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Abstract

Alde D. et al. Study of the πoπo-system with the GAMS-4000 spectrometer at 100 GeV/c:
IHEP Preprint 98-23. – Protvino, 1998. – p. 24, figs. 11, refs.: 25.

The πoπo-system produced in the charge exchange π−p-reaction at 100 GeV/c has been
studied. The experiment was performed at the CERN SPS accelerator with the multiphoton

hodoscope spectrometer GAMS-4000. A partial wave analysis was carried out in the mass range
from 0.8 GeV to 3.0 GeV at −t < 0.2 (GeV/c)2 with the S, D, G and J waves. The S-wave

exhibited rather complicated behaviour with a series of four bumps separated by three dips, at
1 GeV, 1.5 GeV and 2 GeV, which give the evidence for several scalar resonances. Clear peaks

corresponding to the f2(1270), f4(2050) and f6(2510) mesons were seen in the higher waves. All
the three mesons were produced via a dominating one pion t-channel exchange. The parameters
and production cross sections of these mesons were measured.

aNNOTACIQ

aLDI d. I DR. iZUˆENIE πoπo-SISTEMY NA SPEKTROMETRE gams-4000 PRI IMPULXSE

100 g“w/S: pREPRINT ifw— 98-23. – pROTWINO, 1998. – 24 S., 11 RIS., BIBLIOGR.: 25.

iZUˆENA πoπo-SISTEMA, OBRAZU@]AQSQ W ZARQDOWOOBMENNOJ π−p-REAKCII PRI IMPULX-
SE 100 g“w/S. —KSPERIMENT WYPOLNEN NA USKORITELE sps cern. dLQ REGISTRACII γ-

KWANTOW OT RASPADOW πo-MEZONOW ISPOLXZOWALSQ GODOSKOPIˆESKIJ MNOGOFOTONNYJ SPEKTRO-
METR gams-4000. pARCIALXNO-WOLNOWOJ ANALIZ πoπo-SISTEMY PROWEDEN W INTERWALE MASS

OT 0,8 DO 3 g“w S UˆETOM S−, D−, G− I J-WOLN. S−WOLNA IMEET WESXMA SLOVNU@ STRUK-

TURU, W NEJ NABL@DAETSQ SERIQ IZ ˆETYREH BAMPOW, RAZDELENNYH TREMQ PROWALAMI, OKOLO
1, 1,5 I 2 g“w, KOTORYE UKAZYWA@T NA SU]ESTWOWANIE NESKOLXKIH SKALQRNYH REZONANSOW. w

WYS[IH WOLNAH NABL@DA@TSQ ˆETKIE PIKI, SOOTWETSTWU@]IE f2(1270)-, f4(2050)- I f6(2510)-
MEZONAM. wSE TRI MEZONA OBRAZU@TSQ PUTEM DOMINIRU@]EGO ODNOPIONNOGO OBMENA. iZME-

RENY IH PARAMETRY I SEˆENIQ OBRAZOWANIQ.

c© State Research Center of Russia
Institute for High Energy Physics, 1998



Introduction

In this paper the GAMS Collaboration presents a study of the πoπo-system produced
in the charge exchange reaction

π−p→ Mon,

→ πoπo→ 4γ
(1)

at 100 GeV/c π− beam momentum.
In the previous analyses of this reaction performed by the GAMS Collaboration at

38 GeV/c [1,2,3,4,5], a series of interesting results was obtained. A complicated bump-
dip structure of the S-wave at low momentum transfer was revealed. A simultaneous
analysis of the GAMS data on the S-waves in the πoπo, ηη and ηη′ systems together with
the data of other experiments [6] indicates the existence of five resonances with quantum
numbers IGJPC = 0+0++ in the mass range below 1.9 GeV while the quark model predicts
only four. One of the five resonances is superfluous for the qq̄-classification. This state
is considered as a ground state scalar glueball candidate. The production mechanisms of
the fo(980), f2(1270) and f4(2050) were studied at different momentum transfer, a strong
upper limit on the production cross section of the f2(1810) in the πoπo-system was set.

The investigation of the πoπo-system at 100 GeV/c provides a way to get on to the
high mass region where a spin 6 resonance f6(2510) was previously observed by the GAMS
Collaboration [7]. Study of the high mass region is also important for another reason.
Recently an interest to the scalar isoscalar mesons has increased in connection with a
search for a scalar glueball. The data on the S-wave ππ-amplitude are very important for
the classification of the 0+0++ mesons and for the identification of states with an enhanced
gluonic component. Meanwhile the information on the S-wave above 1.7–1.8 GeV is now
rather scanty and contradictory. The S-wave separation at high masses is impossible
without a detailed partial wave analysis (PWA) because the contribution of this wave is
hidden by the higher spin waves which dominate in reaction (1) at mass above 1 GeV.

In the present work a PWA is performed in a wide mass range from 0.8 GeV to 3 GeV
at values of four momentum transfer squared −t < 0.2 (GeV/c)2.
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1. Event selection

The experimental data were collected at the CERN SPS accelerator during two runs
of measurements in 1984. The multiphoton spectrometer GAMS-4000 was used to detect
γ-quanta in the reaction (1) final state. The spectrometer comprised a matrix of 64× 64
lead glass cells of transverse size 38 × 38 mm2. A hole of 2 × 2 cells was made in the
center for the beam particles not interacting with the liquid hydrogen target to pass. The
distance between the target and the γ-spectrometer is equal to 15 m. This allows one
to efficiently detect photons from πo decays in the πoπo mass range up to 3 GeV. The
experimental setup, the data acquisition system, the GAMS-4000 calibration procedures
were described in detail [8,9].

Multiplicity of photons, their energies and impact point coordinates in GAMS for each
event are determined using a geometrical reconstruction program [10]. Only 4γ events are
retained to separate the πoπo-system. A series of cuts is applied to reduce the instrumental
background and decrease event leakage from a class with photon multiplicity k to classes
with multiplicities k − 1 or k + 1. The γ-quanta pair is treated as one γ-quantum if the
invariant mass of the pair is less than 25 MeV and the distance between γ-quanta is less
than 35 mm. The energy of each photon is required to be larger than the threshold which
increases exponentially from 0.6 GeV at GAMS edges to 2.5 GeV in the center. This cut
allows one to reject the false photons generated by the sensitive reconstruction program
due to fluctuations of the energy deposited in γ-spectrometer cells and to electronic noises.
The minimum distance between beam axis and photon impact point in GAMS is required
to be larger than 60 mm in order to suppress the background associated with a heavy
load of the central cells. This cut decreases also the distortions due to the electromagnetic
shower leakage into the central hole. The total energy release in GAMS is confined within
the 10% range of the beam energy.

The quality of the selected 4γ events is demonstrated in fig. 1, where the invariant mass
of γ-pair is shown when the second pair is identified as πo (100 MeV< m2γ < 170 MeV).
It is clearly seen from the figure that the background under πo peak does not exceed 1%.

The final separation of the πoπo-system from other possible 4γ-channels (πoη, ηη,
πoη′ and ηη′) is carried out on the basis of kinematical analysis (3C fit, masses of recoil
neutron and two mesons being fixed). The events are selected with the best χ2 for the πoπo

hypothesis (χ2 < 8.3, 97% confidence level). A total of 644,000 πoπo events is selected.
Only events with −t < 0.2 (GeV/c)2 where one pion exchange (OPE) dominates (see, for
example, [1]) are retained for further consideration. Outside this range 21% of all πoπo

events lies.
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Fig. 1. Invariant mass of γ-pair when the second pair is identified as πo.

2. Mass spectrum

Mass spectrum of the πoπo-system obtained after kinematical analysis, −t <
0.2 (GeV/c)2, demonstrates the same characteristic features as that at 38 GeV/c (fig. 2).
It is dominated by the f2(1270), a dip at 1 GeV is also seen which corresponds to the
fo(980). Above the f2(1270), a peak is clearly seen with a mass of about 2 GeV, it is
interpreted with the f4(2050). A peak at 1.7 GeV cannot be identified with any known
resonance. It may be connected with the S-wave contribution. The PWA is necessary to
get an exact answer. A small shoulder is seen above the f4(2050) peak at 2.4 GeV, where
the f6(2510) was observed previously by the GAMS Collaboration [7].

In the OPE approximation, the reaction (1) angular distribution can be written in the
form

I(cos θGJ ) ∼
∣∣∣∣∣∑
l

AlPl(cos θGJ)

∣∣∣∣∣
2

, (2)

where Al is the spin l amplitude, Pl(x) is the Legendre polynomial, θGJ is the Gottfried-
Jackson angle. The angular distributions for the high spin mesons are characterized by a
series of minima and maxima, as follows from (2). This allows one to enhance or suppress
a signal from the considered resonance by choosing a suitable cos θGJ -interval. In the
interval 0.75 < cos θGJ < 0.85 a function [P6(cos θGJ )]2 reaches its maximum while a
polynomial P4(cos θGJ) squared is close to zero. In the mass spectrum built for the events
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Fig. 2. Two upper plots show mass spectrum of the πoπo-system after kinematical 3C fit,

|t| < 0.2 (GeV/c)2 (high mass region is shown in the right plot). Two lower plots show
πoπo mass spectra in the cos θGJ -intervals where spin 6 contribution is enhanced (left

plot) or suppressed (right plot).

from this interval, a clear f6(2510) peak is seen along with the f2(1270) and f4(2050). To
the contrary, for the events from the 0.62 < cos θGJ < 0.7 interval where a polynomial
[P6(cos θGJ )]2 has a minimum, an f4(2050) peak is clearly seen, while a signal from the
f6(2510) is absent (fig. 2).

Further study of the structures observed in the mass spectrum is performed on the
basis of PWA.
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3. Partial wave analysis

3.1. Detection efficiency

Detection efficiency for the reaction (1) events ε is computed by the Monte Carlo
method as a function of four significant dynamical variables: Mππ, t and two angles
in the Gottfried-Jackson frame, θGJ and φTY . The event kinematics is simulated up
to the final decay of each πo to two photons taking into account beam characteristics
(dispersions in the energy and the transversal size) and all the geometrical parameters
of the setup. A profile of real showers is used to simulate the electromagnetic showers
in GAMS [10], fluctuations of energy released in the spectrometer cells covered by the
showers are included. The MC events are then processed with the very same programs
as in the case of the experimental data. This procedure takes into account in detail the
setup parameters, the measurement conditions and all stages of the event selection used
in the physical data analysis.

The MC events are generated uniformly distributed over variables cos θGJ , φTY and
eαt, α = 5 (GeV/c)−2, in the mass points equally spaced with 100 MeV step in an interval
from 0.6 GeV to 3 GeV. A total of 15 million MC events are generated.

The efficiency is parametrized by the method of [11] and represented in the form of
4-dimensional Fourier series:

ε(θGJ , φTY , t,Mππ) =
∑
l,m
k,n

εlmknRe {Y m
l (θGJ , φTY )}Pk(a1 + b1e

αt)Pn(a2 + b2Mππ), (3)

where Y m
l (θGJ , φTY ) is the spherical harmonic, Pk(x) is the Legendre polynomial.

Two-dimensional efficiency calculated in two mass points, 1.3 GeV and 2 GeV, inte-
grated over t in interval 0 − 0.2 (GeV/c)2 is presented in fig. 3. The efficiency achieves
a maximum at cos θGJ ≈ 0 and reduces to zero at cos θGJ → 1. A zone of zero efficiency
increases rapidly with the decrease in mass, it occupies about 22% of phase volume in
the f2(1270) region. At high masses ε is equal to zero only in a small part of phase space
near cos θGJ ≈ 1. The efficiency integrated over cos θGJ , φTY and t reaches a maximum at
Mππ ≈ 2.2 MeV and then decreases only slightly with the increase in mass up to 3 GeV.
This provides favorable conditions for PWA at high masses.

3.2. Angular distributions

The angular distribution of the reaction (1) events in the Gottfried-Jackson frame is
given by a sum of two non-interfering terms

I(θGJ , φTY ) = |ho(θGJ) + h−(θGJ ) cos φTY |2 + |h+(θGJ ) sinφTY |2. (4)

The first term in (4) corresponds to the exchange with unnatural-parity in the reaction (1)
t-channel, the second one describes the natural-parity exchange. Only the waves with spin
l ≤ lm = 6 are taken into account in the PWA. The higher spin contribution is negligible
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Fig. 3. Detection efficiency of the reaction (1) events integrated over t from 0 to 0.2 (GeV/c)2

at Mππ = 1.3 GeV and 2 GeV.

in the mass range under study. The function ho includes the amplitudes with spin z-
projections m = 0, the amplitudes with |m| = 1 form the functions h− and h+. The
waves with |m| > 1 are negligibly small in the whole mass range. The functions ho, h−
and h+ can be written in terms of amplitudes of the S, D, G and J waves, corresponding
to spin values 0, 2, 4 and 6, as follows

√
4πh0(θGJ ) = SP 0

0 (cos θGJ ) +
√

5DoP
0
2 (cos θGJ ) +√

9GoP
0
4 (cos θGJ ) +

√
13JoP

0
6 (cos θGJ), (5)

√
4πh±(θGJ ) =

√
3/5D±P

1
2 (cos θGJ ) +

√
9/10G±P

1
4 (cos θGJ) +√

13/21J±P
1
6 (cos θGJ ), (6)

where Pm
l (cos θGJ ) is the associated Legendre function.

Angular distribution (4) can be expanded in the spherical harmonic Y M
L (Ω) series as

follows

I(ΩGJ ) =
2lm∑
L=0

[
t0LY

0
L (ΩGJ ) + 2

2∑
M=1

tML Re
{
Y M
L (ΩGJ )

}]
, (7)

where ΩGJ ≡ [cos θGJ , φTY ].
The PWA is carried out in 20 MeV mass bins (bin size is doubled at Mππ > 1.5 GeV).

Events with ε < 0.02 are excluded from consideration. The experimental angular distribu-
tions are fitted independently in each mass bin ∆Mππ with the event-by-event maximum
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likelihood method. The MINUIT program [12] is used to minimize functional

F = −
N∑
i=1

ln I(Ωi) +
∑
LM

tML ε
M
L , (8)

where N is the number of experimental events in ∆Mππ bin, εML are expansion (3) coeffi-
cients, calculated in the center of ∆Mππ bin and integrated over t taking into account the
experimental t-distribution, tML are spherical harmonic moments (7), expressed in terms
of the partial amplitudes [13].

In the case of the S, D, G and J waves, angular distribution (4) is expressed via ten
complex amplitudes (three amplitudes for each l, except for the S-wave which comes with
only one amplitude). One amplitude, each for natural and unnatural spin-parities, can
be set real, therefore, the angular distribution in each mass bin is characterized by 18
real parameters. Amplitude modules and relative phases of the partial waves are taken
as parameters to be determined in PWA.

3.3. PWA ambiguity

A system of equations which expresses the tML moments via the partial amplitudes [13]
is bilinear and has, therefore, multiple solutions. Fit to the angular distributions gives
only one solution in each mass bin, i.e. one set of parameters (amplitude modules and
relative phases). All other solutions for the system of two pseudoscalar particles can be
found with the well-known method [14,15]. First, the ambiguity problem is investigated
for the partial waves with unnatural-parity exchange. For this purpose, continuous and
continuously differentiated function is defined

g(θGJ ) = ho(θGJ ) + h−(θGJ ),
g(−θGJ) = ho(θGJ)− h−(θGJ).

(9)

Introducing a variable t = tan(θGJ/2) and then u = 1/t− t, one can define a new function

G(u) = t−lm(1 + t2)lmg(t) = alm

lm∏
k=1

(u− uk), (10)

which is a polynomial of order lm and therefore can be expressed through its complex
roots uk (alm is a complex constant).

One can replace any of the uk roots by complex-conjugated one and calculate the
corresponding set of angular distribution parameters. These parameters are an equally
valid solution because the reaction (1) angular distribution does not change under complex
conjugation of the G(u) roots (see [15]). Hence, there are, in general, 2lm−1 non-trivial
solutions for the waves with unnatural-parity exchange, after eliminating those which may
be obtained by complex conjugation of the entire G(u) function.

There are therefore 8 non-trivial solutions for unnatural-parity amplitudes in case of
S, Do, D±, Go and G± waves. The number of solutions increases to 32 if Jo, J− and J+

waves are added.
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When the ambiguity problem is resolved for the unnatural-parity amplitudes, natural-
parity amplitudes can be found using the moments with M = 2, which can be expressed
through the amplitudes with |m| = 1. An extra ambiguity for the waves with natural-
parity exchange appears, if lm ≥ 6. This ambiguity may be eliminated by using the
Ochs-Wagner model [17], which predicts the equality of the amplitudes with |m| = 1 for
each l.

3.4. Bootstrapping procedure

The procedure described above allows one to solve the ambiguity problem in each mass
bin. To link solutions in the adjacent mass bins, the requirements are introduced that real
and imaginary parts of the G(u) roots uk be continuous and continuously differentiated
functions of Mππ. For this purpose, the following functional is introduced

Φ =
lm∑
k=1

(
an−1
k − anλk

)2

(
∆an−1

k

)2
+
(
∆anλk

)2 +

lm∑
k=1

(
an−2
k − 2an−1

k + anλk

)2

(
∆an−2

k

)2
+ 4

(
∆an−1

k

)2
+
(
∆anλk

)2 , (11)

where

ank =

{
Reunk if 1 ≤ k ≤ lm,
|Imunk | if lm + 1 ≤ k ≤ 2lm,

superscripts indicate the ordinal number of mass bin. Weight of each term in (11) depends
on statistical errors of the real and imaginary parts of the roots entering this term.

All possible permutations of the roots {λk} (in all lm!) are sorted in n-th bin and
the Φ value is calculated for each permutation (only the first term in (11) is taken into
account for the first two bins). Finally, the roots in n-th bin are ordered in such a way
that functional Φ has a minimal value.

The statistical errors of the roots in (11) are estimated by the Monte Carlo method.
A total of 10,000 sets of the angular distribution parameters (amplitude modules and
relative phases) are generated in each mass bin according to the Gaussian distributions
with the mean values and the dispersions determined by MINUIT for one of the solutions.
Then, roots of the F (u) are calculated for each set, their real and imaginary parts are
put in histograms. Dispersions of the obtained distributions are used as estimates of the
statistical errors ∆Reunk and ∆Imunk .

Figures 4 and 5 show the real and imaginary parts of the F (u) roots as functions of
mass (for the cases lm = 4 and lm = 6) after imposing the bootstrapping procedure. A
behaviour of each root is clearly traced, the imaginary parts are well separated in those
points where the real parts cross each other and vice versa, if the imaginary parts of two
roots are close to each other, their real parts are separated quite well. It shows that the
bootstrapping procedure based on functional (11) allows one to identify unambiguously
all the PWA solutions in the whole mass range from 0.8 GeV to 3 GeV.
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Fig. 4. Real and imaginary parts of F (u) roots (see text) as functions of mass obtained in

PWA with S, D and G waves.
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Fig. 5. The same for the case of the S, D, G and J waves.
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4. Partial wave analysis results

4.1. PWA below 2.4 GeV

At the first stage, a PWA is carried out in the mass range from 0.8 GeV to 2.4 GeV
taking into account S, Do, D−, D+, Go, G− and G+ waves. The detection efficiency
drops sharply at low masses (in the f2(1270) region and below, see above) which makes
difficult the PWA here. Because of this, some extra conditions are imposed at low masses.
Modules of the Go, G− and G+ amplitudes squared below 1.5 GeV are described by the
exponential curves dropping fast and smoothly with decrease in mass and fixed. Similar
constraints are applied to the Do, D− and D+ waves below 1 GeV. The Ochs-Wagner
model [17] predicts an equality of the amplitudes with natural and unnatural spin-parity
exchange (|m| = 1) in the resonance region. This model works well for the D− and D+

waves at 38 GeV/c [1], amplitude modules of these waves are equal to each other not only
in the f2(1270) mass region but at higher masses also. In our analysis two constraints,
|D+| = |D−| and |G+| = |G−|, predicted by the Ochs-Wagner model are applied. A
quality of the angular distribution fit for one of the mass bins at the f2(1270) peak is
shown in fig. 6. In other bins the quality is similar.

Eight non-trivial PWA solutions are found by the method described above. One can
reduce significantly the number of solutions by using some physical requirements. Of all
solutions four are characterized by the unphysical behaviour of the G-waves at low masses
(clear peaks in the f2(1270) region). Furthermore, some solutions do not comply with
phase coherence for the Do and D− waves in the f2(1270) mass region and for the Go

and G− waves in the f4(2050) mass region. All these solutions are excluded from further
consideration. The only solution complying with the physical conditions is shown in fig. 7.
It should be noted that the behaviour of the relative phases of the Do and D− waves as
well as the Go and G− waves agrees well with phase coherence. In a PWA with S, D, G
and J waves phase coherence is applied to decrease the number of angular distribution
parameters.

4.2. PWA in the mass region up to 3 GeV

To study a high mass region a PWA is carried out from 1.8 GeV to 3 GeV in 40 MeV
mass bins with S, Do, D−, D+, Go, G−, G+, Jo, J− and J+ waves taken into account.
Contribution of the J− and J+ waves is found to be equal to zero within the statistical
errors. These waves are not taken into account in further analysis. In order to reduce
the number of parameters to be determined from the angular distribution fit, a series of
constraints is applied. First, it is required |D+| = |D−| and |G+| = |G−| in accordance
with the Ochs-Wagner model. Then, phase coherence is applied: φDo = φD− and φGo =
φG−. At last, it is found that phase differences of the waves with natural and unnatural
spin-parities (|m| = 1) corresponding to the same l are identical within the errors bars.
This allows one to put these phase differences to be equal to each other: φG+ − φD+ =
φG−−φD−. In our PWA there are nine real parameters to be determined in each mass bin:
six amplitude modules |S|, |Do|, |D−|, |Go|, |G−|, |Jo|, and three relative phases φDo−φS,
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show the theoretical distributions multiplied by the detection efficiency.
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Fig. 7. Physical solution obtained in PWA with S, D and G waves.

φDo − φGo and φDo − φJo. All phases are measured relative to the Do-wave phase because
there are no resonance structures in this wave above the f2(1270) (see [5]), therefore the
Do-wave phase is nearly constant at high masses. A quality of the angular distribution
fit for two mass bins in the maxima of the f4(2050) and f6(2510) peaks is shown in fig. 6.

32 non-trivial PWA solutions found with the method described above may be classified
into two equal sets. The solutions from one of these sets are rejected because of the
unphysical behaviour of the J -wave. A clear peak is seen in the Jo-wave at f4(2050)
mass. Also a significant J−-wave with unphysical structure around 2 GeV appears in
these solutions.
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Each of the other 16 solutions exhibits a clear f6(2510) peak in the Jo-wave, below
this peak the Jo-wave intensity decreases smoothly to zero. The J−-wave does not exhibit
any statistically significant structure, its intensity is equal to zero within the errors bars
for each solution. The Go-wave exhibits a clear f4(2050) peak for all 16 solutions while
the G−-wave demonstrates various behaviours for different solutions. The f4(2050) is seen
as a prominent peak in eight solutions. In other eight solutions the G−-wave intensity
decreases monotonously with mass decrease, a shoulder is seen at 2 GeV. The Go-wave
for these solutions has a noticeable background but the f4(2050) signal is an order of
magnitude higher in this wave as compared to the G−-wave, and f4(2050) is observed as
a clear peak against a background of about 20%. Such a structure of the G-waves may
be explained by their unphysical behaviour at low masses. The G-waves exhibit peaks
in the f2(1270) region (see sect. 4.1), the tails of these peaks are extended to the higher
masses. These eight solutions are eliminated also as unphysical ones.

In each of the retained eight solutions, the f4(2050) is clearly seen both in the Go and
G− waves, while the S, Do and D− waves have different behaviour. There are statistically
significant structures in the Do and D− waves in the mass range of 1.8–2.5 GeV in all but
one solutions. This is in contradiction with the results of the PWA with S, D and G waves
obtained in this work (see also [4]). According to these analyses, the intensities of the Do

and D− waves decrease smoothly above the f2(1270) peak. The only solution complied
with these results is shown in fig. 8. Below 1.8 GeV the physical solution obtained in
PWA with S, D and G waves is shown (see sect. 4.1).

4.3. Spherical harmonic moments

Spherical harmonic moments
√

4πtML restored from the amplitudes are shown in fig. 9
(the moments with M ≥ 2 are equal to zero within the errors bars). The moments
demonstrate features typical for all PWA solutions because they are determined unam-
biguously from the angular distributions. Clear f2(1270) peaks are seen in the moments
with L ≤ 4. Ratios of the t0M and t1M at mass of the f2(1270) allow one to estimate the
ratio of the D− and Do waves intensities (on condition that one can neglect the S and G
wave contributions at this mass):

|D−|2
|Do|2

≈ 1

2

(
t12
t02

)2

≈ 0.035,
|D−|2
|Do|2

≈ 5

3

(
t14
t04

)2

≈ 0.037. (12)

This estimations appear to be somewhat larger than the value obtained from the analysis
in terms of amplitudes, which can be explained by the approximate character of (12).

The f4(2050) is clearly seen in the t06 and t16. A signal from this meson becomes more
prominent in the moments with L = 8 because these moments (t08 and t18) are expressed
via G-amplitudes only (the Jo-wave gives negligibly small contribution at 2 GeV):

√
4πt08 =

490
√

17

2431
|Go|2 −

392
√

17

2431

(
|G−|2 + |G+|2

)
,

√
4πt18 =

294
√

85

2431
|Go||G−| cos(φGo − φG−).

(13)
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Fig. 8. Physical solution obtained in PWA with S, D, G and J waves.

If one puts φGo = φG− and |G+| = |G−|, the values of |G−| and |Go| can be easily
determined from (13). In the f4(2050) mass region a |G−|2/|Go|2 ratio is equal to 0.026
in a good agreement with the PWA results in terms of partial waves.

The t012 is proportional to the |Jo|2. A clear f6(2510) peak is seen in this moment.

4.4. Discussion

The behaviour of the physical solution found in this work is in good agreement with
the results obtained at 38 GeV/c [1,4,5]. The S-wave has a rather complicated structure
(fig.10). It demonstrates a series of four bumps separated with three dips, at 1, 1.5 and
2 GeV. The first two dips were observed earlier at 38 GeV/c. The former is associated with
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Fig. 9. Spherical harmonic moments restored from the partial amplitudes obtained in PWA
with S, D, G and J waves.

the fo(980), this scalar meson was studied in detail in [2,3,18]. The bump at 1.5 GeV seen
previously in [4,5] is attributed to another scalar resonance, fo(1500), a ground state scalar
glueball candidate. The S-wave structure above 2 GeV is less prominent at 38 GeV/c

16



Mπ°π°   [MeV]

N
/2

0 
M

eV
, ×

 1
03 

   
 

0

5

10

15

20

500 1000 1500 2000 2500

0

1

2

1500 2000 2500

Fig. 10. S-wave amplitude module squared for the physical solution. Below 1 GeV the val-
ues of |S|2 obtained at 38 GeV/c [25] are shown by open circles normalized to the
present data. High mass region is shown in insertion. A curve shows the fit with the

dependence described in text.

due to insufficient detection efficiency [5]. At 100 GeV/c the efficiency at high masses is
much better, because of this a dip is clearly seen in the S-wave at 2 GeV followed by one
more bump. It is important to note that the last bump appeared when the Jo-wave was
added in PWA model (sect. 4.2). The analysis with S, D and G waves only did not reveal
any structure in the S-wave above 2 GeV (fig.7). A similar situation took place with the
bump at 1.7 GeV [4]. It appeared in the S-wave after the S, D and G waves have been
taken into account correctly. In the first analysis [1], where apart from S, Do, D− and
D+ waves only Go-wave was included with the f4(2050) tabulated parameters, the bump
in the S-wave at 1.7 GeV was absent. It shows once more the importance of high wave
account for correct determination of the S-wave at high masses.

The S-wave phase measured relative to the Do-wave phase has rather a complicated
behaviour. It increases sharply around 1.5 GeV, confirming the presence of the fo(1500).
The phase changes rapidly at 2 GeV as well. Along with the dip in the S-wave, this indi-
cates the existence of a scalar resonance in this mass range. Such conclusion is confirmed
by the results of ηη-system study at 100 GeV/c [19]. The S-wave for one of two solutions
found in [19] demonstrates above the ηη-threshold a behaviour, similar to the behaviour
of the S-wave, obtained in the present work. It shows three bumps, separated by dips at
1.45 GeV and 1.9 GeV.
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The behaviour of the D and G waves are in good agreement with the Ochs-Wagner
model prediction. A ratio of Do and D− intensities at f2(1270) mass is about 3%. The
same ratio obeys for Go and G− intensities at mass of the f4(2050).

The Go-wave phase measured relative to the Do-wave phase changes by π at 2 GeV
confirming the presence of the f4(2050). The relative phase of the Jo and Do waves
demonstrates a similar behaviour in the f6(2510) mass region.

5. Resonance parameters and production cross sections

5.1. Scalar resonances

To estimate the parameters and production cross sections of the scalar resonances
produced in reaction (1), a fit to the S-wave amplitude module squared has been carried
out. The following parametrization is used

A(Mππ) = G(Mππ) +
Nres∑
n=1

ane
iθnBn(Mππ), (14)

G(Mππ) = (Mππ − 2mπo)
αe−βMππ−γMππ

2

, (15)

where an and θn are the amplitude and phase of the n-th resonance, respectively, α, β and
γ are real parameters. A relativistic formula [20] is used for the Breit-Wigner function
B(Mππ):

B(Mππ) =

(
Mππ√
q

)√
2l + 1

MRΓ

M2
R −M2

ππ − iMRΓ
, (16)

Γ = ΓR

(
q

qR

)2l+1
Dl(qRr)

Dl(qr)
, (17)

where q is a πo’s momentum in c.m.s. of dipion, l, MR and ΓR are spin, mass and width
of the resonance, respectively, qR is a πo’s momentum at Mππ = MR, r is interaction
radius being equal to 1 Fm (fit results depend only slightly on this parameter), Dl(x) is
a Blatt-Weiskopf barrier factor [21].

Function (14) is convoluted with a Gaussian distribution

ζ(M,Mππ) = C exp

{
−(M −Mππ)2

2σ2(M)

}
, (18)

σ(M) = 0.009 + 0.021 ·M GeV, in order to account for the experimental mass resolution:

|S(Mππ)|2 =
∫
dM ζ(M,Mππ) |A(M)|2 . (19)

Apart from three resonances discussed in sect. 4.4, one more scalar resonance around
1.3 GeV is needed to describe the S-wave amplitude module squared in the whole mass
range under study. The fit quality deteriorates significantly without the fo(1300) espe-
cially for the bump at 1.3 GeV. The dip at 1.5 GeV appears due to destructive interference
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of the fo(1300) and fo(1500) with a non-resonant part of the S-wave (fig. 10). As a result
of the interference the fo(1500) mass is shifted to higher values as compared to the dip
position.

To check the stability of the obtained results, we varied the low and the high edges of
the mass interval. We tried also to use the Breit-Wigner function or polynomial instead of
G(M) in (14). Variations of the fo(980) and fo(1300) parameters lie within the statistical
errors: M = 960±10 MeV and Γ = 70±20 MeV for the fo(980) and M = 1315±30 MeV
and Γ = 190± 50 MeV for the fo(1300). Mass and width of the fo(1500) are determined
with larger errors: M = 1580 ± 80 MeV, Γ = 280 ± 100 MeV. As for the resonance
corresponding to the dip at 2 GeV, for its mass and width, the following values are
obtained

M = 2010± 60 MeV,
Γ = 240± 100 MeV.

(20)

The errors shown in (20) include both systematical and statistical errors. In what follows
this resonance will be called fo(2010). A scalar state with the same mass 2020± 35 MeV
and slightly larger width 410± 50 MeV was observed in the π+π−π+π− system produced
in pp central collisions at 450 GeV/c [22].

The production cross sections of the scalar resonances are estimated using the number
of events under the Breit-Wigner curves and normalized to the f2(1270) cross section (see
below):

σ(π−p→ fo(980)n)× BR(fo(980) → πoπo) = 5, 4± 1, 2 nb,
σ(π−p→ fo(1300)n)× BR(fo(1300) → πoπo) = 70± 15 nb,
σ(π−p→ fo(1500)n)× BR(fo(1500) → πoπo) = 12± 3 nb,
σ(π−p→ fo(2010)n)× BR(fo(2010) → πoπo) = 3± 1 nb.

(21)

Data on the S-wave in the πoπo-system produced at 100 GeV/c obtained in the present
work does not contradict the existence of the fifth resonance [6]. This state can be
identified with a wide bump in the S-wave extending from the threshold up to ∼ 2.5 GeV
with the dips against its background (fig. 10). Use of the Breit-Wigner function instead
of G(M) (see (14)) to describe a non-resonant part of the S-wave gives an equally good fit
(χ2 divided by the number of freedom increase only slightly, from 0.98 to 1.07). According
to [6] the broad resonance is crucial for large interference effects seen in the S-wave.

5.2. Resonances with higher spins

In order to determine the masses, widths and production cross sections of the reso-
nances observed in the D, G and J waves, amplitude modules squared of these waves are
fitted with the sums of the Breit-Wigner curves (16) and backgrounds.

The Do-amplitude module squared is well described by the Breit-Wigner resonance
with a mass of 1283± 5 MeV and a width of 171± 10 MeV, which are in good agreement
with the f2(1270) tabulated parameters [23] (fig.11). A peak in the D−-wave is not fitted
with the Breit-Wigner function, which may be explained by distortions due to insufficient
efficiency at low masses.
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Fig. 11. Simultaneous fit to the Go, G− and Jo amplitudes and relative phases of the Go and
Do, Jo and Do waves (see details in the text).
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The f4(2050) parameters are found on the basis of the simultaneous fit to the Do, Go,
G− amplitude modules squared and the relative phase of the Do and Go waves (fig. 11). A
coherent sum of resonance (16) for spin four and a background (complex constant) is used
to describe the Go and G− amplitudes. The Do-amplitude is parametrized in a similar
way, the f2(1270) parameters being fixed to their tabulated values. The fit gives the
following values for the f4(2050) mass and width (taking into account a mass resolution,
σM = 50 MeV at Mππ = 2 GeV):

M = 1998± 15 MeV,
Γ = 395± 40 MeV.

(22)

The f6(2510) parameters are determined from a simultaneous fit to the Do and Jo
amplitude modules squared and relative phase of these waves (fig. 11). The Jo-amplitude
is parametrized as a coherent sum of resonance (16) for spin six and a background (com-
plex constant). The Do-amplitude is described with a complex polynomial of first order
(Do-amplitude parametrization in a form of the tail of the Breit-Wigner function gives
unsatisfactory description). The following values are obtained for the f6(2510) mass and
width:

M = 2420± 30 MeV,
Γ = 270± 60 MeV.

(23)

The width is determined taking into account a mass resolution (σM = 60 MeV at Mππ =
2.4 GeV).

Production cross sections of the f4(2050) and f6(2510) are normalized to the cross
section of the f2(1270) measured in one of our previous works with an accuracy of 8% [1].
The production cross section of the f2(1270) is equal to 326± 30 nb at 100 GeV/c. This
value is obtained using the following energy dependence of the cross section [24]

σ(π−p→ f2(1270)n) × BR(f2(1270)→ πoπo) =

(2.61± 0.20) µb (plab/38 GeV/c)−2.15±0.05. (24)

A total number of the f2(1270) mesons detected in the Do, D− and D+ waves is equal
to (1.25± 0.02) × 106, a corresponding sensitivity of the experiment is 0.261 ± 0.024 pb
per one event of reaction (1). A ratio of the production cross sections of the f2(1270) in
the D− and Do waves is found to be 0.026± 0.002, being two times smaller as compared
to the value of 0.059± 0.006 obtained at 38 GeV/c [1].

The production cross sections of the f4(2050) in the Go and G± waves at 100 GeV/c
are found to be

σGo(π
−p→ f4(2050)n) × BR(f4(2050) → πoπo) = 74, 8± 7, 2 nb;

σG±(π−p→ f4(2050)n) ×BR(f4(2050)→ πoπo) = 2, 5± 0, 3 nb.
(25)

A total f4(2050) production cross section in threeG-waves (on condition that |G+| = |G−|)
is equal to

σtot(π
−p→ f4(2050)n) × BR(f4(2050)→ πoπo) = σGo + 2σG− = 79.8± 7.8 nb. (26)
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A ratio of the f4(2050) production cross sections in the G− and Go waves is 0.033±0.003.
A similar ratio measured at 38 GeV/c is more than two times larger 0.075 ± 0.007 [4].

The f6(2510) production cross section in the Jo-wave at 100 GeV/c is found to be

σJo(π
−p→ f6(2510)n) × BR(f6(2510) → πoπo) = 9.9± 1.4 nb. (27)

An upper limit is set for the f6(2510) production cross section in the J±-waves at 95%
confidence level

σJ±(π−p→ f6(2510)n) ×BR(f6(2510)→ πoπo)

σJo(π
−p→ f6(2510)n) × BR(f6(2510) → πoπo)

<
1

10
. (28)

It is interesting to compare the results obtained in this work with the Ochs-Wagner
model predictions. According to the model

|Al
−|2
|Al

o|2
=

cA

M2
ππ

l(l + 1), (29)

where Al
o and Al

− are the amplitudes with unnatural-parity exchange corresponding to
|m| = 0 and 1, respectively.

By using (29), one can calculate a |G−|2/|Go|2 ratio at mass of the f4(2050) from the
D− and Do wave intensities in the f2(1270) mass region. This ratio is equal to 0.034. A
similar ratio for the J− and Jo waves in the f6(2510) mass region is equal to 0.051. Both
values are in good agreement with the results obtained in the present work.

Ratios of the production cross sections of the f2(1270) in the Do and D± waves and
of the f4(2050) in the Go and G± waves at 38 GeV/c and 100 GeV/c are found to be

f2(1270), Do-wave : σ100 GeV/c/σ38 GeV/c = 0, 134± 0, 016;
f2(1270), D±-wave : σ100 GeV/c/σ38 GeV/c = 0, 054± 0, 007;
f4(2050), Go-wave : σ100 GeV/c/σ38 GeV/c = 0, 106± 0, 016;
f4(2050), G±-wave : σ100 GeV/c/σ38 GeV/c = 0, 046± 0, 007.

(30)

It is seen from (30) that energy dependence of the production cross sections is essentially
the same both for the f2(1270) and f4(2050).

Conclusions

A partial wave analysis of the πoπo-system produced in the π−p→ πoπon reaction at
100 GeV/c has been carried out taking into account S, D, G and J waves. The unique
physical solution is found in the whole mass range under study from 0.8 GeV to 3 GeV,
its behaviour agrees well with the behaviour of the solutions obtained earlier at 38 GeV/c.
The S-wave for the physical solution has rather a complicated structure with three dips
at 1, 1.5 and 2 GeV. These dips appear due to destructive interference of the fo(980),
fo(1300), fo(1500) and fo(2010) with the wide bump extending from the threshold up
to ∼ 2.5 GeV. Parameters and production cross sections of these resonances have been
measured.
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Mesons with high spins, f2(1270), f4(2050) and f6(2510), are produced in the π−p→
πoπon reaction via dominating one pion exchange with a small absorption (about 3% for
the f2(1270) and f4(2050) and less when 10% for the f6(2510)), which is in agreement
with the Ochs-Wagner model prediction. Parameters and production cross sections of the
f2(1270), f4(2050) and f6(2510) have been determined.
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