle �nal state, and arises

from the four-lepton production e+e� ! e+e�e+e�, e+e��+��, e+e��+��, �+���+��,

�+���+�� and �+���+��, or even from e+e� ! l+l�q�q, with l = e, � or � , when the

mass of the quark-antiquark pair does not exceed a few GeV/c2.

The selection criteria presented in Ref. [1] were tailored to an integrated luminosity

of 8.6 pb�1. In order to cope with the background expected in the 79 pb�1 now available,

a more selective algorithm had to be developed and is described in the following.
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3.1 The four-prong event selection

Only events with exactly four good charged particle tracks are considered in this section.

The total electric charge is required to be zero and the energy measured below 12� from

the beam axis has to be smaller than 1 GeV. The main backgrounds to this four-prong

topology are:

(i) the e+e� ! �+�� process, essentially in the 1 prong + 3 prong decay modes;

(ii) low multiplicity hadronic Z decays;

(iii) the two-photon collisions, especially  ! �+�� and  ! hadrons;

(iv) radiative dilepton events, with a photon conversion into an e+e� pair.

They have been eliminated by criteria chosen using the Monte Carlo samples listed in

Section 2.2, as described in the following subsections.

3.1.1 �+�� background

Figure 2: Distributions of the smallest triplet mass for events with four good tracks, in

the ALEPH data (triangles with error bars), for the e+e� ! �+�� Monte Carlo (shaded

histogram, with an absolute normalization) and for the e+e� ! �+���+�� Monte Carlo

(dotted line, with an arbitrary normalization). The cut at 2 GeV/c2 is indicated by an

arrow.
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As shown in Fig. 2, almost 99.9% of the �+�� events in the 1 prong + 3 prong topology

are rejected by requiring that all the triplets of electric charge �1 which can be formed

with the four charged particles be not compatible with a � , namely that they have an

invariant mass in excess of 2 GeV/c2.

Most of the 65 remaining �+�� Monte Carlo events are a�ected by a nuclear interac-

tion of one of the four charged particles when going through the beam pipe or the detector

material. This often creates secondary particles in the �nal state and always renders less

accurate the triplet mass determination. It is therefore required that the smallest triplet

mass exceed 4 GeV/c2 when the sum of the distances of closest approach to the beam of

the three tracks is larger than 5 mm, and that the number of additional bad tracks be

smaller than two. At this level, 2:6�0:7 �+�� events are still expected in the data. They

are mostly from 3 prong + 3 prong decays when one charged particle is missed in each

of the two event hemispheres. They are removed by imposing an invariant mass larger

than 2 GeV/c2 (determined from the charged particles only) in at least one of the two

hemispheres de�ned by a plane perpendicular to the event thrust axis. After all these

requirements, only 0:24+0:35�0:15 events coming from the e+e� ! �+�� process are predicted

to remain in the data.

3.1.2 Hadronic Z decays

Figure 3: Distributions of the fraction of the visible mass carried by the pair recoiling

against the smallest mass pair (a), and of the number of energy-ow particles after the �rst

criterion is applied (b), for events with four good tracks, in the e+e� ! q�q Monte Carlo

(triangles with error bars, with an absolute normalization), and in the e+e� ! �+���+��

�nal state (shaded histogram, with an arbitrary normalization). The cuts are indicated

by an arrow.
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The JETSET model predicts a few dozen low charged multiplicity hadronic Z decays, with

a large fraction of the visible energy carried by neutral particles, in the four-fermion event

sample. Most of these events are eliminated by requiring (i) that more than 10% of the

visible mass be carried by the pair recoiling against the smallest mass pair of oppositely

charged particles, and (ii) as suggested in Ref. [6], that the number of energy-ow particles

not exceed �fteen. The distributions of these two quantities are shown in Fig. 3 both for

the e+e� ! q�q background and for the e+e� ! �+���+�� �nal state. The few remaining

events are removed in the classi�cation stage (see Section 3.3) by requiring events with a

total visible energy larger than 90%
p
s to be identi�ed as eeV or ��V. Altogether, 0:0+1:5�0:0

hadronic Z decays are expected to remain in the data.

3.1.3 Two-photon collisions

Two-photon collisions are expected to produce events at low visible mass with large mis-

sing energy and momentum along the beam axis. They can be rejected by requiring

(i) the missing transverse momentum to be larger than 5%
p
s when the visible mass is

below 25 GeV/c2 (see Fig. 4) and (ii) the missing momentum along the beam direction

not to exceed 35%
p
s. This latter cut also removes four-fermion events with hard initial

state radiation, for which the total energy measurement could not be used for the event

classi�cation. After these criteria are applied, 0:0+0:6�0:0 two-photon events are expected to

remain in the data.

Figure 4: Distributions of the visible mass versus the total momentum transverse to

the beam (in unit of the centre-of-mass energy) for the ALEPH data (a), and the

e+e� ! �+���+�� Monte Carlo (b). The cut performed in this plane is indicated by

a dotted line.
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3.1.4 l+l� events

Finally, the hundreds of radiative dilepton events with a photon conversion in the detector

material are rejected when the pair of oppositely charged particles with the smallest mass

satis�es one of the following conditions: (i) the sum of the distances of closest approach

to the beam of the two reconstructed tracks is larger than 5 mm; (ii) the invariant mass

is smaller than 50 MeV/c2, when calculated as for an e+e� pair coming from the main

interaction point; (iii) the polar angle di�erence is smaller than 1� and the angle between

the two directions (in space) is smaller than 8�, if the pair is identi�ed as being e+e� (see

Section 3.3); or (iv) the distance of closest approach of the two tracks is smaller than

1 mm and the invariant mass is smaller than 30 MeV/c2, when calculated as for an e+e�

pair coming from this point of closest approach. This leads to an expectation of 0:0+0:5�0:0

radiative dilepton events selected as four-fermion �nal states in the data.

Altogether, the number of background events expected in the data is 0:24+1:70�0:15. The

overall e�ciency of the selection amounts to 60:6 � 0:9% for e+e� ! �+���+�� events

generated at
p
s = 91:2 GeV. This corresponds to an e�ciency of � 85% in the TPC

geometrical acceptance of 72%, the latter being de�ned as the fraction of ���� events

with at least four good charged particle tracks.

3.2 The six-prong event selection

In order to improve the selection e�ciency for four-fermion �nal states with taus (which,

for instance, amounts to only 32% for ���� events if only the above selection criteria are

used), the 1 prong + 3 prong decay mode of the � pairs, leading to six-prong �nal states,

have also been included in this study.

Events with exactly six good charged particle tracks, with a total electric charge zero

and with an energy measured below 12� from the beam axis smaller than 1 GeV, are

considered in this section. Since only events containing taus are concerned by this com-

plementary selection, the total energy is required to be smaller than 85%
p
s. Furthermore,

at least one charged particle triplet of total charge �1 must have a mass smaller than

1.8 GeV/c2 and a total momentum in excess of 2 GeV/c. If more than one such triplet is

found, only the most energetic one is selected as being a � .

To reject tau pairs in the 3 prong + 3 prong topology, the opposite charged particle

triplet must have an invariant mass larger than 2 GeV/c2and, following the strategy of the

previous section, larger than 4 GeV/c2 when the sum of the distances of closest approach

to the beam of the three tracks is larger than 5 mm. Tau pairs in the 1 prong + 5 prong

decay modes are eliminated when a charged particle quintuplet of total electric charge �1
is found with a mass smaller than 2.5 GeV/c2. When the sum of the distances of closest

approach to the beam of the �ve tracks is larger than 2 cm, the cut value is increased to

5 GeV/c2. The residual interactions with the detector material are avoided by requiring

that the number of bad charged particle tracks be smaller than two. When these criteria

are applied, 0+0:28�0:0 e
+e� ! �+�� events are expected to remain in the data.
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No modi�cations to the previous strategy are needed to reduce the contamination

from the other backgrounds (see Sections 3.1.2 to 3.1.4) down to an expectation of 0:0+1:7�0:0

events. Once this complementary selection is included, the e�ciency for ���� events

increases from 32% to 43.5%. Other channels with taus have similar improvement.

3.3 The event classi�cation

Since all the background contributions have been reduced down to a negligible level, the

events satisfying the selection criteria listed in Sections 3.1 and 3.2 can be interpreted

as coming exclusively from the four-fermion process e+e� ! l+l�f�f where l is a charged

lepton and f any charged fermion (lepton or quark). Two of these events are shown in

Fig. 5 and Fig. 6, classi�ed as e+e��+�� and �+���+�� respectively.

Run 17799 Event 1299ℵ ALEPH

TPC

ECAL

HCAL

MUCH

Figure 5: A r' view of the ALEPH detector for an event classi�ed as e+e� ! e+e��+��.

The Time Projection Chamber (TPC), the Electromagnetic CALorimeter (ECAL), the

Hadron CALorimeter (HCAL) and the MUon CHambers (MUCH) are indicated.

To classify these events, the f�f pair is de�ned as the smallest mass pair of oppositely

charged particles, not belonging to the tau-triplet in the case of the six-prong topology.

The l+l� pair, formed by the other charged particle tracks of the event, is identi�ed using

the missing energy measurement and the electron and muon identi�cation capabilities of

the ALEPH detector [6] as follows.
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� Events with a total visible energy above 90%
p
s and no lepton (e or �) identi�ed in

the calorimeters are rejected, as already mentioned in Section 3.1.

� Events with a total visible energy above 90%
p
s and with at least one electron (resp.

one muon) identi�ed in the electromagnetic (resp. hadron) calorimeter are classi�ed

as e+e�f�f (resp. �+��f�f).

� Events with a total visible energy above 80%
p
s and two electrons (resp. two muons)

identi�ed in the electromagnetic (resp. hadron) calorimeter are classi�ed as e+e�f�f

(resp. �+��f�f). The same classi�cation holds when only one of the two leptons

is identi�ed, provided that the other hits an uninstrumented zone of the relevant

calorimeter.

� To account for the large forward-peaked contribution of the t-channel to the eeV

cross-section, and as suggested by the l+l� study detailed below, the two previous

energy cuts are lowered to 80%
p
s and 60%

p
s for one and two electrons identi�ed,

respectively, if either cos �� > 0:7 or cos �+ < �0:7, where �� is the angle of the e�

direction with respect to the incoming electron direction.

� All the other events are classi�ed as �+��f�f, as well as all the events selected in the

six-prong topology.

Run 21922 Event 3342ℵ ALEPH

TPC

ECAL

HCAL

MUCH

µ+

µ−

π−
π0→ γ γ

π− π+π+

Figure 6: A r' view of the ALEPH detector for an event classi�ed as e+e� ! �+���+��in

the six-prong topology.
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Both the missing energy measurement accuracy and the lepton identi�cation e�ciency

are checked directly from the data using l+l� events, where the l+l� pair is expected to

have the same distributions (momenta, angles) as in l+l�f�f �nal states. These events are

selected as follows: (i) exactly two good charged particle tracks, (ii) at least one photon

of energy larger than 2 GeV, (iii) the invariant masses formed by the photon and any of

the two charged particles in excess of 2 GeV/c2, and (iv) rejecting two-photon collisions

and low multiplicity hadronic Z decays as indicated in Sections 3.1.2 and 3.1.3. A total

of 14476 such events are selected in the data, in agreement with the prediction of the

dilepton Monte Carlo generators. The observed total visible energy distribution, shown

in Fig. 7, is in agreement with the expectation to an accuracy better than 0.5% for the

total energy determination, turning into a precision better than 0.2% on the energy cut

e�ciencies deduced from the Monte Carlo, for the three lepton avours.

Figure 7: Distribution of the total visible energy for l+l� events in the data (triangles

with error bars) and the KORALZ + UNIBAB prediction normalized to the number of events

observed (shaded histogram). The hatched area shows the expected contribution from

�+�� events.

For the lepton identi�cation, l+l� events with a total visible energy in excess of

90%
p
s are used. This sample can be strongly enriched in Bhabha and dimuon events

by requiring in addition the presence of an identi�ed electron or muon on one side. A

total of 7120 electron events and 4749 muon events are selected in the data. The residual

background of �+�� events is evaluated from Monte Carlo and amounts to 19 events in

the electron sample and 12 events in the muon sample. After background subtraction, the

other lepton of these events can therefore be used to determine the lepton identi�cation

e�ciency, both in data and Monte Carlo. The results are shown in Table 3.
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Data Monte Carlo

"11 "0
11

"21 "22 "11 "0
11

"21 "22

Muons 90.7 96.3 99.1 92.5 91.0 95.9 99.2 91.7

Electrons 82.1 98.2 96.8 93.9 84.1 99.0 97.5 95.6

Table 3. Lepton identi�cations e�ciencies, in percent, as measured for the data and the

Monte Carlo with radiative Bhabha and dimuon events, with a statistical uncertainty of

0.3%. "11 is the probability for one lepton to be identi�ed in the relevant calorimeter;

in "0
11
, the lepton is also allowed to hit an uninstrumented calorimeter region; "21 is the

probability to identify one of two leptons; "22 is the probability to identify both leptons

of a pair, allowing one of the two to hit an uninstrumented calorimeter region.

For the l+l�f�f event classi�cation, it turns out that the relevant e�ciency is "21. It can

be seen in Table 3 that the Monte Carlo overestimates the e+e� identi�cation by 0:7�0:3%,
while the �+�� identi�cation is adequately simulated. The proportion of events rejected

by the �rst classi�cation criterion amounts to 5.5%, 3.2% and 0.9% for �+��, e+e� and

�+�� respectively. Finally, the cross-channel contamination is estimated to be at the

level of 0.5% from �+�� events to radiative Bhabha or dimuon events, 0.5% from e+e�

and �+�� to �+�� events, and smaller than 0.01% between e+e� and �+��.

The identi�cation of the smallest mass pair of oppositely charged particles (the f�f

pair) makes use both of the calorimeters and of the energy losses by ionization (also

called dE=dx) measured by the TPC, particularly useful in the low momentum region.

For dE=dx, four estimators (�ie, �
i
�, �

i
� and �i

K
) are built. They are de�ned as the ratio

of the di�erence between the measured energy loss I i(meas) and the expectation I i(exp)x

for the four mass hypotheses (x = e; �; �;K), to the expected uncertainty �i(exp)x on this

measurement, for each of the two tracks i of the pair:

�ix =
I i(meas) � I i(exp)x

�
i(exp)
x

:

The compatibility of the f�f pair with the hypothesis x+x� is therefore quanti�ed by (�x)
2 �

(�1x)
2 + (�2x)

2. The identi�cation of the f�f pair is performed as follows.

� If at least one of the two charged particles is identi�ed in the relevant calorimeter

to be an electron or a muon as explained above, the f�f pair is classi�ed as a e+e� or

a �+�� pair, respectively.

� If no lepton is identi�ed although at least one of the two charged particles has a

momentum larger than 1.5 GeV/c2 (thus making it identi�able in the calorimeters),

the pair is classi�ed as �+��, K+K� or �+��, unless �2e < �2�;K � 3, in which case

the pair is classi�ed as e+e�.

No attempt has been made yet to distinguish �+�� and hadron pairs. However, due

to the small number of �+�� and K+K� pairs expected, all of them are called �+��
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in the following, unless �2
K
< �2� and the f�f mass computed in the K+K� hypothesis

is well compatible with the � mass (1:01 GeV=c2 < mKK < 1:06 GeV=c2), in which

case the pair is classi�ed as K+K�.

� If the two charged particle momenta are smaller than 1.5 GeV/c2, the identi�cation

relies exclusively on the dE=dx measurement: if the smallest �2 is obtained with

the electron hypothesis, the pair is classi�ed as e+e�; if it is obtained with the kaon

hypothesis and if the f�f mass is compatible with the � mass, the pair is classi�ed as

K+K�; otherwise, due to the small mass di�erence between the muon and the pion,

the pair is classi�ed as �+�� or �+��.

The e�ciencies are determined from the four-fermion �nal state Monte-Carlo and are

shown in Table 4. Since the dE=dx measurement is used for only 15% of the events,

an inadequacy of its simulation at the level of 10% would translate into an uncertainty

of only 1.5% in the distinction e+e�/�+�� or �+��/K+K�, equivalent to the statistical

uncertainty caused by the limited number of Monte Carlo events. No systematic checks

of this dE=dx simulation were therefore performed for this analysis.

f�f �! e+e� �+�� �+�� d�d/u�u s�s c�c b�b

Class #
e+e� >99.5 0.1 29.3 3.0 2.4 22.8 � 50

�+�� { 78.8 27.2 3.1 5.7 22.2 � 50

�+�� { 3.8 35.6 77.1 47.7 43.7 {

�+�� or �+�� { 17.2 7.9 16.5 6.0 11.1 {

K+K� { 0.1 { 0.3 38.2 { {

Table 4. E�ciencies, in percent, of the smallest mass pair classi�cation in e+e�, �+��,

�+�� or K+K� as a function of the f�f avour generated. Events selected from the l+l�s�s,

l+l�c�c and l+l�b�b processes are dominated by the low multiplicity decays of the 1S and

2S resonances (�, J= and �).

3.4 The numbers of events expected

As a result of the above study, the overall e�ciencies determined at
p
s = 91:2 GeV for

the four- and six-prong topology selection criteria are

� 12.5% in the e+e�e+e� channel,

� 30.8% in the e+e��+�� channel to be split into 17.1% in the eexx class (when the

pair with the smallest mass is the �+�� pair) and 13.7% in the ��xx class (when

the pair with the smallest mass is the e+e� pair),
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� 15.9% in the e+e��+�� channel to be split into 13.7% in the ��xx class and 2.2%

in the eexx class,

� 60.6% in the �+���+�� channel,

� 43.4% in the �+���+�� channel to be split into 40.0% in the ��xx class and 3.4%

in the ��xx class,

� 31.4% in the �+���+�� channel,

� 14.2%, 11.5% and 23.9% in the e+e�d�d, the �+��d�d and �+��d�d channels,

� 18.8%, 19.7% and 25.0% in the e+e�u�u, the �+��u�u and �+��u�u channels,

� 7.7%, 4.4% and 6.4% in the e+e�s�s, the �+��s�s and �+��s�s channels,

� 1.3%, 1.4% and 4.5% in the e+e�c�c, the �+��c�c and �+��c�c channels,

� � 0:1% in the l+l�b�b channels.

The apparently small values obtained for the �nal-states containing a e+e� or a q�q

pair are due to the poles of the cross-section at low e+e� invariant mass, and to the

requirement that the q�q pair hadronizes into two charged particles only. Using these

e�ciencies, the four-fermion process cross-sections detailed in Section 2.1 and the total

integrated luminosities recorded by ALEPH at the various centre-of-mass energies, shown

in Table 1, it is possible to determine the numbers of events expected in the data in the

�fteen di�erent llV classes. These numbers are shown in Table 5. The various systematic

uncertainties on these numbers can be listed as follows.

1. Knowledge of sin2 �e�
W

(0:2324 � 0:0006, as determined from a combination of the

four LEP experiments [4]): �0:5%;
2. Statistical accuracy of the total cross-section Monte Carlo computation: �1%;
3. E�ciency determination from the limited Monte-Carlo statistics: �1:5%;
4. Integrated luminosity determination at each centre-of-mass energy from the number

of hadronic Z decays: �1%;
5. Inadequacy of the lepton identi�cation simulation (essentially from the dE=dx for

which no systematic checks have been performed here): �1:5%;
6. Missing higher order QED corrections, especially for the initial state radiation; this

has been estimated by substituting the initial state photon energy spectrum of

Ref. [19] for the simpli�ed formula used in FERMISV: �1%;
7. For the l+l�q�q channels, accuracy of the simulation of the resonances (dominated

by the �) and of the R ratio: �4%.
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Many other uncertainties at a much lower level, such as the knowledge of the QED coupling

constant at the Z pole (�0:2%), the accuracy of the total energy simulation (�0:2%) or
the Z mass and width values (�0:1%), result in an uncertainty which does not exceed

1%. To summarize, a systematic uncertainty smaller than �3% a�ects the purely leptonic

channels. It increases to �5% for the l+l�q�q processes. Altogether, when the correlated

and uncorrelated uncertainties are accounted for, the total number of four-fermion events

in the four- and six-prong topologies expected in the ALEPH data is 231:9 � 4:7 (syst.):

e+e�x+x� �+��x+x� �+��x+x� Total

x = e 37:7 � 1:2 25:9 � 0:8 14:6 � 0:5 78:2 � 2:0

x = � 29:1 � 0:9 20:0 � 0:6 12:9 � 0:4 62:0 � 1:5

x = � 30:7 � 1:6 21:6 � 1:1 13:1 � 0:7 65:4 � 3:1

x = � or � 11:0 � 0:4 8:4 � 0:3 4:5� 0:2 23:9 � 0:8

x = K 1:2� 0:05 0:8� 0:04 0:4� 0:02 2:4� 0:1

Total 109:7 � 2:8 76:7 � 1:9 45:5 � 1:2 231:9 � 4:7

Table 5. Number of events expected in the ALEPH data in the �fteen di�erent llV classes,

with the systematic uncertainties.

3.5 The data sample

The total number of events expected, 231:9 � 4:7, is to be compared to the 229 events

selected in the data, the details of which are shown in Table 6.

e+e�x+x� �+��x+x� �+��x+x� Total

x = e 23 34 13 68

x = � 35 20 15 72

x = � 28 24 13 65

x = � or � 11 7 4 22

x = K 2 0 0 2

Total 101 83 45 229

Table 6. Number of events observed in the �fteen di�erent llV classes.
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The comparison of the two series of numbers may trigger several observations:

� The 45 �+��V events, of which 14 are found in the six-prong topology, are in

agreement with the 45:5 � 1:2 events expected. This agreement is consistent over

all the �ve classes. The indication of an excess observed in the ALEPH 1989-1990

data is not con�rmed. When the present analysis is restricted to these data, the

number of events observed is 9 e+e�V, 11 �+��V and 12 �+��V, while 11:5 � 0:4,

7:9� 0:3 and 4:6� 0:3 are expected respectively.

� The agreement is satisfactory in all the classes, with a �2 of 10.2 for 12 degrees of

freedom, after the x=� and the x=K classes are merged. The largest discrepancy

is observed in the e+e�e+e� �nal state, where 23 events are observed for 37:7� 1:2

events expected. Whether this de�cit of e+e�e+e� events is due to a statistical

uctuation (at the 2:5� level, expected to occur with a probability of 14% within

12 independent measurements) or results from, for instance, the absence of higher

order QED corrections in FERMISV would require more data and more investigation

to decide.

� After the inclusion of the JPC = 1�� resonances and the experimental ratio R,

FERMISV reproduces well the number of l+l��+�� events (65 events observed, 65.4

expected) and of l+l�K+K� events (2 events observed, 2.4 expected). The distribu-

tion of the �+�� mass in e+e� ! l+l��+�� events is shown in Fig. 8a and agrees

too with the modi�ed FERMISV prediction.

Figure 8: Distributions of the x+x� mass when x = � (a) and when x = e or � (b), for the

data (triangles with error bars) and for the Monte Carlo expectation (shaded histogram)

with an absolute normalization.

Beyond the production rates, the distribution of the events in the multidimensional

phase space can be compared with the standard model expectation. For that purpose,
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Figure 9: Angular distributions of the leptons (electric charge � cos[polar angle]) in the

e+e�x+x� �nal state (a) and in the �+��x+x� or �+��x+x� �nal states (b), for the data

(triangles with error bars) and for the Monte Carlo expectation (shaded histogram) with

an absolute normalization. Each event enters twice in the distributions.

several individual distributions can be examined such as the distribution of the f�f pair

mass, when identi�ed as e+e� or �+�� (see Fig. 8b), or the angular distributions of the

leptons of the l+l� pair (see Fig. 9).

Ignoring the initial and �nal state radiated photons, the four-fermion �nal state is

described by seven relevant kinematic variables. A systematic comparison of all distribu-

tions with the standard model prediction would be quite complicated, and not necessarily

very powerful given the limited event statistics. A global and powerful test is obtained

by constructing for each event i the normalized likelihood

pi =
jMij2
�tot

;

where jMij2 is the matrix element squared summed over all the possible fermion helicities

as computed by FERMISV from the four-momenta of the four fermions, and �tot is the total

cross-section expected for the corresponding �nal state.

To ensure both good knowledge of the event kinematics and accurate theoretical

predictions, only events classi�ed as e+e�e+e�, e+e��+�� or �+���+�� were considered

here. Furthermore, to reject residual l+l��+�� events wrongly identi�ed as four-lepton

events (see Table 4) and clustered around the � mass (see Fig. 8a), only 43 events found

with a V mass in excess of 1 GeV/c2 were kept; of these 7 are e+e�e+e�, 21 are e+e��+��

and 15 are �+���+��.

The distribution of the normalized likelihood is shown in Fig. 10. Good agreement is

found between data and Monte Carlo. In the standard model, the four-fermion matrix
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element squared depends sensitively on the e�ective weak mixing angle sin2 �e�
W
. A measure

of sin2 �e�
W
can thus be obtained by maximizing the log-likelihood function

L(sin2 �e�
W
) =

NX

i=1

ln pi(sin
2 �e�

W
);

where N is the total number of events considered in the procedure. (This is equivalent to

maximizing the mean value of the distribution of Fig. 10.) With this method, a value of

sin2 �e�
W
= 0:260 � 0:039 (stat. only) is derived from the data.

Figure 10: Distribution of ln pi, the normalized log-likelihood (see text), for e+e�e+e�,

e+e��+�� and �+���+�� events, in the data (triangles with error bars) and in the Monte

Carlo (shaded area).

Within the still limited statistics, the four-fermion �nal state therefore shows good

agreement with the standard model prediction both in shape and normalization.

4 The l+l�q�q �nal state

The l+l�q�q �nal state has partly been investigated in the previous section, when the q�q

system turns into a resonance that decays into two charged particles (essentially the �

and the !, but also the � and the J= for which 2.5 and 0.9 events are expected to be

detected in the llV topology).

To study the continuum, for hadronic masses up to 70 GeV/c2, another analysis is

used which was developed initially for the Higgs boson search in the e+e� ! HZ� !
hadrons l+l� process [20]. This search essentially consists of selecting events with at least
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six good charged particle tracks, of which two are energetic, isolated, identi�ed electrons

or muons. No events are selected in either of the hadronic Z decay Monte Carlo samples

enriched in b�b events of Section 2.2, equivalent to more than seven million Z decays,

corresponding to 0:0+0:4�0:0 background events expected in the data.

The numbers of four-fermion events expected in the ALEPH data are presented in

Table 7, including the l+l��+�� background.

f=d f=u f=s f=c f=b f=� Total

e+e�f�f 1.79 5.97 1.07 4.95 0.49 0.54 14.81

�+��f�f 1.87 5.43 1.10 4.46 0.55 0.22 13.63

�+��f�f 0.01 0.07 0.01 0.08 0.01 0.00 0.18

Table 7. Numbers of events predicted in the selected l+l�f�f �nal states.

Figure 11: Distributions of the photon isolation angle, for the ALEPH data (triangles with

error bars), and for the Monte Carlo (shaded histogram, with an absolute normalization).

The isolation angle is de�ned as the angle of the largest cone around the photon direction

containing less than 1 GeV of extra energy. The hatched part of the distribution is

obtained from the genuine q�q events. The cut at 30 degrees (applied to l+l�q�q events

too) is indicated by an arrow.
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The systematic uncertainties on these numbers are expected to be rather small since

most of the selection criteria rely only on the properties of very energetic and well isolated

leptons for which the ALEPH simulation is known to be accurate.

However, the e�ciency of the isolation criterion has been questioned in the past [11].

It has been checked with hadronic events containing a very energetic photon originating

either from the radiative process e+e� ! q�q or from the decay of an energetic �0 in one

of the jets. The selection of these events is very close to the l+l�q�q selection, the photon

playing the rôle of the lepton pair. In particular, its energy is required to be greater than

15 GeV and its transverse momentum with respect to the thrust axis of the rest of the

event has to exceed 10 GeV/c. A total of 2542 such events are predicted by JETSET and

2423 are observed in the data.

As shown in Fig. 11, the photons of the genuine q�q events tend to be isolated from

the two jets due the transverse momentum cut. For photons coming from �0 decays, this

last cut a priori selects three-jet events, where one of the jets contains the energetic �0,

making it not isolated. The distribution of the photon isolation angle is well reproduced

by the Monte Carlo both in shape and in normalization, thus giving con�dence in the

simulation of this quantity for the leptons.

Run 20621 Event 3434ℵ ALEPH

TPC

ECAL

HCAL

Figure 12: A r' view of the ALEPH detector for an e+e� ! e+e�q�q event.

The major source of systematic uncertainty is therefore the absence, in the simulation,

of QCD corrections for high q�q masses, which could reduce the number of events expected

in this region by 30% to 50% (see Section 2.1). The 4.7 events predicted by FERMISV with

a hadronic mass above 40 GeV/c2 have therefore to be corrected for a systematic bias of
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�1:4�1:4 events, leading to 3:3�1:4 events expected. For lower masses, a 5% uncertainty

mainly related to the experimental R ratio turns into an uncertainty of �1:0 events.
To summarize, the number of events expected in this l+l�q�q �nal state is 27:2 � 1:7

(syst.), of which 13.0 in the �+��q�q �nal state and 14.2 in the e+e�q�q �nal state. A

total of 29 events is observed, of which 19 �+��q�q and 10 e+e�q�q events. One of these

events, classi�ed as e+e�q�q, is shown in Fig. 12. The agreement still holds when looking

at various distributions, e.g. the distributions of the hadronic mass (computed as recoiling

against the lepton pair for high masses) or of the leptonic mass, as presented in Fig. 13.

Figure 13: Distributions of the hadronic (a) and the leptonic (b) masses in the l+l�q�q

�nal states, for the data (triangles with error bars) and for the Monte Carlo expectation

(shaded histogram) with an absolute normalization.

5 Final states with neutrinos

When the charged lepton pair is replaced by a ��� pair, a number of diagrams involving

photon exchanges become irrelevant. As a result, the conversion processes e+e� ! ����,

with � ! f�f, now provide the dominant contribution, instead of the annihilation pro-

cesses for all the other four-fermion �nal states. It is thus expected that the ��� pairs

should concentrate at large masses, while the f�f pairs should peak toward low masses

and low transverse momenta with respect to the beam axis. The relevant topology to be

searched for is therefore that of a monojet. Such a search has been extensively reported in

Ref. [21]. It essentially consists of selecting events where one hemisphere is free of any

detector activity, with a total momentum transverse to the beam axis in excess of 5%
p
s.

Three events were selected in the ALEPH data, in good agreement with the expec-
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tation of 2.6 events from the so-called conversion processes e+e� ! ����, with � ! f�f,

while no events were retained in any of the Monte Carlo samples simulating Z decays

into a fermion pair or  processes. The visible masses, transverse momenta and invisible

recoil masses of these events are given in Table 8.

Final state mvis (GeV/c
2) pT (GeV/c) minv (GeV/c

2)

e+e� 3.3 20.3 61

Hadronic 3.2 6.6 80

Hadronic 5.3 18.5 69

Table 8. Characteristics of the three monojet-like events selected in the ALEPH data.

Two events, an acoplanar e+e� pair [22] and a hadronic monojet [21], have unexpectedly

large masses and transverse momenta. These two events are shown in Fig. 14.

Run 15238 Event 4802ℵ ALEPH

TPC

ECAL

Run 23037 Event 8659ℵ ALEPH

TPC

ECAL

HCAL

Figure 14: Views of the ALEPH detector for the acoplanar e+e� pair and for the hadronic

monojet.

It is shown in Ref. [21] that the probability that the three events arise in such a

con�guration from the conversion diagrams is only 1.0%. When all the processes available

in FERMISV are taken into account, the number of events expected increases as little as by

0.06, but the probability becomes 2.2%. This indicates that further diagrams not taken

into account in FERMISV should be considered, namely those involving W exchanges. This

has been attempted in Ref. [21], and the result is that a total of 2.75 signal events is

expected, with a probability of 4.8% to show up in at least as unlikely a con�guration of

masses and transverse momenta.

Events with even higher masses, therefore turning into an acoplanar pair of leptons
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or of jets in the detector, have been searched for with two analyses developed for the

Higgs boson search in the e+e� ! HZ� ! H��� channel, described in Refs. [20] and [22].

No events were found in the ALEPH data, but only 0.25 events are expected from the

e+e� ! ���f�f process, and 0.12 events from e+e� ! �+��f�f where most of the energy of the

taus is carried away by the decay neutrinos. A larger integrated luminosity is therefore

needed to make a meaningful analysis of this �nal state at the Z peak.

For both topologies (monojet and acoplanar jets/leptons), the systematic inclusion

of all the diagrams pertaining to the four-fermion �nal state will become necessary to

accurately describe the data, and essential as soon as larger centre-of-mass energies will

be delivered by LEP. Such programs [23] are presently under development.

6 Conclusion

The large integrated luminosity accumulated by the ALEPH detector at and around the

Z peak between 1989 and 1993, equivalent to almost two million hadronic Z decays, has

allowed a comprehensive study of the electroweak four-fermion process e+e� ! l�lf�f to be

performed. For all channels studied, the data are found to agree with the standard model

of electroweak interactions.

In the four- and six-prong topologies, also called llV topology, arising from the four-

lepton �nal states and also from l+l�q�q at low q�q masses, 229 events are observed while

235:2 � 4:7 were expected. The agreement is good in the �fteen groups of llV events,

classi�ed according to the three lepton avours (e, � and � ) and to the �ve V types

(e+e�, �+��, �+��, �+�� or �+��, K+K�). In particular, the excess in the �+��f�f

�nal state indicated by the ALEPH 1989-1990 data is not con�rmed: the 45 events

observed agree well with the standard model expectation of 45:5� 1:2. Furthermore, the

various distributions which were investigated are all consistent with the standard model

expectation.

The l+l�q�q �nal state with larger multiplicity or larger mass q�q systems was also

studied: 29 events are observed, of which 10 e+e�q�q and 19 �+��q�q. Here again, the

number of events and the distributions of characteristic variables are in close agreement

with the standard model predictions.

Finally, three monojets events are observed while 2.75 were expected to arise from

the e+e� ! ���f�f process. However, the values of their masses and transverse momenta

are unlikely at the 5% level. Further study of this channel will require more accurate

calculations and more data.
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