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The ALEPH Collaboration

Abstract

Quark and gluon jets with the same energy, 24 GeV, are compared in symmetric
three-jet con�gurations from hadronic Z decays observed by the ALEPH detector. Jets
are de�ned using the Durham algorithm. Gluon jets are identi�ed using an anti-tag on b

jets, based on either a track impact parameter method or a high transverse momentum

lepton tag. The comparison of gluon and mixed avour quark jets shows that gluon
jets have a softer fragmentation function, a larger angular width and a higher particle
multiplicity. Evidence is also presented which shows that the corresponding di�erences
between gluon and heavy avour jets are signi�cantly smaller.
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1 Introduction

According to QCD, owing to their larger colour charge, gluon jets are expected to have

softer particle energy spectra and to be wider than quark jets of the same energy. At

leading order and asymptotic energies one expects the multiplicity ratio between pairs

of back to back quark and gluon jets to be equal to the ratio of the Casimir factors

CA=CF = 9=4. At present energies this simple prediction is expected to be signi�cantly

altered by QCD coherence e�ects which strongly suppress the fragmentation of the gluon

jet in the three-jet topology [1]. These predictions refer to the parton jets. Extrapolation

to the �nal state hadrons relies on the Local Parton Hadron Duality assumption that the

multiplicity of hadrons is proportional to the multiplicity of partons.

A number of experimental searches for di�erences between quark and gluon jets have

been performed [2]. Until recently, e+e� studies did not utilise quark and gluon jets

with equal energies, or jets produced in the same environment (e.g. they used gluon jets

from three-jet events and quark jets from two-jet events). The interpretation of such

comparisons is di�cult and heavily Monte Carlo model dependent. LEP experiments [3]

using three-jet events and exploiting high resolution vertex detectors have been able to

identify gluon jets on an event by event basis. They were able to study quark and gluon jets
with equal energies and from the same environment, so producing less model dependent
analyses.

In this analysis the properties of 24 GeV gluon and quark jets from one-fold symmetric
three-jet events were studied. The gluon identi�cation method is based on a b anti-tagging

procedure. The analysis relies on the assumption that the properties of gluon jets from
q�qg events are the same as in b�bg events. The results presented here originate from two
independent studies whose main di�erence was the type of b tag employed; one used an
impact parameter lifetime tag and the other a high transverse momentum lepton tag.

Two sets of comparisons were performed. The �rst one involved gluon tagged jets and

quark jets whose avour composition was determined by the electroweak couplings of the
Z. The second comparison involved gluon tagged jets and b jets. Gluon radiation from
heavy quarks is restricted due to quark mass e�ects [4]. According to this, heavy avour
jets are expected to contain fewer particles than light quark and gluon jets. However the
decay of the heavy hadron produces extra multiplicity [5] and hence the above prediction
gets modi�ed. The possible contrast between b and gluon jets can be used to decide

whether b quark and gluon jets can be separated via general jet properties.
The properties studied are mean charged particle multiplicity, fragmentation function,

rapidity distribution, and multiplicity and energy fraction within a given jet cone.

The results obtained were compared with the Jetset 7.3 [6] and Herwig 5.5 [7] model
predictions, all subsequent mentions of these models refer to these explicit version

numbers.

2 The ALEPH detector

The ALEPH detector is described in detail in [8]. A brief description of those parts of
the apparatus most relevant to this analysis is presented here.

The tracking system consists of three subdetectors which are immersed in a magnetic

�eld of 1:5 T. Closest to the beam pipe is a high resolution vertex detector (VDET)
consisting of two layers of double sided silicon microstrip detectors. The inner layer

is at an average radius of 6:5 cm and covers 85% of the solid angle, whilst the outer
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layer is at 11:3 cm and covers 69% of the solid angle. The point resolution of the

VDET is 12 �m at normal incidence for both the r� and z dimensions. Surrounding

the VDET is the inner tracking chamber, an eight layer axial drift chamber, and the

time projection chamber (TPC) which provides up to 21 point measurements. Combined

information from these three subdetectors yields a transverse momentum resolution of

�(1=pT ) = 0:0006 (GeV=c)�1 measured with 45 GeV muons; at low momentum multiple

scattering dominates and adds a constant term of 0.005 to �(pT )=pT . The TPC also

provides up to 338 measurements of the speci�c ionization density (dE/dx) of a track.

The impact parameter resolution (for high momentum tracks) of 23 �m and 28 �m

in the r� and z plane respectively [9], allowed this analysis to use the track impact

parameter method to identify heavy avour jets.

Outside the TPC is the electromagnetic calorimeter (ECAL) which consists of 45

layers of lead interleaved with proportional wire chambers and gives an energy resolution

�(E)=E = 0:18=
q
E(GeV). Information from the ECAL, together with the dE/dx

measurements are used for electron identi�cation. Muons are identi�ed using the hadron

calorimeter (HCAL) and the muon chambers. The HCAL is formed by the iron of the

magnet return yoke interleaved with 23 layers of streamer tubes. It provides a two-

dimensional measurement of muon tracks and measurement of the hadronic energy. The

HCAL is surrounded by two double layers of streamer tubes, the muon chambers, which
provide three-dimensional information.

3 Event Selection

The standard ALEPH hadronic event selection [10] was applied to the 1990, 1991, and
1992 data (� 1 million events) for the lepton-tag analysis and to the 1992 and 1993
data (� 1:4 million events) for the lifetime-tag analysis. The k? (Durham) clustering
algorithm [11], with E recombination scheme and a jet resolution parameter of ycut = 0:01

was applied to all charged and neutral particles (energy ow objects [9]) to select three-jet
events. All jets were required to have a polar angle greater than 30� with respect to the
beam axis. In the case of the impact parameter analysis, this was increased to 40� for the
two lower energy jets so that they were well within the solid angle covered by the vertex
detector.

The jets were projected onto the event plane which was de�ned according to

the quadratic momentum tensor. One-fold symmetric con�gurations were selected by

requiring that the angles in the event plane between the highest energy jet and each of
the two lower energy jets were in the range 150��7:5� in the case of the impact parameter
tag and 150� � 10� in the case of the lepton-tag. This kinematic con�guration implied

that the mean energy of each of the two lower energy jets was 24:7 GeV for quark jets and

24:0 GeV for gluon jets. From the 1992 and 1993 data 10447 events satis�ed the one-fold
symmetric criteria.

The Monte Carlo events analysed were generated using the Jetset parton shower model
with b and c quark fragmentation given by the Peterson et al. parameterisation [12]. They

were passed through the full ALEPH detector simulation and, having satis�ed the above

selection criteria, were analysed in the same way as the data.

2



4 Analysis Method

The symmetric event con�guration has been previously used in various analyses of quark

and gluon jets [3, 13]. It is advantageous in that it ensures that the quark and gluon

jets have almost the same energy. The one-fold symmetric con�guration employed by the

present analysis guarantees a large energy di�erence between the most energetic jet (J1)

and the two other (J2, J3). Hence J1 has a high probability of originating from a quark

(or anti-quark). The Monte Carlo estimate is that in only 3% of the events J1 is a gluon

jet.

The mixture of J2 and J3 jets from each event constituted the mixed sample, M,

containing almost half quark and half gluon jets of equal energies. The quarks are a

mixture of avours determined by the electro-weak couplings of the Z referred to as the

natural avour mix, NFM. If for each event, one of the two lower energy jets has a high

probability to be a b jet, the remaining jet is identi�ed as a gluon jet and enters into the

gluon tagged sample, T.

The analyses are based on the comparison of the M and T samples which allows the

study of jets which have had no tagging criteria applied directly to them, hence the bias

introduced by the tagging method is kept to a minimum.

4.1 Purity Evaluation

Pure quark and gluon jet properties can be extracted from the M and T samples via a

simple unfolding procedure if the gluon purity of the T sample is known. This purity,
de�ned as the ratio of the number of correctly tagged gluon jets over the number of jets
tagged as gluon jets, was estimated from Monte Carlo events using a procedure to relate
each reconstructed jet to its parent parton.

Assigning the particles produced during hadronisation to a speci�c causal parton is

unambiguous only within an independent fragmentation scheme. However, as the �nal
state hadrons form three well separated jets one expects the �nal state partons, i.e. all
partons present at the end of the parton shower, to also cluster into three jets. An
evaluation of the jet purity based on this approach requires three stages.

First, the �nal state partons were forced to cluster into three jets. Then, the three jets

were classi�ed as quark or gluon jets. The quark/antiquark jet was de�ned as the parton
jet containing the original quark/anti-quark from the Z decay. If the original quark and
anti-quark were found in two separate parton jets, as was normally the case, the third

jet was interpreted as originating from a hard gluon. The case in which both quark and
anti-quark were found in the same parton jet was found to occur in less than 1% of the
symmetric events and these events were therefore ignored in the purity study. Finally, the

parton-level jets were matched to the detector-level jets according to the following scheme.

The pair of parton-level and detector-level jets with the smallest angular separation was
identi�ed �rst. Of the remaining two combinations, the one that minimized the sum of

the angular separations was chosen.
In the purity de�nition the number of correctly tagged gluon jets corresponds to the

number of tagged gluon jets that were matched to a parton-level gluon jet according to

the above procedure. For the chosen value of ycut (0.01), the mean angular separation
between the parton-level gluon jet and the matched detector-level gluon jet was found to

be 5�. This value of ycut was chosen as the best compromise to minimise ambiguous jet
association whilst maintaining a � 20% three-jet rate.
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4.2 The Tagging Procedure

By identifying one of the two lower energy jets as a b jet, the other is anti-tagged as the

gluon jet of the event. Jets originating from a b-quark can often be identi�ed via the

characteristics of the decay of a B hadron: the presence of a secondary vertex or the

presence of a high transverse momentum lepton.

4.2.1 The Lifetime Tag

As the aim is the identi�cation of the b-jet and not the reconstruction of the �nal B-

state, explicit vertex reconstruction is not necessary. An impact parameter identi�cation

method can take advantage of the presence of a second and third vertex formed by the

decay of a long-lived D-hadron originating from the cascade decay B ! D. The lifetime

tag algorithm used [14] combines information from all tracks to form the jet probabilities,

Pi, for the hypothesis that all tracks of jet Ji come from the primary vertex. A jet (J3)

was tagged as a gluon jet and included in the T sample if the other jet (J2) had a high

probability of being a b-jet: P2 < Pcut = 0:002.

The algorithm is designed to avoid correlations between the tag variables of the jets.

This is important for the analysis as such correlations could introduce biases in the
properties of the b anti-tagged gluon sample. Nevertheless high multiplicity b decays

are tagged more e�ciently. Although the e�ect of this correlation is small, a careful
study of varying Pcut was performed (with MC events) to understand and minimize any
consequences for the jet properties. The track multiplicity of the correctly tagged gluons
was found to be smaller than the equivalent value measured on an untagged sample. This
bias depends on the value of Pcut used. The avour composition of the misidenti�ed quark
jets of the T sample also depends on the Pcut value. This composition should be the same

as the corresponding avour composition of the M sample so that the quark and gluon
jets from the M and T samples can be compared. Consistent results for various values of
Pcut were obtained when including bias correction factors, see 4.3, eq.(4). For the �nal
analysis the tagging procedure was optimized for the highest gluon purity and smallest
bias in the jet properties. The T sample used consisted of 1002 jets with an estimated

gluon purity P T
g = 0:90.

4.2.2 The Lepton Tag

The presence of a high transverse momentum (P?) lepton has been widely used in the

tagging of heavy avour events and a standard lepton selection de�nition [15] exists

within the ALEPH collaboration. Electrons and positrons were selected using the dE/dx
capabilities of the TPC and estimators based on the shape of the energy depositions in the

ECAL. Muons were selected according to digital hit information recorded by the HCAL
and the muon chambers. The minimummomentum of any selected lepton was 3 GeV/c.

In turn, the momentum of each selected lepton was removed from its jet and its P? was
calculated with respect to the resulting jet axis. This is known as the exclusive transverse

momentum (P excl
?

) of the lepton. In order to tag a jet as a heavy quark jet it was required

to contain a lepton whose P excl
?

was greater than 0:5 GeV/c.
By �nding a high P? lepton in one of the two lower energy jets, the gluon-tagged

sample, T, was obtained. This sample contained 745 jets with an estimated gluon purity

of 82%. In contrast to the impact parameter tagging method, the presence of a lepton in
one (say J2) jet is mostly uncorrelated with the properties of the other (gluon) jet. Hence
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gluon jet properties of the lepton tagged T sample do not su�er from systematic tagging

biases. This was con�rmed with Monte Carlo studies.

The lepton study also analysed a mixed sample of gluon and b jets of 24 GeV energy,

referred to as the B sample, selected by �nding a high P? lepton in the highest energy

jet. The two lower energy jets were then taken as equally likely to be the other b jet or

the gluon jet. The B sample contained 806 events with b purity of 66:5%.

4.3 Unfolding of the Jet Properties

Figure 1 shows the three sample types used. The mixed sample, M, consisted of the

two lower energy jets from all symmetric events. The tagged sample, T, consisted of the

gluon-tagged jets from the events in which one of the two lower energy jets was identi�ed

as a b jet. The B sample consisted of the two lower energy jets from events for which the

highest energy jet was identi�ed as a b jet. In the case of the impact parameter analysis

only the M and T samples were considered. The B sample was identical to the M sample

in every respect other than the quark avour mix. Hence this section only discusses the

unfolding of the M and T samples. Results from the comparison of the T and B samples

were extracted in exactly the same way and are discussed in later sections.

q bb

Emax Emax Emax

(M) (T) (B)

θ

g

TAG

TAG

b b or gq or g g or q g or b

θ θ

Figure 1: The three tagging con�gurations: the 50% quark-gluon (M)ixed sample, the
gluon (T)agged sample, and the (B)-quark enriched mixed sample.

Consider a gluon-tagged T sample whose purity has been estimated to be P T
g . Let A

be the observable under study, and Ag(q) the corresponding value for pure gluon (quark)

jets. The value AT measured from the T sample may then be expressed as

AT = P T
g Ag + (1� P T

g )Aq: (1)

The corresponding equation for an M sample of quark and gluon jets with a gluon

component PM
g , di�erent from P T

g is

AM = PM
g Ag + (1� PM

g )Aq: (2)

Knowing P T;M
g , eqs. (2,3) can be solved for Ag and Aq, allowing a direct comparison of

the properties of quark and gluon jets.

Ideally the two samples should consist of events where the jets are produced in the
same kinematical con�gurations and the tagging procedure should not introduce a bias.

While (almost) identical kinematics are ensured by using symmetric events, the existence

of a tagging bias cannot be excluded. Using Monte Carlo events, the impact parameter

5



analysis estimated this bias by comparing the value of the observableAg(q) from the sample

of all gluon (quark) jets in the symmetric con�guration (i.e., from the M sample) to the

value ABias
g(q) measured from correctly identi�ed gluon (quark) jets from the T sample.

De�ning the tagging bias, �A, as:

�Ag(q) = 1 �
ABias
g(q)

Ag(q)

; (3)

eq. (1) becomes

AT = P T
g Ag (1��Ag) + (1 � P T

g )Aq (1��Aq): (4)

Equation(2) remains the same as no tag was applied to the M sample. These correction

factors were evaluated using Jetset events and were in general small (less than 2%).

Similar factors extracted from Herwig events were found to be compatible. In the case of

the gluons from the lepton-tag analysis, �A was measured to be zero within the Monte

Carlo statistics, as already mentioned in the previous section.

4.4 Detector E�ects

The unfolded results were �nally corrected for detector e�ects. These were estimated by

comparing the properties of quark and gluon jets generated by the Jetset model before
and after detector simulation. These corrections carried statistical and systematic (model
dependent) errors. The latter were estimated by comparing the detector correction factors
extracted from the Jetset and Herwig models.

5 Measured Quark and Gluon Jet Properties

The lifetime-tag analysis measured properties of 24 GeV energy gluons and quarks with
a natural avour mix (NFM), embedded in symmetric three jet events. The lepton-tag
analysis measured in addition the properties of b quarks of the same energy and from the

same environment. The two analyses yielded very similar results for the gluon and NFM
quark properties. Hence in the following section results of the gluon and NFM quark jet
properties from the two analyses are not considered separately. The discussion of quark-

gluon jet comparisons refers to results of the lifetime-tag analysis while the comparison
of b and gluon jets is based on results of the lepton-tag analysis.

The lifetime-tag analysis also tested the unfolding method by modifying the Pcut to
obtain and compare an 80% pure gluon T-sample with the mixed M-sample. The two

sets of corrected distributions (from the 90% and 80% pure gluon T-sample) were found
to be in very good agreement.

5.1 Systematic Uncertainties

The results discussed in the next subsections are presented with statistical and systematic

errors. The systematic errors include the following contributions:

1. The statistical accuracy of the gluon purity value extracted from Jetset. This was

practically negligible.
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2. The systematic error in the gluon purity which arises from the Monte Carlo model

and the purity evaluation algorithm dependencies. This error was estimated using

Herwig as an alternative model and by evaluating theoretically (to �rst order) the

relevant quark and gluon purity in theM sample. The contribution of this systematic

error to the various measurements was below 1%.

3. The error associated with the tagging procedure bias. This was more signi�cant,

being of the order of a few percent (1�4% for the central region of the distributions).

4. The error associated with the detector e�ects corrections. This was already discussed

in section 4.4 and was also approximately a few percent (2�5% for the central region

of the distributions).

The last two systematic errors were evaluated by extracting the relevant correction

factors from Herwig events and comparing them with those extracted from Jetset events.

In each case the assigned systematic error was equal to either the di�erence between the

two sets of correction factors or the statistical error on the Herwig correction, whichever

was the largest.

5.2 Mean Charged Particle Multiplicity

The lifetime-tag analysis gave the following results. The raw charged particle multiplicities
measured for the jets in the T and M samples are < nTch >= 8:26 � 0:10 and
< nMch >= 7:70 � 0:02, respectively. The unfolded values, corrected for bias and
detector e�ects are < nch(gluon) >= 9:94� 0:14(stat)� 0:27(syst) and < nch(quark) >=

8:37 � 0:15(stat)� 0:22(syst). The corresponding ratio is given by:

Rch �
< nch(gluon) >

< nch(quark) >
= 1:19 � 0:04(stat)� 0:02(syst):

The lepton-tag analysis yielded a compatible measurement for Rch. This result
deviates signi�cantly from unity in agreement with recent LEP results [3], con�rming the

higher gluon multiplicity. It is signi�cantly lower than the naive asymptotic prediction of
CA=CF = 9=4.

The Jetset Monte Carlo predicts < nch(gluon) >= 10:16 and < nch(quark) >= 7:92
leading to a ratio of Rch = 1:28 (with negligible statistical errors). The same analysis was
done with theHerwig Monte Carlo model. The resulting values are< nch(gluon) >= 9:48,

< nch(quark) >= 7:63 and Rch = 1:24. Finally the multiplicity ratio was determined at
the parton-level of the Jetset Monte Carlo. The result, Rpart = 1:29, is again very similar

with the hadron-level result, suggesting that the observed di�erence between quark and

gluon jets does have a perturbative origin.
The lepton-tag analysis measured the ratio of gluon to b jet multiplicity. It was found

consistent with unity:

< nch(gluon) >

< nch(bquark) >
= 1:00 � 0:05(stat) � 0:02(syst);

indicating that for the energy scales involved, the additional particle multiplicity arising

from the B hadron decay masks completely the di�erence between b quark and gluon
jet multiplicity. This e�ect is present in Jetset, estimating the corresponding ratio

Rch = 1:077. This measurement is also in agreement with the recent result from
OPAL [16].
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5.3 Fragmentation Function

Figure 2 shows the unfolded and corrected fragmentation function, (1=N)dN=dXE, with

XE = Eparticle=Ejet, for charged particles measured by the lifetime-tag analysis together

with the estimates of the Jetset and Herwig Monte Carlo models. Gluon jets have more

particles carrying small fractions of the total energy, i.e. they are softer. The di�erential

distributions presented in �gure 2 are also given in table 1.

5.4 Jet Shape Variables

The rapidity distribution is another way of looking at the multiplicity and shape of a

jet. Gluon jets, having greater multiplicity, are expected to have a higher plateau; the

ratio of the heights of the corresponding distributions of gluon and quark jets is expected

to asymptotically tend to CA=CF . Moreover, coherence e�ects, in conjunction with the

selection of the events as three-jet events according to a speci�c jet algorithm, are expected

to suppress the length of the gluon plateau [1], yielding a narrower rapidity distribution.

Figure 3 shows the measurements of the lifetime-tag analysis for the rapidity distributions

of charged particles (assuming the pion mass) of the two types of jet, normalised to the

total number of jets. They con�rm the theoretical predictions. The rapidity region Y < 1
corresponds to angles greater than 40� from the jet axis. As the angle between the two
lower energy jets is � 60� this rapidity region is di�cult to interpret. The heights of
the quark and gluon distributions were estimated by �tting the relevant distributions
with double Gaussians, which were found to satisfactorily describe the data. The ratio of

the heights of the gluon and quark rapidity plateaus is measured to be 1:45 � 0:15, i.e.
higher than the corresponding multiplicity ratio. These measurements are in qualitative
agreement with Monte Carlo predictions from the Jetset and Herwig models, as can be
seen from �gure 3.

Figure 4 compares the gluon rapidity distribution with the corresponding property for

b jets as measured by the lepton-tag analysis. The two distributions are now very similar
indicating that the B hadron decay, for the current energies, makes b jets similar to gluon
jets. Jetset reproduces well the b jet distribution.

Another way of illustrating the broadness of a jet is to study the number of particles
and the fraction of energy found within a cone around the jet axis. This is equivalent

to integrating the rapidity distribution. Figure 5 shows the integrated charged particle
multiplicity and �gure 6 shows the integrated energy fraction as a function of the cone size

around the jet axis for NFM quark and gluon jets measured by the lifetime-tag analysis

together with the corresponding estimates of Jetset and Herwig. Gluon jets are clearly
broader. Although gluon jets have higher total multiplicity, quark jets contain more
particles within a cone of half angle up to � 15� . Quark jets have on average about

32% of their energy enclosed within a half cone of 5o, compared to only 16% for gluon

jets. In general the models reproduce the data well. The plots also contain data obtained

by the lepton-tag analysis which measured the multiplicity and energy fraction of b jets
as a function of the cone half angle. From �gure 5 one sees that b jets have a higher
multiplicity than light quarks, as expected.

6 Summary and conclusions

Three jet events of symmetrical topology were chosen as a clean and simple environment

to study and compare gluon and quark jets of 24 GeV. Two b jet tagging techniques were
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used to identify quark jets and hence anti-tag gluon jets, introducing minimal biases to the

jet properties. The two b-tag identi�cation methods gave very similar results. Signi�cant

di�erences between quark and gluon jets were observed. Gluon jets were found to have

a higher multiplicity than quark jets. In addition gluon jets were shown to have a softer

fragmentation function and to be less collimated around the jet axis than quark jets,

as qualitatively expected by QCD. The di�erence in jet shape is clearly displayed both

by the particle and energy distribution within successive cones around the axis and by

the rapidity distributions which exhibit the behaviour recently predicted and associated

with colour coherence. Both the Jetset and Herwig model predictions are in agreement

with these results. The analysis of a b jet sample showed that the above di�erences

are markedly reduced if gluon jet properties are compared to the corresponding b jet

properties, implying that, for the current energy scale, the non-leading fragmentation of

the heavy avour quark contributes signi�cantly to the development of the jet pro�le.
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Figure 2: Fragmentation function for natural avour mix quark and gluon jets.

Table 1: Fragmentation function for natural avour mix quark and gluon jets.

XE Quarks Gluons

0.00-0.05 50:86� 1.67 61.19� 2.24

0.05-0.10 29:35� 1.49 40.22� 1.46

0.10-0.15 16:91� 0.96 16.87� 0.91

0.15-0.25 6:84� 0.40 6:87� 0.47

0.25-0.35 2:83� 0.20 1:86� 0.19

0.35-0.55 0:83� 0.08 0:40� 0.09

0.55-0.80 0:16� 0.03 0:04� 0.03
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Figure 3: Rapidity distributions for natural avour mix quark and gluon jets.
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Figure 4: Rapidity distributions for b quark and gluon jets.
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Figure 5: Integrated charged multiplicity within successive cones for quark and gluon jets.
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Figure 6: Integrated energy fraction within successive cones for quark and gluon jets.
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